
ESTIMATING GLOBAL ERRORS IN TIME STEPPING∗

EMIL CONSTANTINESCU†

Preprint ANL/MCS-P5077-0214

Abstract. This study introduces new strategies for global error estimation in time-stepping
algorithms. The new methods propagate the defect along with the numerical solution much like
the solving for the correction or Zadunaisky procedure; however, the proposed approach allows for
overlapped internal computations and, therefore, represents a generalization of the classical numerical
schemes for solving differential equations with global error estimation. The resulting algorithms
can be effectively represented as general linear methods. We present a few explicit self-starting
schemes akin to Runge-Kutta methods with global error estimation and illustrate the theoretical
considerations on several examples.
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1. Introduction. The global error or a posteriori error represents the actual
numerical error resulting after applying a time-stepping algorithm. Calculating this
error is generally viewed as an expensive process, and therefore in practice only local
error or the error from one step to the next is used to estimate the errors or control the
step size. However, local error estimation is not always suitable, especially for prob-
lems with unstable modes. This aspect prompts us to revisit global error estimation
in order to make it more practical.

In this study we introduce and analyze efficient strategies for estimating global
errors for time-stepping algorithms. We present a unifying approach that includes
most of the classical strategies as particular cases, and we develop new algorithms
that fall under general linear time-stepping schemes. One of the most comprehensive
surveys for global error estimation is by Skeel [63]. We focus on a subset of the
methods discussed therein and generalize some of the results presented there.

Global error estimation in time stepping has a long history [26–30, 32, 45, 48–
50, 53, 55–59, 68]. A posteriori global error estimation has been recently discussed
in [1, 17, 33, 46]. Step-size control with multimethod Runge-Kutta (RK) is discussed
in [18, 58, 60, 61]. Global error estimation for stiff problems is discussed in [25, 46,
47, 66, 67]. Adjoint methods for global error estimation for PDEs are analyzed in
[21, 35]. These studies cover most of the types of strategy that have been proposed
to address global error estimation. The Zadunaisky procedure [69] and the related
solving for the correction procedure [63] are arguably the most popular global-error
estimation strategy. The work of Dormand et al. [26,29] relies on this procedure and is
extended to a composition of RK methods in [27]. Further extensions are introduced
by Makazaga et al. [49]. Shampine [58] proposes using multiple methods to estimate
global errors.

Our work builds on similar ideas as introduced by Shampine [58], Zadunaisky [69]
and the followups in the sense that the strategy evolves the defect along with the
solution; however, in our strategy the internal calculations of the two quantities can be
overlapped. Previous strategies can be cast as particular cases of the one introduced
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in this study when the overlapping part is omitted. Therefore, the new method
automatically integrates the local truncation error or defect. This leads to new types
of schemes that are naturally represented as general linear (GL) methods, which are
perfectly suited for this strategy, as we demonstrate. Although these algorithms work
well with variable time-steps, we do not address error control strategies in this study.

We consider the first-order system of nonautonomous ordinary differential equa-
tions

y(t)′ = f(t, y(t)) ; y(t0) = y0 , t0 < t ≤ T , y ∈ R
m, f : Rm+1 → R

m ,(1.1)

of size m with y0 given. We will use the tensor notation denoting the components in
(1.1) by y{j} and f{j}, j = 1, 2, . . . , m. We will often consider nonautonomous sys-
tems because the exposition is less cluttered. In order to convert (1.1) to autonomous
form, the system can be augmented with (y{m+1})′ = 1, with y{m+1}(t0) = t0; hence,
t = y{m+1}(t). This is likely not a restrictive theoretical assumption, but there can be
exceptions [51]; however, in practice it is preferable to treat the temporal components
separately. For brevity, we will refer to (1.1) in both autonomous and nonautonomous
forms depending on the context.

The purpose of this study is to analyze strategies for estimating the global error
at every time step n

ε(tn) = y(tn)− yn , n = 1, 2, . . . , T/∆t ,(1.2)

that is, the difference between the exact solution y(tn) and a numerical approximation
yn. A priori and a posteriori error bounds under appropriate smoothness assumptions
are well known [39,42]. This study focuses on efficient a posteriori estimates of ε(tn).

We aim to bring a self-contained view of global error estimation. New results
are interlaced with classical theory to provide a contained picture for this topic. The
proposed algorithm generalizes all the strategies reviewed in this study and provides a
robust instrument for estimating a posteriori errors in numerical integration. Section
2 introduces the background for the theoretical developments and discusses different
strategies to estimate the global errors, which include developments that form the
basis of the proposed approach. In Sec. 3 we discuss the general linear methods
that are used to represent practical algorithms. The analysis of these schemes and
examples are provided in Sec. 4. In Sec. 5 we discuss the relationship between the
approach introduced here and related strategies and show how the latter are particular
instantiations of the former. Several numerical experiments are presented in Sec. 6,
and concluding remarks are discussed in Sec. 7.

2. Global errors. Let us consider a one-step linear numerical discretization
method for (1.1),

yn+1 = yn +∆tΦ(tn, yn,∆tn) , y0 = y(t0) , n = 1, 2, . . . T/∆t ,(2.1)

where Φ is called the Taylor increment function with Φ(tn, yn, 0) = f(t, y(t)). We de-
note the time series obtained via (2.1) as {y∆t}. A method of order p for a sufficiently
smooth function f satisfies

||y(tn +∆t)− yn+1|| ≤ C1∆tp+1 ,(2.2a)

for a constant C1. The local error then satisfies

y(t+∆t)− y(t)−∆tΦ(t, y(t),∆t) = dp+1(t)∆tp+1 +O(∆tp+2) .(2.2b)
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The following classical result states the bounds on the global errors.
Theorem 2.1. Let U be a neighborhood of {(t, y(t))|t0 ≤ t ≤ T }, where y(t) is

the exact solution of (1.1) and there exists a constant L such that ||f(t, y)−f(t, z)|| ≤
L||y − z|| and (2.2) is satisfied for (t, x), (t, y) ∈ U . Then

||ε(t)|| ≤ ∆tp
C2

L

(
eL(t−t0) − 1

)
(2.3)

for a constant C2.

This is proved in several treatises [39, 42, 64]. Under sufficient smoothness as-
sumptions [38, 42], it follows that the global error satisfies

ε(t) = y(t)− y∆t(t) = ep(t)∆tp + o(∆tp) ,(2.4)

where yn := y∆t(t) at t = t0 + n∆t. These results are obtained by comparing the
expansions of the exact and the numerical solutions. To alleviate the analysis diffi-
culties that come with large p, we use the B-series representation of the derivatives.

Definition 2.2 (Rooted trees and labeled trees [3,20]). Let T be a set of ordered

indexes Tq = {j1 < j2 < j3 < · · · < jq} with cardinality q. A labeled tree of order

q is a mapping τ : Tq\{j1} → Tq such that τ(j) < j, ∀j ∈ Tq\{j1}. The set of

all labeled trees of order q is denoted by LT q. The order of a tree is denoted by

ρ(τ) = q. Furthermore, we define an equivalence class of order q as the permutation

σ : Tq → Tq such that σ(j) = j, τkσ = στℓ, τk, τℓ ∈ LT q. These unlabeled trees of

order q are denoted by Tq, and the number of different monotonic labelings of τ ∈ Tq

is denoted by α(τ). Also, T#
q = Tq ∪ ∅, where ∅ is the empty tree and the only one

with ρ(∅) = 0.
Definition 2.3 (Elementary differentials [3,20]). For a labeled tree τ ∈ LT q we

call an elementary differential the expression

F {K1}(τ)(y) =
∑

K2,K3,...,Kq

q∏

i=1

f
{Ki}
τ−1(Ki)

,(2.5)

where K1,K2, . . . ,Kq = 1, 2, . . . ,m, and f
{J}
K1,K2,...,Kr

= ∂rf{J}/∂y{K1}y{K2} . . . y{Kr}.

We denote by F (τ)(y) = [F {1}(τ)(y), F {2}(τ)(y), . . . , F {m}(τ)(y)]T .
We use the graphical notation to represent derivatives discussed in [12, 39].

Example. The tree b
b

b b

corresponds to f ′f ′′(f, f). The trees of order 4 are T4 ={
b
bb b
, b

b
b b

, b
b

b b

, b
b
b
b }

, α(τ) = 1 for τ ∈ T4\
{

b

b
b b

}
, α

(
b

b
b b

)
= 3.

Definition 2.4 (B-series [41]). Let a : T → R be a mapping between the tree set

and real numbers. The following is called a B-series:

B(a, y) = a(∅)y +∆t a(
b
)f(y) +

∆t2

2
a( b

b
)F ( b

b
)(y) + · · ·

=
∑

τ∈T

∆tρ(τ)α(τ)

ρ(τ)!
a(τ)F (τ)(y) ,(2.6)

where T = {∅}⋃T1

⋃
T2

⋃ · · · .
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The exact solution of an ODE system is a B-series [41]. Formally we have the
following result.

Theorem 2.5 (Exact solution as B-series [41]). The exact solution of (1.1)satisfies

y(q)(τ) =
∑

τ∈T

α(τ)F (τ)(y) .

Therefore the exact solution is given by (2.6) with a(τ) = 1, and the coefficient of

∆tρ(τ)F (τ)(y) in the expansion is given by
α(τ)
ρ(τ)! , ∀τ ∈ Tk, k = 1, 2, . . . , p.

The elementary weights in the expression of the B-series are independent. The
following result captures this aspect.

Lemma 2.6 (Independence of elemetary differentials [12]). The elementary differ-

entials are independent. Moreover, the values of the distinct elementary differentials

for (y{j})′ =
∏k

j=1(y
{j})mj/mj !, y

{j}(t0) = 0 are given by F (τi)(y(t0)) = ei, where
k is the number of resulting trees when the root is removed and mj is the number of

copies of τj.
The order of the numerical method can be defined in terms of a B-series as follows.
Definition 2.7 (Order of time-stepping methods). A numerical method applied

to (1.1) with f p-times continuous differentiable is of order p if the expansion of the

numerical solution satisfies (2.6) with ρ(τ) ≤ p.

2.1. Error equation. We now analyze the propagation of numerical errors
through the time-stepping processes.

Theorem 2.8 (Asymptotic expansion of the global errors [39,42]). Suppose that

method (2.1) possesses an expansion (2.2b) under smoothness conditions of Theorem

2.1. Then the global error has an asymptotic expansion of form

y(t)− y∆t(t) = ep(t)∆tp + · · ·+ eN (t)∆tN + E∆t(t)∆tN+1 ,(2.7)

where E∆t(t) is bounded on t0 < t ≤ T and 0 ≤ ∆t ≤ ∆T for some ∆T , and ep(t)
satisfies

e′p(t) =
∂f

∂y
(t, y) · ep(t) + dp+1(t) , ep(t0) = 0 .(2.8)

The other ej(t) terms satisfy similar equations.

Proof. Consider a perturbed method ŷ∆t(t) := y∆t(t)+ep(t)∆tp. Then ŷ∆t(t) can

be represented as the numerical solution of a new method: ŷn+1 = ŷn+∆tΦ̂(tn, ŷn,∆t).
By comparison with (2.1) we obtain

Φ̂(t, ŷn,∆t) = Φ(t, ŷn − ep(t)∆tp,∆t) + (ep(t+∆t)− ep(t))∆tp−1 .(2.9)

Expanding the local error of the perturbed method with the Taylor function defined
by (2.9) yields

y(t+∆t)− y(t)−∆tΦ̂(t, y(t),∆t)

=

(
dp+1(t) +

∂f

∂y
(t, y)ep(t)− e′p(t)

)
∆tp+1 +O(∆tp+2) .(2.10)

It follows from Theorem 2.1 that the global error ep(t) satisfying (2.8) and

y(t)− y∆t(t) = ep(t)∆tp +O(∆tp+1)(2.11)

determines the asymptotic expansion. For more details see [39].
Equations for the next terms in the global error expansion can be obtained by

using the same procedure; however, this is not pursued in this study.
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2.1.1. Estimating global errors using two methods. We now introduce
the general global error estimation strategy used in this study. This approach relies
on propagating two solutions through a linear time-stepping process that has the
property of maintaining a fixed ratio between the truncation error terms. The result
can be stated as follows.

Theorem 2.9 (Global error estimation with two methods). Consider numerical

solutions {yn} and {ỹn} of (1.1) obtained by two time-stepping methods started from

the same exact initial condition under the conditions of Theorem 2.8. If the local

errors of the two methods with increments Φ and Φ̃ satisfy

y(t+∆t)− y(t)−∆tΦ(t, y(t),∆t) = dp+1(tn)∆tp+1 +O(∆tp+2) ,(2.12a)

y(t+∆t)− y(t)−∆tΦ̃(t, y(t),∆t) = γdp+1(tn)∆tp+1 +O(∆tp+2) ,(2.12b)

where dp+1(tn) = 1
(p+1)!

∑
τ∈Tp+1

α(τ)a(τ)F (τ)(yn) with constant γ 6= 1, then the

global error satisfies

εp(tn) =
1

1− γ
(ỹ(tn)− y(tn)) = ep(tn)∆tp +O(∆tp+1) ,(2.13)

when y0 = ỹ0 = y(t0); hence, εn ≍ y(tn)− yn.
Proof. Use (2.7) and (2.8) to write the global error equations for the two methods

with nearby solutions:

e′p(t) =
∂f

∂y
(t, y) · ep(t) + dp+1(t) , ep(t0) = 0 ,(2.14a)

ẽ′p(t) =
∂f

∂y
(t, y) · ẽp(t) + γdp+1(t) , ẽp(t0) = 0 .(2.14b)

It follows that the solutions of the two ordinary differential equations satisfy ep(t) =
γẽp(t). We can then verify (2.13) by inserting (2.11):

εp(tn) =
1

1− γ
(ỹ(tn)− y(tn))

=
1

1− γ

(
y(t)− ẽp(t)∆tp − y(t) + ep(t)∆tp +O(∆tp+1)

)

= ep(t)∆tp +O(∆tp+1)

for n = 1, 2, . . . .
A particular case is γ = 0. Moreover, under the assumptions of Theorem 2.9, one

can always compute a higher-order approximation by combining the two solutions.
Corollary 2.10. If γ = 0 in Theorem 2.9, then we revert to the case of using

two methods of different orders, p and p + 1, to estimate the global errors for the

method of order p.
Corollary 2.11. A method of order p + 1 can be obtained with conditions of

Theorem 2.9 by

ŷn = yn + εn =
1

1− γ
ỹn − γ

1− γ
yn .(2.15)

We note that a related analysis has been carried out in [58] with an emphasis of
reusing standard codes for solving ODEs with global error estimation.
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The result presented above is the basis of the developments in this study. We
introduce new type of methods that provide a posteriori error estimates, and we show
that this procedure generalizes all strategies that compute global errors by propagating
multiple solutions or integrating related problems. The validity of this approach when
variable time steps are used is discussed next.

2.1.2. Global errors with variable time steps. Following [39], for variable
time stepping we consider tn+1 − tn = ν(tn)∆t, n = 1, 2, . . . .

Then the local error expansion (2.2b) becomes

y(t+ ν(t)∆t)− y(t)− ν(t)∆tΦ(t, y(t),∆t) =

dp+1(t)ν(t)
p+1∆tp+1 + · · ·+ dN+1(t)ν(t)

N+1∆tN+1 +O(∆tN+2) ,

and instead of (2.9) we obtain

Φ̂(t, ŷn, ν(t)∆t) = Φ(t, ŷn − ep(t)∆tp, ν(t)∆t) + (ep(t+ ν(t)∆t)− ep(t))
∆tp

ν(t)∆t
.

Then (2.10) becomes

y(t+ ν(t)∆t)− y(t)− ν(t)∆tΦ̂(t, y(t), ν(t)∆t)

= ν(t)

(
dp+1(t)ν(t)

p +
∂f

∂y
(t, y)ep(t)− e′p(t)

)
∆tp+1 +O(∆tp+2) .

Instead of (2.8), the global error ep(t) satisfies the following equation

e′p(t) =
∂f

∂y
(t, y) · ep(t) + ν(t)pdp+1(t) , ep(0) = 0 .(2.16)

The results introduced in this study and summarized by Theorem 2.9 carry over to
variable time stepping with ∆t replaced by ∆tmax = max(ν(t)∆t) and, therefore,
allows the application of such strategies in practical contexts.

In this study we do not address the problem of time-step adaptivity based on
global error estimates. In practice, the adaptivity can be based on asymptotically
correct local error estimates that are provided directly by the methods proposed here.

2.1.3. Methods satisfying the exact principal error equation. We next
review a class or methods used for global error estimation. Consider an asymptotic
error expansion in (2.8) of

e(t) =
∑

τ∈Tp

α(τ)a(τ)F (τ)(y(t)) , t > t0 , and e(t0) =
∑

τ∈Tp

α(τ)a(τ)F (τ)(y(t0)) ,

(2.17)

for some constant a(τ). By inserting (2.17) in (2.8) we obtain

d(t) =
d

dt


∑

τ∈Tp

α(τ)e(τ)F (τ)(y(t))


 − ∂f

∂y
(y(t)) ·

∑

τ∈Tp

α(τ)e(τ)F (τ)(y(t))

=
∑

τ∈Tp

α(τ)e(τ)

[
d

dt
F (τ)(y(t)) − ∂f

∂y
(y(t))F (τ)(y(t))

]
.(2.18)
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This expression implies that if the local error satisfies (2.18), then (2.17) is the exact
solution of (2.8), and therefore the global errors can be estimated directly, as described
below.

This strategy was indirectly introduced by Butcher [6] in an attempt to break the
order barriers of multistage methods under the alias “effective order.” Stetter [65]
observed the relationship between (2.18) and the global error (2.8). This strategy
requires a starting procedure S to enforce e(t0), a method M that satisfies (2.18),
and a finalizing procedure F to extract the global error. We denote by S(◦), M(◦),
F(◦) the application of each method on solution ◦. Stetter [65] found that S and
F can be one order less than M. Examples of such triplets can be found in many
studies [6, 50, 53, 55–57,65].

Algorithm [A:ExPrErEq]: Methods with exact principal error equation [65]
Solve

y1 = S(y0) , y(t0) = y0(2.19a)
{

yn = M(yn−1)
εn = yn − F(yn−1)

n = 2, 3, . . . , so that (2.18).(2.19b)

One such scheme is provided in Appendix C. However, a caveat is that methods
based on explicit Runge-Kutta schemes require as many nonzero stage coefficients as
the order of the method because M needs to have a nonzero tall tree of p+ 1, hence,
the effective order is limited by p ≤ s. For instance, an order 5 method requires at
least five stages. This requirement comes from the fact that tall trees need to be
nonzero in (2.18). However, this strategy is still effective for high orders. Recently
the effective order was discussed in [8, 13–16, 37]. Effective order through method
composition has recently been discussed in [19].

Although this concept is attractive in terms of efficiency, Prince and Wright [53]
noted a severe problem with using it for global error estimation: If the system has
unstable components, then the error approximation becomes unreliable, as can be
seen in Fig. 6.4. This is a severe limitation because having unstable components
makes the local error estimates unreliable, and this is precisely the case when one
would need to use global error estimation.

2.2. Differential correction. The differential correction techniques for global
error estimation are based on the work of Zadunaisky [69] and Skeel [63]. The discus-
sion of these procedures is deferred to Sec. 2.2.3.

2.2.1. Error equation and the defect. We follow the exposition in [48, 69]
and assume that there exists a solution z(t) of a perturbed system

z(t)′ = f(t, z(t))− r(t) ; z(t0) = z0 , r(0) = y0 − z0 , t0 < t ≤ T ,(2.20)

close to y(t). The error function (between the solutions of (1.1) and (2.20)) is given
by [48]

e(t) = y(t)− z(t) ,(2.21)

e′(t) = A(t)e(t) − r(t) , A =

∫ 1

0

f ′(t, y(t) + se(t)) ds .(2.22)

If e(t0) = 0 and approximate A(t) = ∂f
∂t (t, y) +O(e(t)) in (2.22), then we obtain

e′(t) =
∂f

∂t
(t, y)e(t)− r(t) , e(t0) = 0 , t0 < t ≤ T ,(2.23)
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with r(t) = −dp+1(t)∆tp. This is asymptotically equivalent to solving the first varia-
tion (leading term) of the global error equation for ep; i.e., (2.8). Consider now that
the nearby solution, z(t), is obtained through an interpolatory function P (t), and
define the defect D(t) as

D(t) = f(t, P (t))− P ′(t) .(2.24)

Estimates of the local truncation errors can be obtained by using continuous out-
put [31]. Lang and Verwer [48] showed that if P (t) is obtained through Hermite
interpolation, then

D(t) = [y′(t)− f(t, y(t))]− [f(t, P (t))− P ′(t)] = O(∆t3) , t ∈ (tn, tn+1) ,

and in particularD(tn+
∆t
2 ) = O(∆t4). Furthermore, a relation between the defect at

tn+
∆t
2 and the leading term of the local truncation error, D(tn+ 1

2
) = 3

2dp+1(tn)∆t+

O(∆tp+1) , 1 ≤ p ≤ 3, can be obtained. We can then set r(t) = 2
3D(tn+ 1

2
), t ∈

(tn, tn+1), and (2.8) and (2.23) become

e′(t) = f ′(tn, yn)e(t)− r(tn+ 1
2
) , e(t0) = 0 , tn < t ≤ tn+1 , n = 0, 1, . . . , N .(2.25)

2.2.2. Solving the error equation. If the Jacobian of f is available, then
(2.25) can be solved directly as in [48].

Algorithm [A:SoErEq]: Solving the error equation [48]
Solve

y′ = f(t, y) , y(t0) = y0(2.26a)

ε′(t) = Jε(t) + [dp+1(tn)∆t] , ε(t0) = 0(2.26b)

dp+1(tn) = y(tn+1)− yn+1 +O(∆tp+2) , J =
∂f

∂y
.

The authors of [48] argue that (2.26b) can be solved with a cheaper, lower-order
method. In this case, however, the bulk of the work resides on determining dp+1,
which can be estimated by following the steps discussed in the previous section.

2.2.3. Solving for the correction. This approach follows the developments
in presented in [52, 63, 69] and further refined in [26–29]. We start from (2.20) and
denote by P (t) its exact solution. Equation (2.21) becomes

e(t) = y(t)− P (t) , and(2.27a)

e′(t) = (y(t)− P (t))′ = f(t, y(t))− P (t)′ = f(t, P (t) + e(t))− P ′(t) .(2.27b)

We can see the connection between (2.27b) and (2.8) by starting with (2.8):

e′(t) = f ′(t, y(t))e(t) +D(t) = f(t, y(t)− f(t, y(t)− e(t))− f(t, P (t))− P ′(t)

= f(t, y(t))− P ′(t) = f(t, P (t) + e(t))− P ′(t) ,

where we neglected the higher-order terms and used (2.24) and (2.27a). The equations
to be solved are known as the solving for the correction procedure [63]

Algorithm [A:SolCor]: Solving for the correction [63]
Solve

y′ = f(t, y) , y(t0) = y0(2.28a)

ε′ = f(t, P (t) + ε)− P ′(t) , ε(t0) = 0(2.28b)

P (t) ≈ y(t)− y∆t(t) .
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We will show that equations (2.28) (in [A:SolCor]) can be solved by using a general
linear method representation (5.1) described in Sec. 5.1.

The related Zadunaisky procedure [69] is as follows. Calculate the polynomial of
order p, P (t), by using Lagrange interpolation Lp(y∆t(t)) over several steps and then
apply a similar procedure as in (2.28) on a perturbed system.

Algorithm [A:ZaPr]: Zadunaisky procedure [69]
Solve

y′ = f(t, y) , y(t0) = y0(2.29a)

z′ = f(t, P (t))− P ′(t)− f(t, ε) , z(t0) = y0(2.29b)

εn = zn − yn P (t) = Lp(y∆t(t)) .

2.3. Extrapolation approach. The global error estimation through extrap-
olation dates back to [54]. The procedure is the following. Propagate two solu-
tions y∆t,n and y∆t

2
,n, one with ∆t and one with ∆t/2, each with global errors

ε∆t,n = y(tn)− y∆t,n, ε∆t
2
,n = y(tn)− y∆t

2
,n, respectively.

Then it follows that by using a method of order p one obtains [42]

ε∆t,n = y(tn)− y∆t,n = ep∆tp +O(∆tp+1) ,

ε∆t
2

,n = y(tn)− y∆t
2

,n = ep

(
∆t

2

)p

+O(∆tp+1) .

The global error and a solution of one order higher can be obtained as

ε∆t,n =
2p

1− 2p
(y∆t,n − y∆t

2
,n) +O(∆tp+1) ,(2.30a)

ŷ∆t,n = y∆t,n + ε∆t,n =
1

1− 2p
y∆t,n − 2p

1− 2p
y∆t

2
,n = y(tn) +O(∆tp+1) .(2.30b)

These statements are a particular instantiation of (2.13) and (2.15) with γ = 1/2p.

Algorithm [A:Ex]: Extrapolation
Solve y′ = f(t, y) by using a method of order p with two time steps ∆t and ∆t/2

y′ = f(t, y) ⇒ y∆t,n , y∆t
2
,n , y(t0) = y0(2.31a)

ε =
2p

1− 2p
(y∆t,n − y∆t

2
,n) .(2.31b)

2.4. Underlying higher order method. All the methods described in this
study attempt to use an underlying higher order method to estimate the global er-
ror. In the case of [A:ExPrErEq] the exact principal error algorithm (2.19) and of
[A:SoErEq] solving the error equation (2.26), we find that the actual equation being
solved is modified to include the truncation error term. By adding (2.26a) and (2.26b)
one obtains

y′ + ε′ = ŷ′ = f(y) + Jε+D(y)

ŷ′ = f(ŷ − ε) + Jε+D(y)

ŷ′ = f(ŷ) +D(y) .

In the case of the Zadunaisky algorithm [A:SolCor] (2.28), one can recover the
underlying higher-order method by replacing the error term in (2.28b) with ŷ from
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(2.15) and using the conditions imposed on P (see [26]). We show an example in
Sec. 5.1. The extrapolation algorithm [A:Ex] (2.31) reveals the higher-order estimate
directly in (2.30b).

3. General linear methods. The methods introduced in this study are rep-
resented by GL schemes. General linear methods were introduced by Burrage and
Butcher [2]; however, many GL-type schemes have been proposed to extend either
Runge-Kutta methods [36] to linear multistep (LM) or vice versa [4, 34], as well as
other extensions [5,24,40,62]. GL methods are thus a generalization of both RK and
LM methods, and we use the GL formalism to introduce new methods that provide
asymptotically correct global error estimates.

Denote the solution at the current step (n−1) by an r-component vector y[n−1] =

[y
[n−1]
(1) y

[n−1]
(2) . . .y

[n−1]
(r) ]T , which contains the available information in the form of

numerical approximations to the ODE (1.1) solutions and their derivatives at dif-
ferent time indexes. To increase clarity, we henceforth denote the time index in-
side square brackets. The stage values (at step n) are denoted by Y(i) and stage

derivatives by f(i) = f
(
Y(i)

)
, i = 1, 2, . . . , s, and can be compactly represented as

Y =
[
YT

(1) Y
T
(2) . . .Y

T
(s)

]T
and f =

[
fT(1) f

T
(2) . . . f

T
(s)

]T
.

The r-value s-stage GL method is described by

Y(i) = ∆t
s∑

j=1

Aijf(j) +
r∑

j=1

Uijy
[n−1]
(j) , i = 1, 2, . . . , s ,

y

[n]
(i) =

s∑

j=1

∆tBijf(j) +

r∑

j=1

Vijy
[n−1]
(j) , i = 1, 2, . . . , r ,

(3.1)

where (A,U,B,V) are the coefficients that define each method and can be grouped
further into the GL matrix M:

[
Y
y

[n]

]
=

[
A⊗ Im U⊗ Im
B⊗ Im V ⊗ Im

] [
∆tf
y

[n−1]

]
= M

[
∆tf
y

[n−1]

]
.

Expression (3.1) is the most generic representation of GL methods [39, p. 434] and
encompasses both RK methods (r = 1, s > 1) and LM methods (r > 1, s = 1)
as particular cases. In this work we consider methods with r = 2, where the first
component represents the primary solution of the problem (2.12a) and the second
component can represent either the defect (2.13) or the secondary component (2.12b).
Only multistage-like methods are considered; however, multistep-multistage methods
(r > 2) are also possible.

If method (3.1) is consistent (there exist vectors q0, q1 such that Vq0 = q0, Uq0 =
1, and B1+Vq1 = q0+q1 [11, Def. 3.2 and 3.3]) and stable (‖Vn‖ remains bounded,
∀n = 1, 2, . . . [11, Def. 3.1]), then the method (3.1) is convergent [11, Thm. 3.5], [12,
44]. In-depth descriptions and survey materials on GL methods can be found in [9,11,
12,39,44]. In this study we use self-starting methods, and therefore S = I. In general
the initial input vector y[0] can be generated through a “starting procedure,” S =
{Si : R

m → Rm}i=1...r, represented by generalized RK methods; see [12, Chap. 53]
and [23]. The final solution is typically obtained by applying a “finishing procedure,”
F : Rm → Rm, to the last output vector; in our case this is also the identity. We
denote by the GL process the GL method applied n times and described by SMnF;
that is, M is applied n times on the vector provided by S, and then F is used to extract
the final solution.
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3.1. Order conditions for GL methods. The order conditions rely on the the-
ory outlined by Butcher [12,22,23]. The derivatives of the numerical and exact solution
are represented by rooted trees and expressed as a B-series [7,41] as delineated in The-
orem 2.5 and order definition 2.7. We use an algebraic criterion characterize the order
conditions for GL methods as follows. Let τ ∈ T and E(θ) : T → R, the “exact solu-
tion operator” of differential equation (1.1), which represents the elementary weights

for the exact solution at θ∆t. If θ = 1, then E(1)(τ) = E(τ) = ρ(τ)!/(σ(τ)α(τ)). The

order can be analyzed algebraically by introducing a mapping ξi : T → R: ξi(∅) = b
(i)
0 ,

ξi(τ) = Φ(i)(τ), where Φ(i)(τ), i = 1, . . . , r, results from the starting procedure and
∅ represents the “empty tree.” Then for the general linear method (A,U,B,V), one
has

η(τ) = AηD(τ) +Uξ(τ) , ξ̂(τ) = BηD(τ) +Uξ(τ) , τ ∈ T ,(3.2)

where η, ηD are mappings from T to scalars that correspond to the internal stages and
stage derivatives and ξ̂ represents the output vector. The exact weights are obtained
from [Eξ](τ). The order of the GL method can be determined by a direct comparison

between ξ̂(τ) and [Eξ](τ). More details can be found in [12], where a criterion for
order p is given for a GL method described by M and S. The criterion is simplified if
S = F = I as discussed in [22]. Therefore in general, an order p GL method results
from the direct comparison of elementary wights of [Mn](τj) = [Enξ](τj) ∀τj , ρ(τj) ≤
p. This criterion is a direct consequence of [22, Def. 3 and Prop. 1]. In our particular
case, methods satisfying Theorem 2.9 can be developed by enforcing (2.12) on the
corresponding solution vector.

3.2. Linear stability of GL methods. The linear stability analysis of method
(3.1) is performed on a linear scalar test problem: y′(t) = ay(t), a ∈ C. Applying
(3.1) to the test problem yields a solution of form y[n+1] = R(z) y[n],

R(z) = V + zB (Is − zA)
−1

U ,(3.3)

Φ(w, z) = det(wIr −R(z)) ,(3.4)

where z = a∆t and R(z) is referred to as the stability matrix of the scheme and
Φ(w, z) is the stability function.

For given z, method (3.1) is linearly stable if the spectral radius of R(z) is con-
tained by the complex unit disk. The stability region is defined as the set S =
{z ∈ C : |R(z)| ≤ 1}. The linear stability region provides valuable insight into the
method’s behavior with nonlinear systems. Additional details can be found in [12].

4. Methods with global error estimation (GEE). We now introduce GL
methods with global and local error estimation. We focus on Runge-Kutta-like
schemes in the sense that the resulting GL methods are self-starting multistage
schemes. We therefore restrict our exposition to methods that carry two solutions
explicitly and where r = 2. Generalizations are possible but not addressed here.
The methods are given in two forms that use different input and output quantities.
The first form used for numerical analysis results in a scheme denoted by GLyỹ that
evolves two solutions of the ODE problem y and ỹ. Methods GLyỹ take the following
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form:

Y(i) = ∆t

s∑

j=1

Aijf(Y(j)) +Ui,1y
[n−1]
(1) +Ui,2y

[n−1]
(2) , i = 1, 2, . . . , s ,

y
[n]
(1) = ∆t

s∑

j=1

Bi,1f(Y(j)) +V1,1y
[n−1]
(1) +V1,2y

[n−1]
(2) ,

y
[n]
(2) = ∆t

s∑

j=1

B2,jf(Y(j)) +V2,1y
[n−1]
(1) +V2,2y

[n−1]
(2) .

(4.1)

We will consider V = Ir , although more general forms can also be considered. The
second form, denoted by GLyε, is given as a method that evolves the solution of the
base method and the error explicitly, y and ε, as {y[n], ε[n]} = GLyε({y[n−1], ε[n−1]}),
and has a more practical flavor. Both forms can be expressed as GL methods with
tableaux (Ayỹ,Uyỹ ,Byỹ,Vyỹ) and (Ayε,Uyε,Byε,Vyε), respectively; and one can
switch between the forms as explained below.

Lemma 4.1. GL methods of form (4.1) that satisfy the conditions of Theo-

rem 2.9 with coefficients (Ayỹ,Uyỹ,Byỹ,Vyỹ), where y
[n] = [(y[n])T , (ỹ[n])T ]T , and

(Ayε,Uyε,Byε,Vyε), where y
[n] = [(y[n])T , (ε[n])T ]

T
are related by

Ayỹ = Ayε , Vyỹ = Vyε , Uyỹ = UyεT
−1
yε , Byỹ(1, :) = TyεByε ,(4.2)

where Tyε =

[
1 0
1 1− γ

]
.

Proof. We start with a GLyε method defined by (Ayε,Uyε,Byε,Vyε) and write

the resulting expression by applying (4.1) with y
[n]
(1) = y[n] and y

[n]
(2) = ε[n]. We then

replace ε[n] with 1
1−γ

(
ỹ[n] − y[n]

)
as in Theorem 2.9, (2.13). The resulting expres-

sion can then be written as a GLyỹ scheme with y
[n]
(1) = y[n] and y

[n]
(2) = ỹ[n]. This

calculation leads to (4.2). This transformation is unique as long as γ 6= 1.

The following algorithm is proposed.

Algorithm [A:GLMGEE]: General linear methods with global error estimation
Initialize: y[0] = y(t0) = y0, ε

[0] = ε(t0) = 0.
Solve: y′ = f(t, y) using

{y[n], ε[n]} =GLyε({y[n−1], ε[n−1]}) , [solution, GEE](4.3a)

εloc =ε[n] − ε[n−1] , [local error](4.3b)

ŷ[n] =y[n] + ε[n] =
1

1− γ
ỹ[n] − γ

1− γ
y[n] . [high order](4.3c)

4.1. Consistency and preconsistency analysis. We now discuss consistency
and preconsistency conditions in the case of a method with r = 2. Following [44], we
require that

y
[n−1]
i =qi,0y(tn−1) + ∆tqi,1y

′(tn−1) +O(∆t2) , i = 1, 2(4.4a)

Yi =y(tn−1 + ci∆t) +O(∆t2) , i = 1, 2, . . . , s(4.4b)

y
[n]
i =qi,0y(tn) + ∆tqi,1y

′(tn) +O(∆t2) , i = 1, 2 .(4.4c)
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From (4.4b) we obtain

y(tn−1) = (ui,1q1,0 + ui,2q2,0)y(tn−1)

+ci∆ty′(tn−1) + ∆t(ui,1q1,1 + ui,2q2,1)y
′(tn−1)

+ ∆t
∑

j

ai,jy
′(tn−1) +O(∆t2) , i = 1, 2, . . . , s ,

and therefore Uq0 = 1 and ci =
∑

j ai,j + Uq1. We next combine (4.4a) and (4.4c):

qi,0(y(tn−1) + ∆ty′(tn−1)) + ∆tqi,1y
′(tn−1) = qi,0y(tn−1) + ∆tqi,1y

′(tn−1)

+ ∆t
∑

j

b1,jy(tn−1) +O(∆t2) ,

where we have considered that V = I. The consistency condition B1 = q0 follows.

4.2. Order conditions. The order conditions are based on the algebraic repre-
sentation of the propagation of the B-series through the GL process as discussed in
§3.1. Additional constraints are imposed so that Theorem 2.9 applies directly as a
result of the GL process. To this end, we consider an order p GLyỹ method by setting
Eξ1(τ) = ξ̂1(τ) = ξ̂2(τ), for all τ ∈ Tp, and

γ
(
Eξ1(τ) − ξ̂1(τ)

)
=Eξ2(τ)− ξ̂2(τ) , τ ∈ Tp+1 , γ 6= 1 ,(4.5a)

assuming that the inputs of the GP process γξ1(τ) = ξ2(τ), τ ∈ Tp+1. Here ξ̂ repre-
sents the numerical output, and Eξ corresponds to the exact solution as introduced
in (3.2). Then the error of the base method satisfies

εp =
∑

τ∈Tp+1

(Eξ1(τ) − ξ̂1(τ))F (τ)(y) +O(∆tp+1) .(4.5b)

Expression (4.5a) is equivalent to imposing (2.12). We also impose stability order [10]
p̃ = p+ 3: Φ(exp(z), z) = O(∆tp̃), to obtain robust methods.

The two solutions that evolve through the GL process are connected internally,
and therefore the error estimation may be hindered in the case of unstable dynamics
as discussed in [53]. In Fig. 6.4 we illustrate such a behavior. To this end, we require
that the elementary differentials of the two methods resulting from applying the GL
method be independent from each other’s entries for all trees of order p+1 and p+2.
This requirement can be expressed as

ξ̂{1,2}(τj)[ξ{2,1}(τk)] = 0 , ∀j, k, ρ(τk) , ρ(τj) ∈ {p+ 1 , p+ 2} ,(4.6)

where ξ{ℓ}(τj) is the coefficient of input ℓ corresponding to tree index j and ξ̂{i}(τj) is
the coefficient of GL output i corresponding to tree index k. In other words, output
1 that corresponds to tree index j does not depend on the input 2 of tree index k,
and the same for output 2 and input 1.

Lemma 4.2. The elementary differentials of a GL method (4.1) with V = I
satisfy

ξ̂i(τp) = K + ξi(τp) +BUξ(τp−1) +G(τk∈{1,2,...,p−2}) , i = 1, 2 ,(4.7)
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where K is a constant that depends on the tree index and G is a function of τ of

orders 1 to p− 2.

Proof. For the first tree τ∅ we have ηD(τ∅) = 0. The next tree is τ1 =
b
, for

which ηD(
b
) = 1. Relation (3.2) gives

η(τ1) = AηD(τ1) +Uξ(τ1) = A1s +Uξ(τ1) .

This is allowed by Lemma 2.6. Next we have ηD(τ2) = ηD( b
b
) = η(τ1) and

η(τ2) = AηD(τ2) +Uξ(τ2) = A · (A1+Uξ(τ1)) +Uξ(τ2) .

For the next tree we have ηD(τ3) = ηD( b
b b

) = (η(τ1))
2 and

η(τ3) = A(A1s +Uξ(τ1))
2 +Uξ(τ2) ,

where the power is taken component-wise. The last third-order tree gives ηD(τ4) =

ηD( b
b
b

) = η(τ2)) and

η(τ4) = A(A · (AηD(τ1) +Uξ(τ1)) +Uξ(τ2)) +Uξ(τ4)

= A3
1+A2Uξ(τ1) +AUξ(τ2)) +Uξ(τ4) ,

We then arrive at the following recurrence formula:

ηD(τp) = A
∏

j∈Ip−1

η(τj) +Uξ(τp−1) .(4.8a)

Similarly, one can verify that the recurrence for the output quantities satisfies

ξ̂i(τp) = BA
∏

j∈Ip−1

η(τj) +BUξ(τp−1) + ξi(τp) , Ip−1 = {1, 2, . . . , p− 1} .(4.8b)

This is a consequence of the fact that D(τp) =
∏

k∈{1,2,p−1} τk. For trees with index

3 and 4 the output is obtained again from (3.2) and using the above derivations as

ξ̂i(τ3) = B((A1s)
2 + (Uξ(τ1))

2) + ξi(τ3) ,

ξ̂i(τ4) = B(A · (A1+Uξ(τ1)) +Uξ(τ2)) + ξi(τ4) ,

An inductive argument yields (4.8b).
Proposition 4.3 (Output independence of GL method). A GL method for which

the off-diagonal elements of matrix BU are zero satisfies the independence assumption

(4.6).
Proof. We use the results of Lemma 4.2 and compute the output i for trees of order

p+ 1 and assume that the input is consistent of order p, that is, ξi(τk∈{1,2,...,p}) = 0.
We obtain

ξ̂i(τp+1) = K + ξi(τp+1) +BUξ(τp) +G(τk∈{1,2,...,p−1}) = K + ξi(τp+1) , i = 1, 2 .

For p+ 2 and together with the fact that BU is a diagonal matrix, we obtain

ξ̂i(τp+2) = K + ξi(τp+2) +BUξ(τp+1) +G(τk∈{1,2,...,p})

= K + ξi(τp+2) +BUξ(τp+1)

= K + ξi(τp+2) + (BU)iiξi(τp+1) , i = 1, 2 .

A similar calculation for p+3 reveals that matrices BAU and B diag(A1)U need
to have only diagonal entries.
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4.3. Optimal methods. We now discuss the need to balance the local trunca-
tion errors, which we would like to be as small as possible, with the ability to capture
the global errors. Solving for the correction procedure is attractive because it allows
the reuse of methods with well-established properties. In particular, one may consider
methods that minimize the truncation errors. However, when such optimal methods
are used in the context of global error estimation, it is important to verify that the
errors are still quantifiable. For instance, if not all the truncation error terms are
nonzero, then special care needs to be exercised because some problems may render
the global error estimation “blind” to local error accumulation.

To illustrate this rather subtle point, we consider using solving for the correction
procedure (2.28) with method RK3(2)G1 (5.2) as introduced in [26]. This is a third-

order scheme; however, it has no errors that correspond to fourth-order trees b

b
b b

and
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Fig. 4.1. Failure to capture the
global errors correctly for system y

′
1
=

1, y
′
2

= κ2y
3

1
, y

′
3

= κ3y
4

1
solved with

RK3(2)G1 (5.2) [26].

b
b
b
b

but does not resolve exactly b
b

b b

and b
bb b
; oth-

erwise it would have been a fourth-order method.
With the aid of Lemma 2.6 we construct a sim-
ple problem: y′1 = 1, y′2 = κ2y

3
1 , y′3 = κ3y

4
1 ,

where κi are some constants. For this problem,
the RK3(2)G1 is an order 4 method because the
tall tree that would have affected the third com-
ponent is matched exactly by this method. This
means that the base method y has the same or-
der as the higher-order companion, ŷ. Therefore,
the third component can cause the results to be
unreliable. In Fig. 4.1 we show the third compo-
nent, which confirms the inadequacy in the error
estimation procedure.

4.4. Second-order explicit Runge-Kutta-
type methods. We now introduce a few methods of type [A:GLMGEE] (4.3). We
begin with a detailed inspection of second-order methods. Schemes with s = 2 are not
possible because that would imply that one can have an explicit third-order method
via (2.15) with only two stages, which is a statement that is easy to disprove.

A method with s = 3 and γ = 0 in GLyε form is given by the following tableaux,

Myε =




0 0 0 1 0
1 0 0 1 10
1/4 1/4 0 1 −1
1/12 1/12 5/6 1 0
1/12 1/12 −1/6 0 1



,(4.9)

where the four blocks represent (Ayε,Uyε,Byε,Vyε) as discussed above. Method
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(4.9) can then be expressed as follows:

Y1 =y[n−1] ,(4.10a)

Y2 =y[n−1] + 10ε[n−1] +∆tf(Y1) ,(4.10b)

Y3 =y[n−1] − ε[n−1] +∆t

(
1

4
f(Y1) +

1

4
f(Y2)

)
,(4.10c)

y[n] =y[n−1] +∆t

(
1

12
f(Y1) +

1

12
f(Y2) +

5

6
f(Y3)

)
,(4.10d)

ε[n] =ε[n−1] +∆t

(
1

12
f(Y1) +

1

12
f(Y2)−

1

6
f(Y3)

)
.(4.10e)

In (4.10) we note the Runge-Kutta structure; however, we see that the defect takes
an active role in the stage calculations. By using (4.2), we obtain the GLyỹ form as

Myỹ =




0 0 0 1 0
1 0 0 −9 10
1/4 1/4 0 2 −1
1/12 1/12 5/6 1 0
1/6 1/6 2/3 0 1




.(4.11)

In particular, (4.11) is expressed as

Y1 =y[n−1] ,(4.12a)

Y2 =− 9y[n−1] + 10ỹ[n−1] +∆tf(Y1) ,(4.12b)

Y3 =2y[n−1] − ỹ[n−1] +∆t

(
1

4
f(Y1) +

1

4
f(Y2)

)
,(4.12c)

y[n] =y[n−1] +∆t

(
1

12
f(Y1) +

1

12
f(Y2) +

5

6
f(Y3)

)
,(4.12d)

ỹ[n] =ỹ[n−1] +∆t

(
1

6
f(Y1) +

1

6
f(Y2) +

2

3
f(Y3)

)
, ε[n] = ỹ[n] − y[n] .(4.12e)

Here we note the explicit contribution of two solutions. A solution of order 3 is
obtained according to (2.15) by ŷ[n] = ỹ[n] because γ = 0. Moreover, a local error
estimate for y[n] in (4.12d) corresponds to

εloc = ε[n] − ε[n−1] = ∆t

(
1

12
f(Y1) +

1

12
f(Y2)−

1

6
f(Y3)

)
,(4.13)

which is an obvious statement. This is also obtained by replacing ỹ[n−1] by y[n] in
the right-hand sides of (4.12) and taking the differences between the two solutions or
setting ε[n−1] = 0 in (4.10). Additional second-order methods are given in Appendix
A.1.

4.5. Third-order explicit Runge-Kutta-type methods. Closed-form solu-
tions were difficult to obtain for methods of order 3. We therefore explored the space
of such methods using a numerical optimization such as in [23]. One method of order
3 with γ = 0, s = 5 stages, and having significant negative real axis stability was
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found to have the following coefficients up to 40 digits accuracy:

a2,1 = − 2169604947363702313
24313474998937147335 , a3,1 = 46526746497697123895

94116917485856474137 , a3,2 = − 10297879244026594958
49199457603717988219 ,

a4,1 = 23364788935845982499
87425311444725389446 , a4,2 = − 79205144337496116638

148994349441340815519 , a4,3 = 40051189859317443782
36487615018004984309 ,

a5,1 = 42089522664062539205
124911313006412840286 , a5,2 = − 15074384760342762939

137927286865289746282 , a5,3 = − 62274678522253371016
125918573676298591413 ,

a5,4 = 13755475729852471739
79257927066651693390 , b1,1 =

61546696837458703723
56982519523786160813 , b1,2 = − 55810892792806293355

206957624151308356511 ,

b1,3 =
24061048952676379087
158739347956038723465 , b1,4 =

3577972206874351339
7599733370677197135 , b1,5 = − 59449832954780563947

137360038685338563670 ,

b2,1 = − 9738262186984159168
99299082461487742983 , b2,2 = − 32797097931948613195

61521565616362163366 , b2,3 = 42895514606418420631
71714201188501437336 ,

b2,4 =
22608567633166065068
55371917805607957003 , b2,5 =

94655809487476459565
151517167160302729021 , u1,1 =

70820309139834661559
80863923579509469826 ,

u1,2 =
10043614439674808267
80863923579509469826 , u2,1 =

161694774978034105510
106187653640211060371 , u2,2 = − 55507121337823045139

106187653640211060371 ,

u3,1 =
78486094644566264568
88171030896733822981 , u3,2 =

9684936252167558413
88171030896733822981 , u4,1 =

65394922146334854435
84570853840405479554 ,

u4,2 =
19175931694070625119
84570853840405479554 , u5,1 =

8607282770183754108
108658046436496925911 , u5,2 =

100050763666313171803
108658046436496925911 .

(4.14)

We note that this is not an optimal method. It is just an example that was relatively
easy to obtain and will be used in the numerical experiments.

5. Relationships with other global error estimation strategies. Here we
discuss the relationship between our approach and the existing strategies that we focus
on in this study. We show how the latter are particular instantiations of the strategy
introduced here. This inclusion is facilitated by the use of Lemma 4.1, which reveals
a linear relationship between propagating two solutions and propagating one solution
and its defect. We discuss below in some detail the solving for the correction pro-
cedure and the extrapolation approach. Method [A:ExPrErEq] with exact principal
error equation (2.19) can obviously be represented as a GL schemes. Methods that
implicitly solve the error equation can also be represented as GL schemes; however,
in this study we will not expand on this point.

5.1. Solving for the correction approach. Let us consider the Runge-Kutta
methods that integrate the global errors introduced by [26,27,29,49]. The RK tableau
is defined by the triplet (A, B, C) and the interpolation operators by (B∗, D∗), where
B∗ ·[θ0, θ1, . . . , θs]T yields the interpolant weight vector and D∗ ·[θ0, θ1, . . . , θs]T yields

its derivative. In particular,D∗
ij = B∗

ij ·j, j = 1, . . . , s. Denote by b∗i (θ) =
∑p∗

j=1 B
∗
ijθ

j ,

d∗i (θ) =
∑p∗

j=1 D
∗
ijθ

j , and consider the dense output formula given by

P (t+ θ∆t) = yn + θ∆t

s∑

i=1

b∗i fi and P ′(t+ θ∆t) = θ∆t

s∑

i=1

d∗i fi

and the error equation that is being solved is (2.28b) (ε′(t) = f(t, P (t)+ε(t))−P ′(t)).

We denote by B
∗
= diag{C} · B∗ · W (C)T , where W (C) is the Vandermonde matrix

with entries C; that is, {W (C)}ij = Cj−1
i ; and D

∗
= D∗ · W (C)T . The resulting
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method cast in GL format (4.1) is




Y1

Y2

yn+1

εn+1


 =




A 0 1s 0

B
∗ −AD

∗ A 1s 1s

BT 0 1 0

−BTD
∗ BT 0 1







∆tf(Y1)
∆tf(Y2)

yn
εn


 .(5.1)

Here we express the method for a scalar problem, in order to avoid the tensor products
and represent the stacked stages in Y{1,2}. For example, method RK3(2)G1 [26] is
given by the following Butcher tableau:

0 0

1
2

1
2 0

1 −1 2 0

1 1
6

2
3

1
6 0

1
6

2
3

1
6 0

,
B∗ =




1 − 3
2

2
3

0 2 − 4
3

0 3
6 − 2

6
0 −1 1




D∗
ij = B∗

ij · j

.(5.2)

The equations to be solved when using the solving for the correction procedure
[A:SolCor] are then (2.28); however, one can show that they are equivalent to solving
(5.1) and using the strategy [A:GLMGEE] (4.1) introduced here. The explicit coef-
ficients are listed in tableau (B.1). The Zadunaisky procedure can be shown to have
a similar interpretation; however, it is a little more expensive and the analysis has to
be carried over several steps. We will draw conclusions about its behavior by using
[A:SolCor] as a proxy.

5.2. Global error extrapolation. Let us consider again the Runge-Kutta
methods defined by the triplet (A, B, C) of order p. By applying (2.30) we obtain the
method in the GL format,




Y1

Y2

Y3

yn+1

εn+1



=




A 0 0 1s 0
0 1

2A 0 1s β−1
1s

0 1
2BT ⊗ 1s

1
2A 1s β−1

1s

BT 0 0 1 0

−βBT β
2BT β

2BT 0 1







∆tf(Y1)
∆tf(Y2)
∆tf(Y3)

yn
εn



,(5.3)

where β = 1
1−γ , γ = 1/2p, and Y{1,2,3} are the s-stage vectors corresponding to the

original method stacked on top of each other. This is a method of type (4.1).

6. Numerical results. In this section we present numerical results with a de-
tailed set of test problems.

6.1. Test problems. We consider a set of simple but comprehensive test prob-
lems.

Problem [Prince42] is defined in [53] (4.2) by

y′ = y − sin(t) + cos(t) , y(0) = κ(6.1a)

y(t) = κ ∗ exp(t) + sin(t) .(6.1b)

Here we take κ = 0. As a direct consequence of (6.1b), we see that that any per-
turbation of the solution y, such as numerical errors, leads to exponential growth.
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Therefore we have an unstable dynamical system; and even if we start with κ = 0,
numerical errors will lead to an exponential solution growth. This is a classical exam-
ple that is used to show the failure of local error estimation in general and of global
error estimation by using Algorithm [A:ExPrErEq] (2.19) [53] in particular.

A similar problem [Kulikov2013I] is defined by Kulikov [47] by

y′1 = 2t y
1/5
2 y4 , y′2 = 10t exp(5(y3 − 1)) y4 , y′3 = 2t y4 , y′4 = −2t ln(y1) ,(6.2)

so that y1(t) = exp(sin(t2)), y2(t) = exp(5 sin(t2)), y3(t) = sin(t2)+1, y4(t) = cos(t2).
This problem is nonautonomous and exhibits unstable modes later in time.

Problem [Hull1972B4] is a nonlinear ODE defined in [43] (B4) by

y′1 = −y2 −
y1y3√
y21 + y22

, y′2 = y1 −
y2y3√
y21 + y22

, y′3 =
y1√

y21 + y22
,(6.3)

with y0 = [3, 0, 0]T .
The last problem [LStab2] is used to assess linear stability properties of the pro-

posed numerical methods.

y′ = Ay , y(0) = [y1(0), y2(0)]
T , A =

[
a −b
b a

]
, Λ(A) = {a+ ib, a− ib} ,(6.4a)

{
y1(t) = exp(at) (y2(0) cos(bt)− y1(0) sin(bt))
y2(t) = exp(at) (y1(0) cos(bt) + y2(0) sin(bt))

.(6.4b)

This problem allows one to choose the position of the eigenvalues of the Jacobian,
Λ(A), in order to simulate problems with different spectral properties.

6.2. Numerical experiments. We begin with simple numerical experiments
that show when local error estimation is not suitable. Local error estimation is typi-
cally used for error control; however, in this study we do not explore this aspect. We
therefore compare the result of well-tuned numerical integrators that use local error
control with the global error estimates for the same problem. The two contexts are
different; however, the error estimation problem remains the same. We use Matlab’s
ode45 integrator with different tolerances whenever we refer to methods with local
error estimation.

In Figure 6.1 we show the errors over time for problems [Prince42] (6.1) and
[Kulikov2013I] (6.2). These problems are solved by using local error estimation (LEE)
– 6.1(a-b) and global error estimation (GEE) – 6.1(c-d). The absolute error tolerance
for LEE control is set to 1e-02. The methods with LEE systematically underestimate
the error levels as expected, whereas the methods with GEE capture the errors exactly.
Moreover, the global errors are captured well across components, as shown in Fig.
6.1(d).

In Fig. 6.2 we show the error behavior for problem [Hull1972B4] (6.3) when long
integration windows are considered. For LEE we set the absolute tolerance to 1e-05.
In this case we observe an error drift to levels of 1e-03 over 1,000 time units. The
method with GEE (4.11) can follow closely the error in time.

We next analyze the convergence properties of the methods discussed herein. In
Fig. 6.3 we show the convergence of the solution and of the error estimate. Here
we illustrate the convergence of GEE methods of orders two (A.2) and three (4.14)
for problem [Prince42] (6.1). The methods converge with their prescribed order;
moreover, the error estimate also converges with order p+1, as expected from (2.15).
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Fig. 6.1. Errors when solving problems with unstable modes by using local error estimation
(LEE) and global error estimation (GEE) [A:GLMGEE]. The absolute error tolerance for LEE
control is set to 1e-02. The GEE method used here is (A.1). GEE captures the errors exactly while
LEE underestimates them.

In Fig. 6.4 we show the behavior of global error estimation when using [A:ExPrErEq],
methods with exact principal error equation (2.19). Here we use method (C.1) [53,
(3.11)], which fails to capture the error magnitude as discussed in [53] because the
estimated error is several orders of magnitude smaller that the true global error.

We next look at the linear stability properties of the methods introduced in this
study. In Fig. 6.5(a) we delineate the stability regions according to (3.3). In Fig.
6.5(b) we show numerical results for problem [LStab2] (6.4) with λ∆t = { 1

4 ,
1
2 ,

3
4 , 1}×

(−1±
√
−1) when using method (A.1). As expected, all solutions except for the one

corresponding to λ∆t = −1±
√
−1 are stable, as can be interpreted from Fig. 6.5(a).

7. Discussion. In this study we introduce a new strategy for global error esti-
mation in time-stepping methods. This strategy is based on advancing in time the
solution along with the defect or, equivalently, two solutions that have a fixed relation
between their truncation errors. The main idea is summarized in Theorem 2.9, and
practical considerations are brought up by Proposition 4.3. We note that this strat-
egy can be seen as a generalization of the solving for the correction procedure and
of several others from the same class. We provide equivalent representation of these
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Fig. 6.2. Errors when solving [Hull1972B4] (6.3) with LEE and GEE. For LEE we set the
absolute tolerance to 1e-05. (a) During short integration times LEE satisfies the the error tolerance
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method [A:GLMGEE] ( (4.11) in this case) gives accurate error estimates even over long times.
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Fig. 6.3. Convergence of GEE methods [A:GLMGEE] for problem [Prince42] (6.1). In (a)
we show the error in the solution obtained by second-order GEE method (A.2) and the estimated
global error, which follows it closely, as well as the difference between the true error and the error
estimate. An asymptotic guide is provided by the red dashed lines. (b) This is the same as (a) but
using the third-order method (4.14).

methods in the proposed GL form, (4.1).

We have explored several algorithms in this study. The methods [A:ExPrErEq]
with exact principal error equation (2.19) [65] are attractive because they offer global
error estimates extremely cheaply; however, they were shown in [53] to be unreliable
as illustrated in Fig. 6.4. Strategies that directly solve the error equation, such as
[A:SoErEq] (2.26), need a reliable way of estimating the local errors and the avail-
ability of the Jacobian. We found these methods to be robust, especially the strategy
proposed in [48] for low-order methods. The solving for the correction procedure
[A:SolCor] (2.28) is arguably one of the most popular approaches for global error
estimation. It is related to [A:ZaPr] and [A:SoErEq], as discussed, and a particular
case of this approach is introduced in this study. The extrapolation algorithm [A:Ex]
(2.31) is the most robust; however, it is also the most expensive and also a particular
case of [A:GLMGEE].

The methods introduced here are based on a general linear representation. The
particular case under study is given by form (4.1); however, the analysis is not re-
stricted to that situation. Particular instances of second and third order are presented
throughout this study. The error estimates can be used for error control; however, in
this study we do not address this issue.
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and solution of method (A.1) for problem [LStab2] (6.4) with parameters such that it matches the
spectrum indicated in (a) with marker ∗. Solutions are stable except the one for which the eigenvalues
are outside the stability region (b).

We provide several numerical experiments in which we illustrate the behavior of
the global error estimation procedures introduced here, their convergence behavior,
and their stability properties.

Global error estimation is typically not used in practice because of its computa-
tional expense. This study targets strategies that would make it cheaper to estimate
the global errors and therefore make them more practical.

Appendix A. Second-order methods.

A.1. Other GL second-order methods. Here we provide two additional second-
order methods that we used in our experiments. A second-order method with s = 3
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and γ = 0 in GLyε format is given by

Myε =




0 0 0 1 4
1 0 0 1 0

4/9 2/9 0 1 0
0 −1/2 3/2 1 0

1/4 1/2 −3/4 0 1



.(A.1)

Another second-order method with s = 3 that is based on two second-order
approximations (γ = 1/2) in GLyε format is given by

Myε =




0 0 0 1 −11/10
1 0 0 1 13/30

4/9 2/9 0 1 5/3
5/12 5/12 1/6 1 0
−1/4 −1/4 1/2 0 1



.(A.2)

Appendix B. RK3(2)G1 [26] in GL form (4.1). Method (5.1) corresponding
to RK3(2)G1 (5.2) [26] results in the following tableau in GLyε form:

Myε =




0 0 0 0 0 0 0 0 1 0
1/2 0 0 0 0 0 0 0 1 0
−1 2 0 0 0 0 0 0 1 0
1/6 2/3 1/6 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1

−7/24 1/3 1/12 −1/8 1/2 0 0 0 1 1
7/6 −4/3 −1/3 1/2 −1 2 0 0 1 1
0 0 0 0 1/6 2/3 1/6 0 1 1
1/6 2/3 1/6 0 0 0 0 0 1 0
−1/6 −2/3 −1/6 0 1/6 2/3 1/6 0 0 1




.(B.1)

Appendix C. Second-order method with exact principal error equation.
The following method is of type (2.19) and introduced in [53, (3.11)]:

S :=

0 0

1
2

1
2 0

5
8 0 5

8 0

− 1
30

1
2

8
15

, M :=

0 0

1
2

1
2 0

3
4

1
2

1
4 0

2
3 −1 4

3

, F :=

0 0

1
2

1
2 0

3
4

1
2

1
4 0

− 29
42 − 31

42
22
21

.

(C.1)
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