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Abstract We review the dynamics of stably stratified flows in the regime in
which the Froude number is considered small and the Rossby number is of order one
or greater. In particular we emphasize the nonpropagating component of the flow
field, as opposed to the internal wave component. Examples of such flows range from
the later stages of decay of turbulent flows to mesoscale meteorological flows. Results
from theoretical analyses, laboratory experiments, and numerical simulations are pre-
sented. The limiting form of the equations of motion appears to describe the laboratory
experiments and numerical simulations rather well. There are similarities with the
dynamics of two-dimensional flows, but three-dimensional effects are clearly impor-
tant. A number of remaining open issues are discussed.

1. INTRODUCTION

There are many instances in nature and technology in which flows are strongly
affected by stable density stratification. For instance, propagating internal gravity
waves owe their existence to the presence of a restoring buoyancy force, and
turbulence, especially in its later stages of decay, can be dominated by the pres-
ence of a stabilizing stratification. In the atmosphere and oceans, flows on inter-
mediate scales are usually strongly influenced by stable stratification; in these
cases, the rotation of the earth is an important factor as well. In this review, we
address the dynamics of flows that are strongly affected by stable density strati-
fication. We do not address propagating internal waves, because this phenomenon
has been treated at great length in many symposia, texts, and other formats;
instead we address the nonpropagating component of the motion, the component
that tends to have quasihorizontal motions and possesses potential vorticity.

For example, when turbulence is generated in the presence of stable density
stratification, it often occurs locally and without a continuous source of energy.
Examples of this are the local breakdown of propagating internal waves (e.g.
Lelong & Dunkerton 1998a,b, Lombard & Riley 1996b, Orlanski & Bryan 1969)
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or a local shear instability (e.g. Turner 1973). It is suspected, for example, that
turbulence occurs sporadically throughout the oceans because of these mecha-
nisms (Gregg 1987). This intermittent behavior is even expected to occur near
boundaries under stably stratified conditions, as observed in the nocturnal atmo-
spheric boundary layer (Mahrt 1998) and as predicted by direct numerical sim-
ulations (Barnard 1999). Such turbulence, although possibly initially very strong,
will decay without a sustaining source of energy. At some point in its decay, the
effect of density stratification will become important and even dominant.

The relative importance of density stratification for decaying turbulence is
marked by a local Froude number, F 4 u8/NL, where u8 is an rms turbulence
velocity, L is a length scale of the energy-containing motions, and N 4 [1(g/q)
(dq/dz)]1/2 is the buoyancy frequency. Here dq/dz , 0 is the ambient density
gradient. The Froude number can be considered as a measure of the relative
importance of the buoyancy forces compared to the inertial forces. Local patches
of turbulence often begin with a relatively large Froude number, indicating that
inertial forces are dominating. As the turbulence decays, however, the Froude
number decreases as u8 decreases and L tends to grow, and the effects of strati-
fication become important. At some point, as the buoyancy forces become of the
order of the inertial forces, then F ; 1. As the turbulence decays further, F may
become small, and the stratification dominates the flow. It is this regime that is
addressed in this review.

A vivid example of this process was reported in an earlier article in this series
by Lin & Pao (1979). In their experiment, turbulence was generated by towing
an axisymmetric model horizontally through a long tank filled with water. Without
density stratification, the wake of the model behaved in the classical manner.
When stable salt stratification was added to the water and the experiment was
repeated, the near-field wake, in which F was rather large, remained approxi-
mately the same as in previous, nonstratified experiments. In the far field, as the
wake turbulence decayed, F became small and buoyancy forces became dominant,
and the behavior of the wake changed dramatically. The wake appeared to consist
of quasihorizontal motions, reminiscent of a two-dimensional wake, but undulat-
ing in a sea of internal waves (see Figure 1). These quasihorizontal motions
appeared to have considerable vertical structure.

The quasihorizontal motions observed by Lin & Pao (1979) are an example
of the nonpropagating component of flow in the low-Froude-number regime. As
we describe below, such motions range from simpler monopoles and dipoles to
flows having complex horizontal and vertical structure. Various terminology has
been used to designate these flows. Low-Froude-number flows with more com-
plex structure behave differently than classical turbulence, and are strongly
affected by the stable density stratification; therefore Lilly (1983) referred to these
phenomena as stratified turbulence. These flows are sometimes referred to as
vortical modes in the oceanographic literature (Müller et al 1986). In this review,
we usually refer to this nonpropagating component of the flow as the PV com-
ponent or, sometimes, the PV modes, because this component can be defined
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Figure 1 Top view of dye visualiza-
tion of a late wake; Nt 4 37.6 (Lin &
Pao 1979).

strictly in terms of the potential vorticity of the flow. (See Section 3.1 below.)
This is to distinguish it from the internal-wave component, which possesses no
potential vorticity.

When effects of system rotation are added to the stratification, such as would
be the case for larger-scale flows in the atmosphere or oceans, then additional
features occur. The importance of the effect of rotation can be measured by the
Rossby number, defined here as Ro 4 u8/fL, where f is half the system rotation
rate. (We consider only horizontal length scales small enough that f is approxi-
mately constant, that is, the f-plane approximation.) When the Rossby number is
large, the effects of rotation tend to be weak. For Ro ; 1, however, rotational
effects become important, and the flow field is significantly modified. For exam-
ple, rotation tends to suppress vertical variability (Proudman 1916, Taylor 1923),
a potentially important feature of strongly stratified flows, and to modify the
behavior of propagating internal waves. As the Rossby number becomes small at
the same time as the Froude number is small, the flow enters into the quasi-
geostrophic (QG) regime, studied extensively in the past. In this review, we
emphasize only the regimes with Ro $ O (1).

Other parameters are also expected to be important in describing turbulence
with stable stratification. For example, the overturning length scale L0 4

, defined independently by Dougherty (1961), Lumley (1964), and Ozmi-3 1/2(e/N )
dov (1965), is an estimate of the largest scale of the turbulence at which over-
turning can occur. Here e is the kinetic energy dissipation rate. Note that, using
the high Reynolds number scaling e ; , then ; F 3/2. The ratio of this3u8 /L L /L0

overturning scale to the Kolmogorov scale, Lk 4 , is . It is3 1/4 3 2 3/4(m /e) (e /mN )
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thought that, when this ratio becomes of order 1, turbulence in the classical, three-
dimensional sense is extinguished (Stillinger et al 1983); however, the existence
of a critical value for this parameter has been questioned (Huq & Stretch 1995).
Note that, again using high Reynolds number scaling, ; F 2RL , where2e/mN
RL 4 is a Reynolds number. Therefore, ; 1 corresponds to RL ;2u8L/m e/mN
F 12. We will see below from laboratory studies and numerical simulations that,
while may become very small, interesting and important motions may still2e/mN
exist.

The regime of stable stratification and weak rotation is of great importance in
geophysical fluid dynamics, because it describes motions in the transition region
between the large, energetic scales and the small scales at which energy is
dissipated.

In the atmosphere, this is the mesoscale regime, with typical timescales ranging
from the buoyancy period to the inertial period; associated nondimensional
parameters are F # O(1), Ro $ O(1). In this regime, quasihorizontal turbulent
strata, reminiscent of the late stages of decaying, stratified turbulence in the lab-
oratory, are often observed alongside internal waves. Gage (1979) proposed that
the observed 15/3 horizontal kinetic energy spectrum at the mesoscale could be
produced by an upscale transfer of energy through stratified turbulence from
small-scale sources. Such behavior is characteristic of forced two-dimensional
turbulence (Kraichnan 1967) and quasi-geostrophic turbulence (Charney 1971,
Herring 1980). Lilly (1983) suggested that decaying convective clouds and thun-
derstorm anvil outflows could provide the sources at the small scales. Van Zandt
(1982), on the other hand, has remarked that a similar spectrum in the ocean is
generally attributed to wave processes (e.g. Garrett & Munk 1979) and has sug-
gested that intermittent internal wave breaking will lead to saturated wave spectra
with the observed spectral slope. Recent analysis of horizontal spectra for winds,
temperature and trace gases over the Pacific Ocean suggests that stratified tur-
bulence may be more prevalent than internal waves over the ocean (Cho et al,
1999). It is not known, at this point, whether waves or stratified turbulence dom-
inate the atmospheric mesoscale signal; in retrospect, it appears likely that both
types of motion are important.

The ability to distinguish between ‘‘fast’’ waves and ‘‘slow’’ turbulence may
be important in resolving a related question concerning the existence and utility
of the slow manifold for mesoscale motions. The notion of a slow manifold was
introduced to describe the evolution of large-scale, ‘‘balanced’’ geophysical flows
on a hypothetical manifold devoid of high-frequency ‘‘unbalanced’’ internal
waves (Leith 1980, Lorenz 1980). For large-scale flows, the concept is justified
by the very large temporal scale separation that makes it unlikely that the waves
will interact significantly with the balanced flow. Because of this, and for numer-
ical reasons as well, numerical weather forecasting models are typically initialized
with raw atmospheric data that have been projected onto the slow manifold.
Although, mathematically speaking, the concept of a slow manifold extends down
to small-scale motions, it becomes unclear whether it remains useful for describ-
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ing balanced flow evolution at small scales. On these scales, as we show in Section
3, there is now the possibility that balanced and unbalanced components will
interact and exchange significant amounts of energy. Therefore, an initially bal-
anced flow may not remain on the slow manifold. As weather forecasting models
resolve finer and finer features, questions regarding the stability of the slow mani-
fold must be resolved.

In the ocean, motions with scales that range from a few millimeters up to a
few kilometers in the horizontal and up to a few hundred meters in the vertical
are traditionally ascribed to internal waves and three-dimensional turbulence. That
there might be some other types of motion at the oceanic small scale was first
suggested during the analysis of the IWEX (Internal Wave Experiment) conducted
in the late 1970’s. The observed coherence in the vertical and the kinetic-to-
potential energy ratio were found to be inconsistent with linear internal-wave
theory in the fine-structure regime, defined as having vertical wavelengths #10
m (Briscoe 1975, Eriksen 1978, Müller et al 1978). Because of the inherent
difficulties involved in measuring potential vorticity at small scales, internal wave
and PV component signals are not easily distinguished (Müller et al 1988). For
example, Doppler-shifted near-inertial waves viewed in a non-Lagrangian frame
of reference may exhibit frequencies well below the Coriolis frequency, a char-
acteristic also associated with the nonpropagating PV component (Kunze et al
1990). Moreover, in observations at very small scales, small signal-to-noise ratios
are often encountered, making it difficult to differentiate PV component motions
from ambient noise. Consequently, most of the present knowledge of the PV
component in the open ocean remains largely speculative, having been inferred
from a growing number of observations that cannot be explained with linear wave
dynamics, and from the overriding evidence that stratified turbulence emerges in
a variety of flows in which, as in the ocean thermocline, the dynamics are strongly
influenced by the presence of a stabilizing vertical density gradient.

Perhaps the most compelling indirect evidence for the existence of small-scale
PV component flow in the open ocean has come from the North Atlantic Tracer
Release Experiment (NATRE) designed to accurately measure diapycnal and iso-
pycnal diffusivities in the thermocline by examining the dispersion of an ocean
tracer (Ledwell et al 1993). The observed cross-streak pattern suggests the pres-
ence of an efficient dispersion process at horizontal scales of 1 to 10 km and
vertical scales of a few tens of meters. The oscillatory shear associated with
internal waves on those scales cannot produce the observed dispersion pattern; it
is, therefore, speculated that stratified turbulence, with its characteristic low-
frequency shear, may be present (M-P Lelong, unpublished results 1999; Sun-
dermeyer 1998).

Near seamounts, islands, and other topographic features, an important gener-
ation mechanism for smaller-scale PV motions is undoubtedly vortex shedding
(Etling 1989, Kunze 1993, Kunze & Sanford 1993, Smith 1989, Smolarkiewicz
& Rotunno 1989) and other interations with boundaries (e.g. Ahlnas et al 1987,
Federov & Ginsburg 1989). For example, Smolarkiewicz & Rotunno performed
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inviscid numerical simulations of low-Froude-number flows past three-
dimensional obstacles and reported the formation of pairs of counterrotating, ver-
tically oriented vortices on the lee side of the obstacle for F # 0.5. They interpret
the presence of the vortices in terms of Ertel’s potential vorticity conservation.
Smith (1989) questions this interpretation and offers an alternate explanation
based on the presence of a stagnation point and the ensuing flow bifurcations.

In both the atmosphere and ocean, a good understanding of the dynamics of
strongly stratified flows as a function of ambient rotation is crucial to the devel-
opment of accurate subgrid-scale parameterizations needed in large-scale general
circulation models. For instance, to correctly model the effect of small, unresolved
motions on the energy-carrying scales, we need to know the parameter ranges
over which energy cascades upscale and downscale. Several studies have dem-
onstrated the sensitivity of general circulation numerical models to the choice of
diffusivity parameterizations (e.g. Bryan 1986, 1987; Chen & Young 1995,
Cummins et al 1990). In the future, coupled ocean-atmosphere models that are
used to address issues related to global climate change will rely on such
parameterizations.

In the next section, we discuss some limiting conditions in the equations of
motion as F r 0, as well as some of the theoretical and mathematical ramifications
of these conditions. In Section 3, we present some mathematical analyses of low-
Froude-number regimes. In Section 4, we review various laboratory experiments
that lend considerable insight into the dynamics of strongly stratified flows, and
then in Section 5, we describe several numerical experiments designed to under-
stand various aspects of these flows. Finally, in Section 6, we discuss some of
the unresolved issues related to strongly stratified flows. Note that a number of
other review articles have addressed related material. For example, in addition to
the review of Lin & Pao (1979), Fernando (1991) has addressed turbulent mixing
in stratified fluids, Gregg (1987) has reviewed turbulent mixing in the ocean,
Hopfinger (1987) has reviewed the general topic of turbulence in stratified fluids,
and Müller et al (1986) have reviewed a number of theoretical issues related to
strongly stratified flows.

2. DECOMPOSITION OF MOTION AT LOW FROUDE
NUMBER

2.1 Scaling Arguments

The dynamics of stratified turbulence can be understood by considering some
simple scaling arguments and by using the fact that the Froude number F is small.
Considering first internal waves, we choose the following scaling analysis:
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rx ; L , z ; LH H V

ru ; u8H

LH11 11 11t ; N 4 N a .
LV

Here the subscript H denotes the horizontal component of a vector, LH and LV are
typical horizontal and vertical length scales, respectively, and a is the aspect ratio
LV /LH. Gravity and the effective system rotation vectors are taken along the z-
direction, and we use the notation

r r r ru 4 (u , w), x 4 (x , z),H H

where is measured in the rotating frame of reference and is the correspondingr rx u
relative velocity. In scaling time, it is assumed that

f
, a # 1.

N

The pressure scaling is determined by assuming that the time derivative and
pressure force terms in the horizontal momentum equation are of the same order,
giving

2 11p ; q u8 F .o

Here, qo is the (constant) average density, and the Froude number is now defined
as

u8
F 4 .

NLV

The perturbation density scaling is obtained by assuming that the hydrostatic-
balance terms in the vertical-momentum equation are of the same order, leading
to

2u8
11q ; q F .o gLV

Finally, the scaling for the vertical velocity w is obtained by assuming that the
time derivative term and the leading linear term in the density perturbation equa-
tion are of the same order, giving

w ; au8.

Assuming the Navier-Stokes equations hold to within the Boussinesq approxi-
mation (see, e.g. Phillips 1966) and employing the above scaling gives, in non-
dimensional form:
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] ] 1 f
r r r r r ru ` F u • ¹u ` w u ` e 2 uH H H H z H1 2]t ]z a N

F
r2 24 1¹ p ` a ¹ u (1a)H HRL

]w ]w ]p F
r2 2a ` Fu • ¹w ` aFw 4 1 1 q ` ¹ w (1b)H1 2]t ]z ]z RL

]w
r¹ • u ` 4 0 (1c)H ]z

]q ]q 1 F
r 2 2` Fu • ¹q ` a Fw 1 w 4 ¹ q (1d)H 2]t ]z a R ScL

Here q is the nondimensional density fluctuation about the ambient density; we
have assumed, for simplicity, that the ambient density gradient is uniform (in z),
and we have taken to be the unit vector in the positive z-direction (opposite inrez

direction to the force of gravity). The parameter Sc 4 m/$ is the Schmidt number,
where m is the kinematic viscosity and $ the molecular diffusivity of the diffusive
medium, usually either salt or heat (internal energy).

In the limit as F r 0, these equations linearize. Linear internal wave theory
and weakly nonlinear theories can be developed from these equations, using per-
turbative methods (Müller et al 1986, Phillips 1966). Furthermore, simplifications
can be obtained in the hydrostatic limit (a r 0 but a $ N/f ). These equations do
not, however, exhibit the properties of the PV component in this limit.

To address the dynamics of the PV component, following Riley et al (1981),
we rescale the equations as follows. As above, we choose

rx ; L , z ; LH H V

ru ; u8.H

The scaling for time is now chosen as an advective time scale, i.e.

11 11 11t ; L /u8 4 a N F ,H

and the scaling for pressure is chosen so that the horizontal pressure gradient is
of the same order as the nonlinear advective terms, i.e.

2p ; q u8 .o

To scale the perturbation density, approximate hydrostatic balance is assumed,
giving
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2u8
q ; q .o L gV

Finally, the scaling for the vertical velocity w is obtained by again assuming that
the time derivative and leading linear terms in the perturbation density equation
are of the same order, giving w 4 u8aF 2. Note that, from this scaling for w, we
expect the vertical velocity to be small, as observed in laboratory experiments.

Employing this scaling in the Navier-Stokes equations with the Boussinesq
approximation gives the following nondimensional equations:

] ] 1
r r r r r r2u ` u • ¹u ` F w u ` e 2 uH H H H z H]t ]z Ro

1 1
r24 1¹ p ` ¹ u (2a)H H2a RL

]w
r 2¹ • u ` F 4 0 (2b)H H ]z

2]w ]w ]p F
r2 2 2 2a F ` u • ¹w ` F w 4 1 1 q ` ¹ w (2c)H3 4]t ]z ]z RL

]q ]q 1 1
r 2 2` u • ¹q ` F w 1 w 4 ¹ q. (2d)H 2]t ]z a ScRL

For F r 0, Ro $ 1, these equations reduce to the stratified turbulence (PV com-
ponent) equations:

] 1 1 1
r r r r r r2u ` u • ¹u ` e 2 u 4 1¹ p ` ¹ u (3a)H H H z H H H2]t Ro a RL

r¹ • u 4 0 (3b)H H

]p
0 4 1 1 q (3c)

]z

]q 1 1
r 2` u • ¹q 1 w 4 ¹ q. (3d)H 2]t a ScRL

(See Embid & Majda 1996 for a rigorous mathematical derivation of these equa-
tions.) In theory, assuming that the initial conditions and boundary conditions are
consistent with the scaling arguments, Equations 3a and 3b can be solved inde-
pendently of the others to obtain ( , p). Then Equation 3c can be used to obtainruH

q, and finally w can be obtained from 3d. This procedure is very similar to that
introduced by Drazin (1961) for large-scale atmospheric flows in the presence of



622 RILEY n LELONG

strong, stable density stratification, which was extended and compared with lab-
oratory data by Lilly (1973) and Riley et al (1976) for the case with no rotation
(Ro r `).

Note that Equations 3c and 3d suggest that vertical pressure gradients caused
by differential horizontal motions will induce vertical displacements and veloci-
ties. This suggests that the PV component may radiate internal waves. Also note
the difference in the propagation characteristics of the internal waves and the PV
component. The internal waves are free to propagate to significant distances. The
equations for the PV component, however, do not admit propagating solutions;
therefore, a PV component region can only grow by advection and molecular
diffusion.

Equations 3a and 3b, without rotation, appear to describe many of the features
of strongly stratified flows observed in the laboratory, as we see in Section 4.
Furthermore, they exhibit a number of very interesting characteristics. First,
unlike the lowest-order equations obtained from the internal wave scaling, these
lowest-order equations are nonlinear. Second, although in form Equations 3a and
3b appear to describe a two-dimensional flow, the equations do admit solutions
that vary in three dimensions. The horizontal velocity field in each horizontal
layer is coupled in the vertical direction through the diffusion term, whereas
density and vertical velocity are coupled through the pressure term.

Lilly (1983) suggested that, for higher Reynolds number flows, the flow fields
in adjacent horizontal layers would tend to decouple, leading to shear instabilities
and smaller-scale turbulence. It is possible then that smaller-scale turbulence, and
not molecular diffusion, would determine the approximate vertical length scale
for these motions. We see in the later sections that the vertical shearing of hori-
zontal currents can be a key feature of these flow fields.

Note that, for these lowest-order equations, the equation for the vertical vor-
ticity xz is

] 1 1
r 2x ` u • ¹x 4 ¹ x .z H z z2]t a RL

Therefore, in the absence of molecular diffusion, the vertical vorticity following
a fluid element is conserved, as in a two-dimensional flow; again note, however,
that the flow is in general not two-dimensional. Furthermore, the equation for the
horizontal vorticity vector isrxH

] 1 ] 1 1
r r r r r r r r2x ` u • ¹x 1 u 4 x • ¹u 1 ¹ 2 (qe ) ` ¹ x .H H H H H z H2]t Ro ]z a RL

To the lowest order,

]u ]u2 1rx 4 1 , .H 1 2]x ]x3 3

(Note that x3 and z are used interchangeably, as are the subscripts z and 3.) Fur-



FLUID MOTIONS IN STABLE STRATIFICATION 623

thermore, for example, in the equation for x1, one vortex stretching term,
, one turning term, , and one baroclinic term,]u /]x ]u /]x 1]u /]x ]u /]x 11 1 2 3 1 3 1 2

, survive.]q/]x2

As pointed out by Riley et al (1981) and Lilly (1983), the solutions to this
system of equations can be expressed in terms of a stream function w( , z, t) asrxH

r ru 4 e 2 ¹ w,pv z H

or, equivalently, in Fourier space as

r r rû 4 i(e 2 j)ŵ,pv z

where ( ) denotes a Fourier transform and is the wave number vector. Usingrˆ j•
similar reasoning for the wave-scaled equations, 1a to 1d, with F r 0, a velocity
potential f can be defined, giving the internal wave velocity as

r r 2u 4 ¹ f 1 e * ¹ fdz.iw H z H

The equivalent Fourier-space expression is

2j Hr r rˆ ˆ ˆu 4 i j f ` ie f,iw H z j

with, for example, .rj 4 |j|
Lilly (1983) and McWilliams (1985) extended this scaling analysis to quasi-

geostrophic flows by considering the conditions Ro ; F K 1. Lilly showed that
Charney’s (1971) theory for geostrophic turbulence could then be obtained.
McWilliams considered the above scaling and the quasigeostrophic scaling in the
context of the balanced equations (Lorenz 1960), and proved that the scaling for
F r 0 was valid uniformly in Ro.

2.2 Other Theoretical Approaches

In developing the concept of fossil turbulence, Gibson has addressed the later
stages of decay of a turbulent region in a stratified fluid (e.g. Gibson 1980, 1987).
His ideas have been very useful, for example, in interpreting data from laboratory
(e.g. Ivey & Imberger 1991, Stillinger et al 1983) and field experiments (Imberger
& Ivey 1991). Related to the concept of fossil turbulence are comments made
regarding the sampling rates for highly intermittent turbulent events in the ocean.

By fossil turbulence Gibson means ‘‘a remnant fluctuation in any hydrophys-
ical field produced by active turbulence which persists after the fluid is no longer
actively turbulent (overturning) at the scale of the fluctuation’’ (Gibson 1987, p.
5383). This definition would include the PV component discussed in the previous
section. Gibson, however, goes on to say that ‘‘fossil vorticity turbulence means
an internal wave field produced when active turbulence is damped by buoyancy
. . . the inertial forces at the scale of the fluctuations are smaller than the buoyancy
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or viscous forces’’ (Gibson 1987, p. 5383). This would appear to preclude the
concept of PV component developed in the previous section, both because the
PV component does not consist of internal waves and also because inertial forces
can be a principal feature.

Gibson defines several regimes in the transition of a turbulent patch into fossil
turbulence. Early in the development of the turbulent region, when none of the
scales of motion are dominated by buoyancy, the flow is labeled active. When
the overturning scale becomes of the order of the turbulent integral scale (i.e. the
local Froude number is of order one as in the discussion in the Introduction),
Gibson concludes that ‘‘the largest scales of turbulence have been converted to
internal waves . . . Only small-scale patches within the fossil microstructure are
overturning and actively turbulent’’ (Gibson 1987, p. 5386). Gibson calls this the
active/fossil turbulence regime. Although the beginning of this regime corre-
sponds to the time of collapse in the three-dimensional flow to be discussed in
regard to laboratory experiments in Section 4, it again does not allow for PV
component in the largest scales. When the turbulence has decayed to the point
where the overturning scale equals the Kolmogorov scale, i.e., from the Intro-
duction, ; 1, Gibson concludes that no overturning can exist at any scale,2(e/mN )
and ‘‘complete fossilization’’ has occurred. Again, although these are very impor-
tant and useful concepts, they do not address the PV component, a phenomenon
that explains some of the laboratory and numerical experiments and geophysical
data.

Using mathematical analysis, Pearson & Linden (1983) examined the final
period of decay of a turbulent patch in a stratified fluid. They linearized the
governing equations (arguing that the internal Reynolds number would be very
small), used Fourier analysis, and sought the most slowly decaying solutions.
They assumed that these slowly decaying modes would dominate at late times.
For Sc k 1, as for salt dissolved in water, they obtained a slowly decaying mode
consisting of mainly horizontal motion with small vertical length scale. The mode
slowly decays because of convection, driven by potential energy stored in the
perturbed density field and also by molecular diffusion, at a rate of approximately

1/32mN
12/3r } Sc ,1 22L

where L is a measure of the size of the turbulent region. Comparisons of their
theory with experiments gave rough agreement.

Their analysis excluded the PV component modes. Therefore it cannot
describe, for example, some of the principal features of the laboratory experiments
to be presented in Section 4. It is possible, however, that this mechanism is
important in the very late stages of decay in these experiments, as the density
field continues to restratify. In addition, the solution appears to address the regime
Gibson refers to as complete fossilization.
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3. MATHEMATICAL ANALYSIS

3.1 Flow Field Decomposition in Terms of Ertel’s Potential
Vorticity

Generally speaking, the dynamical distinction between wave and nonpropagating
components can be made in terms of Ertel’s potential vorticity P (Ertel 1942).
Potential vorticity has long been employed as a diagnostic tracer in large-scale
geophysical flows, but its utility at small scales has only recently been recognized
(Müller et al 1986). Considering a flow in a rotating reference frame and satisfying
the Navier-Stokes equations subject to the Boussinesq approximation, P is com-
monly defined as

r r(x ` f e ) • ¹q̃zP [ , (4)
q0

where is measured in the rotating reference frame, and is the total density.rx q̃
From the governing equations, it is straightforward to establish that P obeys the
following equation

DP
r r r2 24 m¹ x • ¹q̃ ` D¹ [¹q • (x ` f e )], (5)zDt

where the is the material derivative. Therefore, in the absence of viscousD/Dt
and diffusive effects, P is conserved along fluid-parcel trajectories (Pedlosky
1987). Thus, it does not propagate but is merely advected by the flow. We shall
see later in this section that the conservation of potential vorticity exerts a strong
constraint on the flow evolution.

The nonpropagating nature of P suggests the following delineation between
waves and nonpropagating motions: The wave field is defined to be precisely that
part of the flow that propagates and hence does not contribute to the potential
vorticity. The nonpropagating component, on the other hand, accounts for all of
the potential vorticity of the flow. This latter nonpropagating component can, in
theory, be split into a part that contains potential vorticity and a part that does
not. We refer to the former as the PV component; we do not consider the latter
in this review.

Physically, P represents the vector component of the total vorticity (relative
` planetary) perpendicular to isopycnal surfaces. When the deviations from equi-
librium are slight, the isopycnal surfaces are, to a first approximation, horizontal.
In the absence of rotation, the potential vorticity is then simply proportional to
the vertical component of vorticity.

The correspondence between potential and vertical vorticities justifies the lin-
ear splitting of the velocity field introduced by Riley et al (1981) and Lilly (1983),
described in Section 2.1:
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r r ru 4 {¹ f ` we } ` e 2 ¹ w. (6)H z z H

The first bracketed term represents the wave and the second term the PV
component.

Staquet & Riley (1989b) generalized the nonrotating linear wave/PV decom-
position (which is only valid in the limit of very small density perturbations) to
an exact decomposition by postulating a set of equations in an isopycnal coor-
dinate frame. This generalized decomposition enables a diagnostic separation of
the PV from the wave component for strongly nonlinear flows as long as the
isopycnal surfaces remain single-valued, i.e. as long as they do not exhibit
overturning.

3.2 Normal-Mode Decomposition

The dynamical decomposition of the velocity field, Equation 6, is most useful
when f 4 0. When f ? 0, P is no longer proportional to the vertical vorticity but
includes an additional term. In this case, the distinction between the wave and
PV components is most easily made in terms of the eigenvectors of the equations
of motion linearized about a state of rest. Assuming jz ? 0 and , we

r
rj ? 0H

substitute the Fourier expansions for each variable and express the
r rij x•ˆ

r r( f (t)ej j

resulting equations in terms of new scaled variables for the vertical vorticity
, the horizontal divergence (here written in terms of the vertical velocity)r(x̂ ) /jz j H

, and the buoyancy . This procedure yields the followingˆr r r1ijŵ /j b 4 gq̂ /qj H j j o

equations (Bartello 1995),

r]Wj
r4 iL(W ),j]t

where

rx̂ /jzj H

r rW 4 1ij x̂ /jj j H1 2ˆ rb /Nj

0 ifm/j 0
L 4 1ifm/j 0 1Nj /j .H1 20 1Nj /j 0H

Here . With this choice of variables, the linear operator is Hermitian,rj 4 (k,l,m)
and a complete set of orthogonal eigenvectors can be found. This ensures that a
complete set of orthogonal eigenvectors can be found. The eigenvectors satisfyrXj
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r r rL(X ) 4 r X .j j j

Two of the eigenvalues,

2 2 2 2N j ` f mHr (j) 4 5 , (7)5 2! j

correspond to upward and downward propagating waves. Their associated eigen-
vectors are

5ifm1
|r |j .51 22|r |j! 5 7NjH

When , then ŵz 4 0 from continuity, and the resulting wave eigenmodes
r

rj 4 0H

have frequencies r5 4 5f.
The third root, r 4 0, with eigenvector

NjH1
0 ,

j|r | 1 25 1ifm

represents the nonpropagating (PV) mode. In this formulation, it is evident that
the linear PV component of the flow field is horizontal and, when f 4 0, it has
no signature on the density field. Moreover, one can readily verify that only the
mode with r 4 0 contributes to the potential vorticity.

The two flow invariants are energy and a truncated (quadratic) potential enstro-
phy. This truncation is necessary because the full enstrophy contains higher-order
terms and is, therefore, not conserved by spectral spatial discretization. Further
details on the truncation of potential enstrophy can be found in Warn (1986) or
Bartello (1995).

3.3 Lagrangian Formulation

Rouhi & Abarbanel (1991) have used Lagrangian dynamics to derive a linear
decomposition of strongly stratified flow into potential vorticity and wave com-
ponents. They point out that the potential vorticity is exactly a quadratic function
of the canonical variables in the Lagrangian formulation, whereas it is an infinite
series in the velocity and density perturbations of the basic state in the Eulerian
framework. They suggest, therefore, that solving the fully nonlinear interaction
problem should be simpler in the Lagrangian framework. The details of this cal-
culation have not, to our knowledge, been pursued.
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3.4 Interactions Between the Wave and Potential Vorticity
Components

We now examine in detail the types of interactions that can occur when both wave
and PV components are taken into account. Most treatments of the interaction
problem invoke some kind of multiple-scale formulation, based on the existence
of two disparate time scales for the problem, namely T0 4 1/N, characteristic of
the rapid oscillations of the wave field, and an advective time scale T1 4 L /U
on which the PV component evolves. When the stratification is strong, the Froude
number, defined as the ratio of T0 /T1, becomes a small parameter, which we
denote by l, i.e.

U
F [ 4 l.

NL

In the nonrotating case, with Equation 6, the velocity can be decomposed into
wave and PV components, and the interaction problem can be formulated in terms
of a set of three coupled nonlinear equations (derived from the full set of inviscid
equations of motion) consisting of a wave equation, an evolution equation for
potential vorticity, and an equation for the buoyancy (b 4 1gq/q0) which is
coupled to the wave equation through the buoyancy term. The crux of the multiple
scale method is to treat the times t0 4 t/T0 and t1 4 t/T1 as independent variables.
The time derivative is then written as

] ] ]
4 ` l .

]t ]t ]t0 1

We assume that the phase of the waves evolves on the fast time, whereas their
complex amplitude is a function of the slow time. The PV component, on the
other hand, is a function only of the slow time.

Note that, at the lowest order, potential vorticity and vertical vorticity are
equivalent. The governing equations are then written:

2 2] ]
2 2 2¹ w ` ¹ w 4 12l ¹ w ` l(I ` I ` I ) (8a)h ww wv vv2]t ]t ]t0 0 1

2]¹ w ]h 24 1l ¹ w ` l(J ` J ` J ) (8b)h ww wv vv]t ]t0 1

]b ]b
` w 4 1l ` l(K ` K ) (8c)ww wv]t ]t0 1

Here I, J, and K denote the nonlinear wave/wave, wave/PV, and PV/PV coupling
terms. Equation 8b is, in fact, exactly the inviscid, nondiffusive form of the equa-
tion for potential vorticity, Equation 5. All flow variables are now expanded in
power series of l. For example, w 4 w0 ` lw1 ` O(l2). The uniform validity
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of the solutions for sufficiently large times is ensured by imposing the constraint
that each of the coefficients in the power series remains of O(1) for all times (e.g.
Kevorkian & Cole 1981). At the lowest order in l, the equations are linear and
decoupled. At the next order, contributions from the nonlinear interactions appear,
along with the slow time dependence of the lowest-order solutions. Resonant
conditions manifest themselves as secular terms in the right-hand sides of Equa-
tions 8a to 8c. The elimination of secularity yields slow-time evolution equations
for the amplitudes of the lowest-order solutions, as is illustrated further in this
section.

In the general case with rotation, the interaction problem can be formulated in
terms of the coupled equations for conservation of energy and potential enstrophy.
This is the approach taken by Warn (1986) in his study of nonlinear interactions
between the wave and PV components in the shallow-water regime, and by Bar-
tello (1995) in the present context. The resulting equations take the form

]
(E ` E ` E ) 4 nonlinear terms 4 0k p q o

r r r r]t j `j `1 j 40k p q

]
2 2 2(r k E ` r p E ` r q E ) 4 nonlinear terms 4 0,k k p p q q o

rr r r]t j `j `j 401 k p q

where k, p, and q denote the wave numbers of the triad interaction components.
Once again, the slow-time evolution of triad amplitudes is obtained by elimination
of secular terms.

We also mention the approach of Babin et al (1997), using KAM
(Kolmogorov–Arnol’d–Moser) theory. With this method, control of wave reso-
nances is achieved via a mathematically sophisticated small-divisors analysis.

The important weakly nonlinear triad interactions between the wave and PV
components are readily identified by considering initial states composed of at
most a few modes.

3.4.1 Wave-Wave-Wave Resonant Triads We recall that two waves with phases
and will resonantly force a third wave with wave vectorr r r rj •x 1 r t j •x 1 r t1 1 2 2

ifrj3

r r rj 4 j 5 j3 1 2

and if the corresponding frequencies satisfy

r 4 r 5 r ,3 1 2

where as given by Equation 7. Resonant interaction theory was firstrr 4 r(j )i i

derived by Phillips (1960, 1968) for surface and subsequently internal waves. The
wave amplitude equations for the three waves are of the form
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]a1
4 C a a*23 2 3]t1

]a2
4 C a a*31 3 1]t1

]a3
4 C a a*,12 1 2]t1

where the ai are the amplitudes of the wave modes and the Ci j are the interaction
coefficients (see, e.g. Lelong & Riley 1991). Triad interactions conserve both
energy and a truncated (quadratic) version of potential enstrophy. Even though
the interaction can produce some vertical vorticity, the potential vorticity remains
zero (e.g. Lelong & Riley 1991). Therefore, no PV component can be excited
from pure wave/wave interactions. Bartello’s (1995) statistical mechanical argu-
ments have shown that this class of resonances is of secondary importance in the
evolution of rotating, stratified turbulence because energy exchanges are confined
to the wave field for this weakly nonlinear case. Resonant internal wave inter-
actions have been reviewed extensively (e.g. McComas & Bretherton 1977,
Müller et al 1986, Phillips 1968).

One example in which resonant wave interactions might indirectly influence
stratified turbulence is internal wave breakdown. It is well known (Drazin 1977,
Klostermeyer 1984, Lombard & Riley 1996a, Mied 1976) that internal waves are
unstable at any amplitude owing to a parametric subharmonic resonance. Numer-
ical simulations (Bouruet-Aubertot et al 1995, Lin et al 1995, Lombard & Riley
1996b) have shown that this resonance mechanism can lead to fairly rapid growth
of small-scale disturbances, resulting in a local breakdown of the wave into three-
dimensional turbulence. Strong mixing can then occur, resulting in the generation
of potential enstrophy and hence the appearance of stratified turbulence.

3.4.2 PV-PV-PV Triads The PV-PV-PV class of resonant triads is very broad
because the resonance condition on the frequencies is trivially satisfied for any
three PV modes with . This is the only resonant triad present inr r rj 5 j 4 j1 2 3

two-dimensional turbulence, and it is also the dominant one in quasi-geostrophic
(QG) turbulence, characterized by Ro K 1. It is responsible for the strong inverse
energy cascades and downscale enstrophy cascade in two-dimensional and QG
turbulence (Charney, 1971, Fjørtoft 1953). In the regime Ro $ 1, the upscale
transfer of energy is inhibited by an efficient downscale transfer of energy from
PV to wave modes. This mechanism is discussed further below. Using an aniso-
tropic EDQNM closure theory, Godeferd & Cambon (1994) have shown that
triads of three vertical modes dominate in the initial stages of decay of stratified
turbulence, and that they are responsible for the irreversible anisotropic structure
created by stable stratification.
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Figure 2 Examples of wave-wave-potential-vorticity triads (from Lelong & Riley 1991).

3.4.3 Wave-Wave-PV Triads The interaction of a wave ( , r1) with a PV moderj1

( , 0) will resonantly force a second wave of equal frequency r1 and wave vectorrj2

. From Figure 2, it is clear that this class of resonances is quite broadr rj 5 j1 2

because resonant triads involving waves of various wavelengths are allowed. In
this resonance, conservation of potential vorticity implies that there can be no
exchange of energy between wave and PV components. Therefore, the PV mode
acts as a catalyst for the exchange of energy between the two waves (Bartello
1995, Babin et al 1997, Majda & Embid 1998, Embid & Majda 1996, Warn 1986,
Lelong & Riley 1991). Catalytic behavior is also observed in the resonant inter-
action of a slowly varying horizontal shear and two equal-frequency internal
waves with opposite inclination to the vertical. This mechanism, called elastic
scattering, is believed to equalize upward and downward propagating internal-
wave energy in the ocean (Phillips 1968). Milewski & Benney (1995) also note
the presence of a catalytic interaction involving surface gravity waves and PV
modes. In the present wave-wave-PV triad, there are no restrictions on the direc-
tion of vertical propagation of the waves, nor are the waves confined to the same
vertical plane. In fact, Lelong & Riley showed that the interaction coefficients
vanish if the two waves lie in the same vertical plane, and they postulated that
this class of resonances would tend to isotropize the wave field in stratified tur-
bulence. Bartello has demonstrated that this statement is consistent with statistical
equilibrium arguments that predict that the energy must flow preferentially from
large to small scales.

3.4.4 Wave-PV-PV Triads The only triad interaction that has the potential of
directly initiating energy exchange between wave and PV modes involves two
PV modes and one low-frequency wave. This interaction can never be exactly
resonant but it can, nonetheless, be important, especially in stratified, nonrotating
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turbulence when j1 K j2 ' j3 and x3 ' 0 (subscript 3 denotes the wave com-
ponent). Bartello (1995) recognized the importance of this near-resonant triad in
transferring PV mode energy to waves, where it can then be cascaded to small
dissipative scales. When f ? 0, wave frequencies cannot approach 0; therefore,
the potential for significant energy transfer from the PV to the wave component
is the greatest in stratified, nonrotating turbulence. In this regime, the wave-PV-
PV interaction acts to drain energy away from the PV-PV-PV interaction. This
may explain the absence of strong inverse energy cascades in strongly stratified,
nonrotating flows.

Dong & Yeh (1988) have also studied nonresonant wave-PV-PV mode inter-
actions. In contrast to the off-resonant triad discussed in the preceding paragraph,
Dong & Yeh’s triad is more likely to occur when f ? 0. Their analysis, however,
does not distinguish between potential and vertical vorticities. Therefore, their
results remain ambiguous.

3.4.5 Dissipative Effects The mathematical analysis presented so far has been
restricted to the inviscid regime. Embid & Majda (1998) have examined the effect
of the Schmidt number Sc on the dissipation of stratified, rotating turbulence. For
the regime of small F and finite Ro, they show that the diffusion coefficient for
the wave field behaves as

2j
11 111R (1 ` Sc ),L 2

whereas that of the PV component is

2 2 11 2j ` F Sc mH11 21R j .L 1 22 2 2j ` F mH

This result implies that, for large Sc, the wave motions decay at nearly one-half
the rate of the slow PV modes at a given wave number. This result signals that
caution should be used when comparing laboratory data with numerically simu-
lated results, the latter of which normally imply Sc ' 1.

3.5 Stability and Adjustment of Vortices

Smyth & McWilliams (1998) examined the effects of background stratification
and rotation on the linear, inviscid stability of an axisymmetric columnar vortex.
In particular, they focused on the transition between the nonstratified, nonrotating
instability regime, which exhibits ultraviolet catastrophe (UVC), with no scale
selection and monotonically increasing growth rates as the vertical wave number
approaches infinity, and the quasi-gesotrophic regime with well-defined, fastest
growing modal instabilities. Stratification is generally found to have a damping
effect on the instability growth rate, though UVC behavior persists even as F r

0. The presence of a weak rotation, on the other hand, tends to damp out UVC.
This tendency is noted for Rossby numbers well beyond the Ro K 1 constraint
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of quasi-geostrophy. In some instances, the instability results in the emission of
a radiating inertia-gravity wave field.

Inertia-gravity waves are also generated during the adjustment of an unequi-
libriated, vertically confined vortex in a stratified, rotating environment. As the
vortex strives to equilibriate, it will transfer some of its energy to a radiating wave
field. In the strongly stratified, nonrotating regime, the final state is in cyclo-
strophic equilibrium and involves a horizontal balance between nonlinear inertial
forces and the pressure gradient. (This is seen, for example, in some of the lab-
oratory experiments discussed in Section 4.) The generated waves exhibit fre-
quencies that are close to the buoyancy frequency, and the dominant wavelength
scales as the radius of the adjusting vortex. The amount of wave energy Eiw

released during adjustment is a function of the initial deviation from equilibrium.
For strongly stratified conditions, Eiw is at most O(F 2) (Lelong 1989, Lelong &
McWilliams 1999). Moreover, the adjustment is insensitive to the sign of the
vortex circulation because only the square of the azimuthal velocity enters into
the final balance. When rotation is added, the final equilibrium includes the addi-
tional Coriolis force. The corresponding adjustment process, called gradient-wind
adjustment to reflect the final gradient-wind balance (e.g. McWilliams 1988),
results in a radiating inertia-gravity wave field with frequencies between the Cor-
iolis and buoyancy frequencies. The Coriolis term removes the symmetry in the
behavior of cyclonic and anticyclonic vortices. For a given pressure deviation
from equilibrium, the amount of radiated wave energy remains O(F 2) for anti-
cyclones, but becomes O(1) for cyclones. Bartello (1995) has shown that the
wave-wave-PV triads are responsible for cascading wave energy downscale in
nonlinear geostrophic adjustment.

4. LABORATORY EXPERIMENTS

Since the review of Lin & Pao (1979), a number of laboratory experiments have
been conducted to better understand the dynamics of turbulence in stably stratified
and sometimes rotating fluids. Some of these experiments have addressed the
early stages of the flow development, including, for example, the radiation of
internal waves from a turbulent region (Gilreath & Brandt 1985, Hopfinger et al
1991), the suppression of the vertical buoyancy flux and related dynamics (e.g.
Lang 1982, Yap & van Alta 1993, Park et al 1994, Lin et al 1992, Itsweire et al
1986, Stillinger et al 1983), spectra and spectral energy transfer (Itsweire & Hel-
land 1989), and the effects of current shear (Rohr et al 1988). Experiments
addressing turbulent mixing were reported in the more recent review by Fernando
(1991). A number of these experiments, however, either directly or indirectly
addressed the later stages of decay of the turbulent region, i.e. the low Froude
number regime. These include studies of wakes (both the wake of a sphere and
the wake of a grid), horizontal jets (both pulsed and continuous), vertically ori-
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ented grids oscillating in a direction normal to their plane, and specialized meth-
ods such as tangential injection.

In this section, we emphasize the low Froude number, PV component regime
of these experiments, explaining both the origins of these motions and the relevant
flow dynamics. We will see that, once the effects of stratification have begun to
dominate the flow (i.e. the local Froude number has become small enough), the
dynamics of the flow change in a dramatic and qualitatively similar manner in
each case. Furthermore the subsequent flow development is representable by the
scaling arguments presented in Section 2.

4.1 Wakes in Stably Stratified Fluids

By far the majority of the experiments addressing the low Froude number regime
have dealt with the wake of a sphere moving horizontally through a stably strat-
ified fluid. All of these experiments have utilized a towing tank configuration, as
it is not possible to reach the late times necessary to obtain this regime in a wind
tunnel or a water channel.

In the wake of a sphere moving through a stratified fluid, a number of physical
processes occur that depend on the Froude and Reynolds numbers of the flow.
The sphere itself generates an internal wave train that is approximately steady in
the reference frame moving with the sphere. If the Reynolds number is high
enough, the flow around the sphere separates into a turbulent wake in the lee of
the sphere. The wake initially grows in the vertical and horizontal directions; the
vertical growth is halted within a fraction of a buoyancy period, however, as the
buoyancy forces limit the vertical motion of the fluid particles. (Here the buoy-
ancy period is defined as Tb 4 2p/N.) The turbulent wake decays as it radiates
energy away in the form of internal waves and as it dissipates energy into heat.
This wave radiation probably decreases the vertical component of the velocity
relative to the horizontal components, helping to create a quasihorizontal motion.
At some point the buoyancy forces begin to dominate the flow; that is, the local
Froude number becomes small, and the character of the motion dramatically
changes as described in the introduction for the experiments of Lin & Pao (1979).

These changes in the flow dynamics occur within several buoyancy periods.
For example, Spedding et al (1996a,b) report that the wake is quasi-two-
dimensional, in that the vertical velocity component is small compared with the
horizontal component, beyond about Nt 4 2pt/Tb 4 20, or about three buoyancy
periods. The local Froude number at this time is F ; 0.25. Similar values for the
critical Nt and F reported by Lin & Pao (1979) were 25 and 0.04, respectively.

Various experimental techniques are available to make detailed measurements
of the velocity and density fields in the low Froude number regime and to infer,
for example, the vorticity field. For example Fincham et al (1996) and Spedding
et al (1996a,b) employed a customized digital particle image velocity technique
to measure the horizontal velocity field on an isopycnal (constant density) surface.
In a water tank linearly stratified with dissolved salt, neutrally buoyant polysty-
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rene beads were placed in a preselected horizontal plane; for example, for wake
experiments, the particles were generally placed in the midplane of the sphere.
The sphere was towed horizontally through the tank, the motion of the beads was
observed and recorded from CCD cameras placed above the tank, and the hori-
zontal velocity field was inferred from the camera images. In the late wake, with
little vertical displacement of the isopycnals (constant density surfaces), these
isopycnals could be interpreted as constant z-surfaces. Then, in particular, the
vertical vorticity xz and horizontal divergence Dz could be computed from these
fields. Using the
decomposition explained in Section 2, this allowed the total velocity field to beru
decomposed into its internal wave component and PV component asr ru uiw pv

r 2x 4 (¹ 2 u ) 4 ¹ wz pv z H

r 2D 4 ¹ • u 4 ¹ f.z H iw H

Here w is a stream function defining the PV component of the field, and f is a
velocity potential defining the internal-wave component. As an alternative
method, a technique was developed by Chomaz et al (1993b) that used horizontal
fluorescene dye lines placed in the water before the run; they then observed the
lines in the field of a laser light sheet. Density measurements were generally made
with conductivity probes. Flow visualization of the wake was accomplished by
using dye and observing it either with flood lighting or by laser-induced fluores-
cence (Gad-el-Hak et al 1981).

In the late wake, the vertical structure appears to be controlled by the Froude
and Reynolds numbers. By carefully observing the separation lines of the wake
at the surface of the sphere and using ideas for the separated vortices similar to
those of Pao & Kao (1977), Chomaz et al (1992) have classified the different
behavior of the wake as functions of the Froude and Reynolds numbers. Most
specifically, for Froude numbers based on the speed and diameter of the sphere
(Fd 4 U/Nd, where U and d are the speed and diameter of the sphere, respectively)
less than about 4.5, the late wake motion is single-layered in the vertical; for Fd

$ 4.5, the wake is multilayered. [More recently, M Bonnier (private communi-
cation) suggests that the wake remains single-layered for much larger values of
Fd than reported by Chomaz et al 1993a.] The rationale for the appearance of
multiple layers is argued by Chomaz et al (1993a) and Spedding et al (1996a). If
the overturning scale is greater than the scale of the turbulence, then multiple
overturns are expected. Substituting in the experimental values of u8/U ; 0.3 and
L/d ; 0.4 into the expression for F in the near wake leads to the condition

F $ 3d

for multiple overturns to occur, generally consistent with the observations.
The horizontal structure of the wakes appears to consist of quasi-two-

dimensional, countersigned vortices, much like a two-dimensional wake, but with
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Figure 3 The vertical vorticity xz for 16 time steps spaced evenly in logarithmic time
between Nt 4 21 and Nt 4 640; Rd 4 5286; Fd 4 4 (Spedding et al 1996a).

vertical structure (Figure 3). Several authors remark as to how the flow in each
horizontal plane is similar to two-dimensional flow. For example, Chomaz et al
(1993a) point out the similarity of their flow to the two-dimensional numerical
simulations of Couder & Basdevant (1986). The vortices tend to interact dynam-
ically, sometimes pairing and sometimes forming dipoles. In the later stages of
decay of the wake, however, the wake appears to consist mainly of weakly inter-
acting monopoles.

Several authors have made detailed measurements of the velocity, density, and
vorticity fields in individual monopoles. Interestingly, at least for the low Rey-
nolds numbers characteristic of these experiments, the form of the monopoles is
the same, independent of the initial state. For example, Bonnier et al (1998)
performed experiments in the single-layer regime. Following Flór & van Heijst
(1996), they assume an axisymmetric vortex, with the only nonzero component
the azimuthal velocity, given by
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2 2r 1 r z
u 4 V exp 1 1 1 .h r 3 1 242 2r 2 r zm m m

Using the inviscid form of Equations 3a to 3d, they determined the fluctuating
density and pressure fields as

2 2 2qV 1 r zrp8 4 1 exp 1 1 13 1 242 22 2 r zm m

2 2 2qV z 1 r zrq8 4 1 exp 1 1 1 .3 1 242 2 2g z 2 r zm m m

The physical picture is that the azimuthal velocity uh creates a centrifugal force
that is balanced by the radial pressure gradient, i.e. the flow is in cyclostrophic
balance. This pressure gradient varies in the vertical, however, inducing density
fluctuations and causing the constant density surfaces to pinch toward the middle
of the vortex. Such a model has previously been used in the low-Froude-number
regime by Lelong (1989) and Lelong & McWilliams (1999) to explore the prob-
lem of vortex adjustment in a stratified fluid, as discussed in Section 3.6. Labo-
ratory measurements (Bonnier et al 1998, Spedding et al 1996b, Trieling & van
Heijst 1998) confirm this general picture.

Beckers et al (1998) have used the tangential injection method of Flór & van
Heijst (1996) to generate isolated monopoles at very low Froude numbers. They
also developed analytical solutions, based on experimental data, by using the
viscous and diffusion forms of Equations 3a and 3d. The forms of the solutions
are similar to those assumed by Bonnier et al. Again the results compare well
with experiments, including the vertical diffusion and temporal decay of the flow.

Fincham et al (1996), in conducting experiments in the wake of an array of
vertical rods, have combined the vertical structure and horizontal vortex structure
of the wakes into one picture, which also appears to describe the wakes of spheres
for Fd $ 4.5 (see Figure 4). In a single horizontal plane, vortex lines are connected
by a chain of vortex loops (Figure 4a), a stratified flow version of a Kármán
vortex street. When other layers are present (Figure 4b), the layers are not decou-
pled, but are staggered, as shown in the figure.

The local Froude number at the time of collapse can be estimated from a
straightforward scaling analysis. Assuming the the Froude number in the near
field of the wake is large enough that the initial turbulence decay is not strongly
affected by stratification, then, with e ; u83/L,

u8 e
F 4 ; .

2NL Nu8

Riley et al (1981) pointed out that, if u82 decays as t1n, then e should decay as
t1n11. Therefore,
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Figure 4 (a) Vortex lines loop between opposite-signed partners in a stratified version
of the classical Kármán wake; (b) vortex loops of part (a) with a second layer added
(Spedding et al. 1996b)

e
11F ; ; (Nt) .

2Nu8

This implies that, assuming the initial Froude number is large enough, the local
Froude number in the wake should be of order 1 within the decay time of a
buoyancy period, independent of the initial Froude number.

Spedding et al (1996a,b) found that this relationship holds in both near and
far wakes. Defining the Froude number in terms of the characteristic horizontal
scale LH, they found that

11F ; !(Nt) , ! ; 0.5.

At three-dimensional turbulence collapse (Nt ; 20), then F ; 0.025, in the same
range as the values of Lin & Pao (1979). Similarly, Spedding et al found that the
Reynolds number decays as
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11/3 3Re ; @(Nt) , @ ; 2.8 • 10 .

So, for example, at three-dimensional collapse, Re ; 1000, already a rather low
value, indicating that the flow is viscously dominated.

The vortices in the late wake appear to have a somewhat low aspect ratio a,
thus providing the term ‘‘pancake eddies.’’ For example, Bonnier et al (1998)
measure a ; 0.4; Fincham et al (1996) find, for grid turbulence, a ; 0.3; whereas
for vortex dipoles (see below), Voropayev et al (1995) find a ; 0.4, and Flór et
al (1995) find a ; 0.2. This low aspect ratio is also consistent with the results of
Fincham et al (1996) for the kinetic energy dissipation rate in the late wake of a
grid. These authors directly measure the various terms defining the dissipation
rate and find that it is dominated by the components giving the vertical shearing
of the horizontal velocity. Assuming horizontal isotropy, they conclude that

2dE ]u1
4 1e . 12m ,1 2dt ]z

where E is the total kinetic energy. Fincham et al (1996) find that this component
accounts for over 80% of the total kinetic energy dissipation rate, whereas the
components with horizontal derivatives contribute very little. This implies that
the vertical gradients are much larger than the horizontal gradients, and that the
vertical scales are much smaller than the horizontal ones; that is, the vortices have
low aspect ratio.

Majda & Grote (1997) and Majda et al (1999) have constructed exact laminar
solutions for the low-Reynolds-number regime characteristic of the late stages of
decay of the PV component by solving the evolution equations for this compo-
nent. These solutions, which assume an initial state of periodic vortex dipoles
embedded in a weak vertical shear, reproduce quite well the principal features of
laboratory coherent structures. More specifically, the exact solutions exhibit a
transition from nearly columnar vortices in a weakly vertically sheared mean flow
to vertically layered pancake vortex sheets dominated by horizontal vorticity. This
regime transition is accompanied by vigorous dissipation caused by the vertical
shearing of the horizontal velocity.

Spedding et al (1996a,b) found that, in the late wake, the mean wake velocity
deficit, measured in the centerplane of the wake, retains a self-similar, Gaussian
form. Furthermore, surprisingly, the width of this profile grew as approximately
(x/d)1/3, and the peak velocity deficit decayed as (x/d)12/3, both the same rates as
measured for nonstratified flows. The peak velocity, however, was much larger
than its nonstratified counterpart. Furthermore, the centerline turbulence intensity
decayed as (x/d)12/3, again the same rate as for the nonstratified case. It is not
clear why these decay rates remain unchanged when the physical processes have
changed so dramatically.

Finally, since a distinct Karman vortex street was observed in the far wake,
the vortex spacing kx could be measured and a Strouhal number, St 4 d/kx,
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determined. In the near field, Chomaz et al (1993b) and Bonneton et al (1996)
observed that for Fd # 3, but they observed no systematic Fd (depen-12/3St ; Fd

dence for higher Fd. In the far field, Spedding et al (1996a,b) found that St ;
(Nt)11/3, consistent with the (x/d)1/3 growth rate of the wake, as monopole vortices
continued to pair and merge.

4.2 Oscillating Vertical Grid

Another flow configuration used to examine turbulence in a stratified fluid is a
turbulent front created by the oscillation of a vertical grid in the direction normal
to the plane of the grid (e.g. Browand et al 1987, Ivey & Corcos 1982, Thorpe
1982). If both the Reynolds number (SxM/m) and Froude number (Sx/NM) are
sufficiently large, then the turbulent flow near the grid is approximately Reynolds
number independent and behaves as if it were nonstratified. Here S, x, and M are
the stroke, frequency, and mesh spacing of the grid, respectively. Measurements
in the nonstratified case (Hopfinger & Toly 1976) indicate that the turbulence
decays away from the grid as

1/2u8 (SM)
; ! ,

Sx x

the integral length scale grows as

L x
; @ .

M M

Here ! and @ are empirical constants. The local Froude number thus falls off as

3 1/2u8 ! x (S M )
F 4 ; . (9)1 2 2NL @ N x

At some distance from the grid, because of the increasing importance of the
influence of buoyancy away from the grid, the three-dimensional motion collapses
into quasihorizontal layers (see Figure 5). As the flow continues to develop, these
layers propagate away from the grid in a manner similar to an intrusive front.
The critical Froude number at which the collapse is measured to occur is Fc ;
0.25 (Browand et al 1987), a value similar to that found for the breakdown in the
wake of a sphere. The vertical spacing of the intrusions is given approximately
by the value of L at collapse. From Equation 9, the distance to collapse is

1/2 1/2 3/4x ! x Sc
4 ,1 2 1 2 1 2M @F N Mc

so that the vertical spacing is approximately
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Figure 5 Turbulence collapse and intrusion formation; x/N ' 72, Nt 4 25.4 (Browand
et al 1987).

1/2 1/2 3/4 1/2 1/4L !@ x S !@ Sc 1/24 4 F .M1 2 1 2 1 2 1 2 1 2M F N M F Mc c

Here FM 4 U/NM is a Froude number based on the grid mesh spacing. In par-
ticular, the spacing decreases as the grid Froude number decreases as L /M ;c

.1/2F M

4.3 Jets in Stably Stratified Fluids

The final experimental approach discussed here to investigate stratified flows is
that of jets, both pulsed (e.g. Flór & van Heijst 1994, Flór et al 1995, van Heijst
& Flór 1989) and continuous (e.g. Voropayev et al 1991, 1997). For example, in
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Figure 6 Photograph showing the
top view and side view (lower and
upper parts of the figure, respec-
tively) of dye-visualized dipolar flow
(Flór et al 1995).

the experiments of van Heijst and Flór, a small, pulsed round jet of fluid is injected
horizontally into a tank of water linearly stratified with dissolved salt. The injected
fluid has a density that is chosen to exactly match the density of the ambient fluid
in the plane of injection. Typical Reynolds numbers based on the injection veloc-
ity U and nozzle diameter d ranged between 360 and 11,500. The Froude number
at the jet exit tended to be very large, and the flow initially developed unaffected
by buoyancy. An isolated turbulent region forms, but on the order of a buoyancy
period collapsed into a thin, pancake-shaped region, with quasihorizontal flow.
Internal waves were generated by this process, but they propagated away from
the pancake-eddy region and did not appear to directly affect the subsequent flow
development. In this regime horizontally oriented eddies interact and merge and,
ultimately, a dipolar structure is formed (see Figure 6). The structures tended to
be single layered in the vertical, due to the method of injection of fluid of single,
matched density.

In the collapsed region the Reynolds and Froude numbers are very low. Typ-
ically, Re ; 100 and F ; 0.1, so that the flow is both viscously and buoyantly
dominated. The velocity in the dipole structure was observed to decay mainly
because of vertical diffusion and the horizontal entrainment of irrotational fluid
(Flór & van Heijst 1994). In order to describe this flow, Flór et al (1995) started
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with the scaling analysis for the PV component discussed in Section 2, writing
the equations in terms of the vertical vorticity xz and the stream function of the
horizontal motion w. To solve these equations, the Lamb-Chaplygin dipole model
(Lamb 1932) was employed, which assumes a linear relation between xz and w
and that xz 4 0 in the flow exterior to the dipole, r . a, where a is the dipole
radius.

To deal with the horizontal entrainment of the dipole and with its vertical
structure and vertical diffusion, Flór et al (1995) considered two different models.
In the first model the dipole (vertical) thickness and radius were assumed constant,
whereas in the second the increasing vertical thickness of the dipole was taken
into account. In both cases the predictions of the models agree fairly well with
the laboratory data, for example, with the decay rates of the horizontal velocity
and vertical vorticity. Interestingly, the dipole vortices appeared to decay expo-
nentially in time, whereas the monopole vortices (Spedding et al 1996a,b) exhib-
ited power law decay.

Voropayev et al (1997) carried out experiments with a continuous jet intro-
duced into a rotating, stably stratified fluid. Again the three-dimensional flow
collapses away from the nozzle, becoming quasihorizontal. Interestingly, the
shape of the leading edge of the continuous jet depends on the ratio N/f. When
the rotation rate is somewhat strong compared with the stratification (i.e. the
Coriolis forces are able to significantly modify the flow in a buoyancy period),
e.g. for N/f # 10, the jet deflects to the right of the x-axis. (The tank is rotated
in the counterclockwise direction about the z-axis.) A spiral monopole is formed
in a relatively thin horizontal layer. As the rotation rate is decreased, buoyancy
forces come in more quickly relative to the Coriolis forces. For N/f . 10, the
leading edge takes the form of a dipole, as in the nonrotating case. The authors
present a theoretical model that predicts, in particular, the transition between the
two regimes.

5. NUMERICAL SIMULATIONS

A number of numerical simulations have been carried out to address various issues
related to turbulence in stably stratified fluids. These include studies of homo-
geneous decay (e.g. Gerz & Yamazaki 1993, Métais & Herring 1989, Ramsden
& Holloway 1992, Riley et al 1981), homogeneous shear flows (e.g. Galmiche
unpublished results 1998; Gerz et al 1989, Holt et al 1992, Jacobitz et al 1997),
turbulent free shear layers (e.g. Staquet 1995, Staquet & Riley 1989a), stable
atmospheric boundary layers (e.g. Barnard 1999, Mason & Derbyshire 1990), and
the breakdown of internal waves (e.g. Andreassen et al 1998, Bouruet-Aubertot
et al 1995, Fritts et al 1998, Lelong & Dunkerton 1998a,b, Lin et al 1995, Lom-
bard & Riley 1996b, Winters & D’Asaro 1994). A number of issues have been
addressed in these simulations, including explanations of the development of
countergradient fluxes, the character of large-scale structures, critical Richardson
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numbers in shear flow turbulence, turbulence energetics (including both kinetic
and potential energies), and spectral-energy transfer. As in the previous section
on laboratory studies, we focus on numerical simulations that shed light on the
dynamics of the PV component, that is, the low-Froude-number regime.

Various numerical methods have been used in simulating turbulence in stably
stratified fluids, although in many studies statistical homogeneity has been
assumed and Fourier-spectral methods employed (Canuto et al 1988). In the stud-
ies discussed in this section, spectral (or pseudo-spectral) methods have been
utilized.

Numerical simulations have proven to be a useful tool in the study of turbu-
lence in stratified fluids. From the complete snapshot of the flow provided at
every time step, many statistical quantities can be computed that cannot be mea-
sured in the laboratory; in addition, the flow field can be visualized in various
ways. Hence, numerical simulations have often been instrumental in helping inter-
pret laboratory data and have also contributed much to the understanding of theo-
retical issues such as the energy cascade in stratified turbulence.

The principal drawback of numerical methods remains the relatively low spa-
tial resolution attainable, limiting the range of spatial and temporal scales that
can be realistically simulated. Hence, the maximum Reynolds numbers of numer-
ically simulated flows are still well below typical values encountered in geo-
physical flows. For example, three-dimensional direct numerical simulations with
a computer code employing pseudospectral numerical methods and a resolution
of 1283 collocation points yield values of only Rek ' 80 (Kimura & Herring
1996), where Rek is a Reynolds number based on the Taylor microscale. Typical
values of Rek in the atmosphere can extend into the thousands or more.

To partially alleviate the limitations brought about by modest resolution, some
numerical studies have utilized large-eddy simulation techniques to maximize the
range of simulated energetic scales. (See Lesieur & Métais 1996 in this same
series for a recent review of large-eddy simulations.) One commonly used LES
method employs a hyperviscous operator ¹n (where n $ 4) to parameterize vis-
cous damping in place of the Laplacian molecular diffusion operator. Hypervis-
cosity effectively restricts the influence of viscous dissipation to a very narrow
range (which decreases as n is increased) near the cutoff wave number. Hyper-
viscosity undoubtedly owes its popularity to the fact that it is trivially imple-
mented in pseudospectral codes, since powers of the Laplacian are simply
expressed as powers of j2 in spectral space. The use of hyperviscosity is justified
by studies such as that of Borue & Orszag (1996) for three-dimensional, decaying
turbulence, which have demonstrated the insensitivity of the large, energy-
containing scales to the form of the dissipation parameterization used. More elab-
orate dissipation parameterizations such as Smagorinsky’s (Kaltenbach et al 1994,
Siegel & Domaradzki 1994), structure-function subgrid-scale models (Métais &
Lesieur 1992), and Richardson-number-dependent formulations have also been
used with similar success, although they are not as easily implemented as hyper-
viscosity. The current rapid development of parallel computing (e.g. de Bryun
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Kops & Riley 1998, Werne & Fritts 1999) appears promising and will bring
turbulence simulation to an unprecedented degree of realism in the coming
decade.

The numerical simulations considered here fall into the two broad categories
of decaying and forced turbulence.

5.1 Decaying Turbulence Under the Influence of
Stratification

Several studies of decaying turbulence employing direct numerical simulations
have been conducted that have addressed the low Froude number regime and the
dynamics of the internal wave and PV components. For example, in addition to
introducing the scaling arguments and flow decomposition discussed in Section
2, Riley et al (1981) presented results of simulations of homogeneous, decaying
turbulence in density-stratified fluids. They found, in particular, that as the Froude
number became small, the flow nonlinearity still remained large, although certain
nonlinearities were inhibited, e.g. those related to the term in the verticalw]w/]z
component of the momentum equation (see Equation 2). This latter effect
appeared to result in a slightly weakened energy dissipation rate. Riley et al also
found that, compared to the decay of turbulence without density stratification, the
growth of horizontal scales was enhanced, whereas that for vertical scales was
inhibited. In addition, qualitatively consistent with the laboratory results presented
in the previous section, the horizontal component of the vorticity became larger
than the vertical component.

Métais & Herring (1989) performed a careful series of direct numerical sim-
ulations of homogeneous decay to address, in particular, the low Froude number
regime, employing in their analysis the velocity field decomposition discussed in
Section 2. Their numerical results generally agreed with the experimental data of
Itsweire et al (1986) with respect to the major statistical descriptors, giving con-
fidence in their methodology. Some differences were noted in the behavior of the
buoyancy flux, as the simulation values were about a factor of 2 larger than the
laboratory values. In the simulations, the Schmidt number is of order 1, whereas
it is about 200 in the laboratory experiments of Itsweire et al, in which salt
stratification in water is employed. Recently, laboratory experiments in
temperature-stratified wind tunnels (Lienhard & van Atta 1990, Yoon & Warhaft
1990), in which the Schmidt (or, more correctly, the Prandtl) number is of order
1, show trends in the buoyancy flux similar to the results from the numerical
experiments.

In the small Froude number regime, Métais & Herring (1989) found that their
results were very sensitive to initial conditions, depending, for example, on the
ratio of the internal wave energy to the stratified turbulence (PV component)
energy. In simulations initialized with stratified turbulence but no internal waves,
they found that very little internal wave energy was generated; they also found
that more kinetic energy dissipation occurred than for strictly two-dimensional
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turbulence and that the dissipation was caused by the vertical shearing of the
horizontal velocity, again in qualitative agreement with the laboratory results
presented in the previous section. They identified flow ‘‘collapse’’ in terms of a
collapse of the Thorpe scale (Thorpe 1977) and found that this occurred at about
Nt ; 6 and F ; 0.25, again qualitatively consistent with laboratory results. As
with the results of Riley et al, Métais & Herring noted the tendency for enhanced
growth of horizontal scales and inhibited growth of vertical scales.

Holt et al (1992) focused mainly on homogeneous, sheared turbulence at
higher Froude numbers. Regarding the low-Froude-number regime, they did note
that, at late times and for weaker shears, nonlinear spectral energy transfer was
somewhat suppressed by the stable stratification, and the vertical velocity and
density fields were approximately 908 out of phase, consistent with the existence
of an internal-wave field.

Bartello (1995) performed some numerical simulations of decaying stratified
turbulence. His close examination of the various energy transfer terms reveals
that, in the regime with low F, Ro 4 O(1), wave and PV motions are inherently
coupled, with the predominant exchange mechanism being the off-resonant triad
discussed in Section 3.4.4. This is in contrast to the low-F, low-Ro quasi-
geostrophic regime in which the two types of motion evolve independently of
each other.

In addition to turbulence dynamics, Kimura & Herring (1996) focused on fluid
particle dispersion in turbulence in a stably stratified fluid; they found that both
single-particle dispersion and particle pair separation were inhibited in the vertical
direction by stable stratification, while being relatively unaffected in the horizon-
tal. Moreover, the late stages of the flow exhibited regions of intense viscous
dissipation characterized by large horizontal vorticity, consistent with the labo-
ratory measurements of Fincham et al (1996).

Gerz & Yamazaki (1993) initialized their simulations with buoyancy pertur-
bations to simulate the conditions of fossil turbulence. They analyzed the flow
behavior in terms of a stratification number Sn, defined as the ratio of perturba-
tion-to-background temperature gradients. They found that, when Sn , 1, the
flow remained in a transient state of turbulence in which stirring and mixing were
observed.

5.2 Forced Turbulence Under the Influence of Stratification

One of the conjectures that has motivated several numerical studies of stratified
turbulence is whether the inverse cascade mechanism envisioned by Gage (1979)
and Lilly (1983) to explain atmospheric mesoscale energy spectra is possible. To
address this issue, a number of simulations have been performed, utilizing a
variety of forcing mechanisms to simulate small-scale energy sources.

Herring & Métais (1989) devised a series of forced, nonrotating (Ro 4 `)
calculations with increasing values of N. In all cases, a random Markovian forcing
was applied to the horizontal velocity components over a narrow range of wave-
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Figure 7 Horizontal energy spectra for (a) purely two-dimensional case and (b) three
values of N; from Herring & Métais 1989.

number magnitudes, 10 , j , 12, where the full range of wave number mag-
nitudes is 1 , j , 32. A first calculation involved purely two-dimensional
Markovian forcing and no vertical variability (i.e. vertical velocity and density
perturbations were set to zero initially). As anticipated, the flow remained two-
dimensional and developed a vigorous inverse cascade to the left of the15/3jH

forcing wave number kf (Figure 7) in agreement with two-dimensional forced
turbulence theory (Kraichnan 1967). When vertical variability, in the form of
small three-dimensional density perturbations, was added to the initial conditions,
the evolution of the flow changed dramatically. In particular, a comparison of the
two most stratified cases (N 4 40p, 80p) reveals little change in the behavior,
consistent with the scaling analysis presented in Section 2 (Figure 7b). The kinetic
energy of the wave component and the potential energy grew exponentially at a
rate independent of the stratification until they became saturated. Moreover, the
three-dimensional variability appeared to allow substantial energy transfer to
smaller scales and hence to inhibit both the transfer of energy to large scales and
the development of an inverse regime.15/3jH

As the stratification was increased, the velocity field became more horizontal.
It remained very much three-dimensional, however, in that frictional dissipation
between adjacent horizontal layers continued to drain the energy of the stratified
turbulence component. This interlayer drag acted on all horizontal scales and
effectively flattened the slope of the energy spectrum at scales larger than the
forcing scale. Hence, a spectrum was not observed. Examination of the15/3jH

various energy transfer terms confirms that the PV/PV mode interactions, respon-
sible for the upscale transfer in the two-dimensional case, were then in compe-
tition with an efficient wave/PV mode interaction that cascaded PV component
energy to smaller scales. Bartello (1995) demonstrated the role of this interaction,
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composed of near-resonant slow-slow-fast triads (described in Section 3), in
facilitating the transfer of energy from the stratified turbulence to the wave com-
ponent. As pointed out earlier, this triad becomes less important when rotational
effects are present.

Métais et al (1994) repeated the previous simulations of Herring & Méais
(1989) with both two-dimensional and three-dimensional forcing and with various
degrees of rotation. For the case with two-dimensional forcing, a small three-
dimensional perturbation, and weak rotation (N/f 4 10), more energy was trans-
ferred out of the forcing region to larger horizontal scales than in the analogous
case without rotation. Only when N/f 4 1 with F K 1, however, does a 15/3jH

inverse cascade clearly emerge. This is the familiar geostrophic regime.
More recently, Vallis et al (1996) presented results of convectively driven

turbulence at the atmospheric mesoscale obtained with a meteorological model
featuring the inclusion of water vapor, bottom boundary layer effects, variable
N(z), and a Richardson-number-dependent subgrid-scale parameterization; they
reported the existence of an inverse cascade in both rotating and nonrotating15/3jH

regimes. The model, however, had very limited vertical resolution. Similar results
have been reported by Lilly et al (1998), again with very limited vertical reso-
lution. In particular, the limited vertical resolution of these meteorological studies
does not resolve the overturning scale Lo. Although there are many disparities
between idealized stratified turbulence simulations (e.g. of Herring & Métais
1989) and these more realistic convective cloud and storm simulations, which
undoubtedly have some effect on differences in the solutions, Bartello (1999)
suggests that the different vertical resolutions, and hence the different vertical
dissipation in the two types of studies, can account for the discrepancies in the
behavior of the energy cascades. He argues that if the overturning scale is smaller
than the model grid resolution, one should not expect overturning because it is
not resolved. Therefore, individual isopycnal surfaces are rendered coherent, and
the flow will behave more two-dimensionally.

To clarify this matter, Bartello (1999) has performed some simulations to
investigate the sensitivity of the inverse cascade to vertical dissipation. To mimic
the effect of different vertical resolutions, additional dissipation terms propor-
tional to mz m2 are included in the momentum and buoyancy equations, where m
is the vertical component of the wave number vector and mz is an artificial vis-
cosity applied in the z-direction. The vertical dissipation is controlled by varying
mz. As seen in Figure 8 (Bartello 1999), the largest value of mz results in a clear

cascade. As mz is decreased, however, the spectrum disappears. There-15/3 15/3j jH H

fore, it appears that the strong inverse cascade is only possible if the vertical
variability, and hence strong cascade to smaller scales, is inhibited.

5.3 Coherent Structures in Stratified Turbulence

An issue that is closely related to the presence of an inverse cascade is the exis-
tence of coherent structures in stratified turbulence. Coherent structures routinely
develop in the late stages of numerically simulated, two-dimensional and quasi-
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Figure 8 Horizontal energy spectra E(jH) for forced simulations with N/f 4 100 at
various vertical dissipations (Bartello 1999). The vertical line indicates the forced wave
number jf.

geostrophic turbulence (e.g. McWilliams 1990a,b, McWilliams et al 1994), as
inverse cascade continually increases the scale of the flow field. As discussed in
the previous section, meandering, quasi-two-dimensional structures are also com-
monly visualized in the late stages of laboratory experiments with stable strati-
fication. Kimura & Herring (1996), using vertical vorticity to visualize the
motions, obtained scattered, pancakelike structures. Winters & D’Asaro (1994),
using potential vorticity as a tracer, found pancake structures in their three-
dimensional simulations of wave breakdown at a shear-flow critical level. Unfor-
tunately, in almost all of the other numerical simulations to date, there has been
little attempt to simulate the visualization results from the laboratory, e.g. by
simulating dye dispersion in the flow. Such simulations could help determine how
closely the numerical simulations replicate the laboratory experiments.

6. FINAL COMMENTS

A number of issues related to the PV component remain unresolved, the most
important of which are in regard to the dynamics. For example, how do the
dynamics of stratified turbulence differ from those of two-dimensional turbulence,
especially given the potential for vertical variability? Some of the laboratory and
numerical experiments indicate that there are great similarities between the two.
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The numerical experiments of Herring & Métais (1989) without rotation indicate,
however, the tendency for small scales to develop in the vertical, as well as a
weakening of upscale transfer of energy to larger scales in the horizontal as the
vertical variations develop.

Related to this is the question of what determines the vertical scale of the
motion. In the laboratory experiments and numerical simulations, the vertical
scale appears to be controlled by the viscosity. In both cases, the Reynolds num-
bers tend to be low. Lilly (1983) argues that, for much higher Reynolds number
flows representative of geophysical flows, adjacent horizontal layers will tend to
decorrelate, resulting in shear instabilities and turbulence. Thus the vertical scale
may be set by the properties of the turbulence. Voropayev et al (1997) have
suggested that the laboratory experiments might scale up to geophysical scales
as long as the viscosity in the laboratory experiments is replaced by a turbulent
viscosity in the geophysical case.

Drawing conclusions similar to Lilly’s, but using spectral energy transfer argu-
ments, Bartello (1999) points out that high-Reynolds-number flows may favor a
transfer of energy to smaller scales through instabilities and turbulence, resulting
in a significantly less effective upscale transfer. This suggests that the results of
laboratory experiments and numerical simulations may not apply at geophysical
scales.

Recent laboratory experiments and stability analysis (Billant 1999; P Billant
& JM Chomaz, unpublished observations) suggest the existence of a ‘zigzag’
instability in strongly stratified flows. The instability has a vertical scale LV of
order N/u8, so that F ; 1; its existence offers, in particular, a possible explanation
of the rapid development of small vertical scales in the experiments of Herring
& Métais (1989). The ‘zig-zag’ instability bears resemblance to the ‘tall-column’
instability of quasi-geostrophic vortices (Dritschel & de la Torre Juárez 1996). In
the quasi-geostrophic regime, however, there is increased vertical coherence due
to the strong effect of rotation. Recent numerical simulations of the evolution of
columnar vortices in this regime (Dritschel et al 1999) confirms the inherent three-
dimensionality of this flow. They find that three-dimensional dynamics dominate
when the radius of the vortices is the same order as the Rossby radius of
deformation.

Métais et al (1994) repeated the numerical experiments of Herring & Métais,
but with rotation. In these preliminary simulations it was found, as expected, that
with increasing rotation rate the development of vertical variability is reduced.
This resulted in enhanced upscale energy transfer, more like two-dimensional
turbulence or quasi-geostrophic turbulence. Therefore rotation clearly influences
the overall dynamics.

Another aspect of the dynamics is how the stratified turbulent interacts with
the internal-wave field. Interactions are expected to be weak because of the dif-
ferences in time scales. As Lelong & Riley (1991), Bartello (1995), and Embid
& Majda (1996) have pointed out, however, the PV component can strongly affect
the spectral-energy transfer in the internal-wave field. In addition, it is expected
that the PV component is a source of internal waves. As various PV component
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features interact, vertical motions can be generated, and internal waves result. A
theory is lacking, however, to predict the efficiency of the PV component as a
source for internal waves. It is also possible for internal waves to be a source of
the PV component, as internal waves break down into three-dimensional turbu-
lence; this can cause strong mixing and the generation of potential enstrophy, and
hence the PV component, as in the numerical simulations of Staquet & Riley
(1989a), Winters & D’Asaro (1994), and Lombard & Riley (1996b). The prop-
erties of the PV component resulting from wave breakdown remain to be
determined.

Finally, ambient conditions, for example, the vertical density structure and
current shears, could have a profound effect of the generation, development, and
decay of stratified turbulence. These effects also remain to be determined.
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