
Galerkin Methods for Incompressible Flow Simulation

Paul Fischer

November 23, 2009

1 Introduction

These notes provide a brief introduction to Galerkin projection methods for numerical solution of
the incompressible Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u + f (1)

∇ · u = 0

where u is the velocity field, p the pressure, and Re = UL/ν the Reynolds number based on
characteristic velocity and length scales, U and L, respectively. In addition to (1), we will consider
subsets of the Navier-Stokes equations, in particular, the Poisson equation,

−∇2u = f onΩ, (2)

and the unsteady convection-diffusion equation with Peclet number Pe := UL/α and source q,

∂u

∂t
+ c · ∇u =

1

Pe
∇2u + q on Ω, (3)

where Pe = UL/α is the Peclet number involving the thermal diffusivity. In all cases, the solution
is to be found on the computational domain Ω with appropriate initial conditions and boundary
conditions on ∂Ω. For the convection-diffusion equation, we further assume ∇ · c = 0.

2 Time Stepping

While our main focus is on spatial discretization, we make a quick detour to timestepping to provide
context as we proceed with the development of the Galerkin method. For unsteady problems, one
has the option of discretizing in space first to arrive at a coupled set of n ordinary differential
equations (ODEs) or to discretize in time first. The choice is largely a matter of convenience but
real differences can arise from the fundamental fact that discrete differential operators (matrices)
typically do not commute whereas the continuous operators do.

1

The overall timestepping strategy can have a profound influence on the design of linear or
nonlinear solvers and on the choice of spatial discretization for the given problem. To illustrate
some of the considerations, we assume that we have discretized (3) in space to arrive at the following
system

B
du

dt
+ Cu = − 1

Pe
Au + Bq. (4)

Here, u(t) = (u1, . . . , un)T is the vector of unknown basis coefficients representing u(x, t), C the
discrete convection operator, and A the (negative) discrete Poisson operator, B is the mass matrix.
It is often desirable to have A and C preserve symmetries intrinsic to their continuous counterparts,
namely, A should be symmetric positive definite (positive real eigenvalues) and C should be skew-
symmetric with purely imaginary eigenvalues. In (4), B may or may not be diagonal. For finite
difference schemes B = I, the identity matrix, and for spectral element methods B is diagonal
and as such is trivially inverted. For compact finite difference schemes, standard finite element
methods, and modal-based spectral methods B is not diagonal but it is often possible to modify
the scheme to avoid unnecessary inversion of B. (Note: We will use underscore throughout to
indicate vectors of dimension n ≫ 1 associated with the spatial discretization, and bold face to
indicate vector fields in lRd, d=1, 2, or 3, e.g. u = (u, v, w) = (u1, u2, u3) = (ux, uy, uz) for velocity
in lR3 and x = (x, y) = (x1, x2) for the position vector in lR2.)

If we view (4) as a (linear) model that captures several of the essential features of the Navier-
Stokes equations, then a reasonable approach to time discretization is to treat the symmetric
diffusion term implicitly and the nonsymmetric convective term explicitly. Rearranging (4),

B
du

dt

∣∣∣∣
tm

+
1

Pe
Au

∣∣∣∣
tm

= −Cu|tm , (5)

we approximate the derivative at time level tm by a kth-order backward difference, the diffusion
term implicitly, and the convective term on the right with extrapolation. For k=2 with uniform
timestep size ∆t, these approximations yield

B
(
3um − 4um−1 + um−2

)

2∆t
+

1

Pe
Aum = −

(
2Cum−1 − Cum−2

)
+ O(∆t2), (6)

which can be further simplified to

Hum = 2Bum−1 − 1

2
Bum−2 − ∆t

(
2Cum−1 − Cum−2

)
+ O(∆t3), (7)

where we’ve introduced the discrete Helmholtz operator, H := 3
2B + ∆t

Pe
A.

The scheme (6) is globally O(∆t2) accurate. That is, for fixed final time T , the difference between
the exact solution to (5) and the numerical approximation generated by the sequence (7) will scale
as c∆t2 for some constant c as ∆t −→ 0. Note that this result applies only to the truncation error,
that is, the error that results from using the finite-difference/extrapolation (BDF/EXT) scheme.
There is also the issue of round-off error that results from using finite precision arithmetic. The
most common working precision in scientific computing is 64-bit, which yields about 15 digits of
accuracy, though 32-bit (∼ 7 digits) is also encountered (particularly in graphics). Round-off errors
tend to accumulate with more time steps and thus one can encounter larger errors when ∆t is
decreased too far.

2

The rationale for semi-implicit formulation (6) is that symmetric systems (e.g., H) are relatively
easy to solve, whereas nonsymmetric (and, for the Navier-Stokes equations, nonlinear) systems
are more difficult to solve. In addition, explicit schemes have a stability constraint that limits
the timestep size to satisfy maxi |λi|∆t < c, where c is an order-unity constant and λi is the
eigenvalue of explicit operator. Because it represents a second-order differential operator, the
maximum eigenvalue of A (or, more precisely, B−1A) typically scales as 1/∆x2

min, whereas that of
the first-order convection operator C scales as 1/∆xmin. Explicit treatment of A would thus imply
∆t = O(∆x2) whereas the convective term imposes only a first-order constraint ∆t = O(∆x) and
implicit diffusion is thus often more of an imperative than implicit convection.

Advancement of (6) requires the solution of Hum = fm at each timestep, where fm represents
the terms on the right. Formation of fm is relatively cheap, requiring only a single matrix-vector
product for each of C and B. For the Galerkin formulation H is symmetric positive definite (SPD)
and therefore relatively easy to solve using either a direct approach based on Cholesky factorization
or an iterative approach using preconditioned conjugate gradients (PCG). For most 3D problems
PCG is much faster because it does not require factorization of H. Instead, preconditioned iterative
methods such as PCG or a nonsymmetric counterpart (e.g., GMRES), only require matrix-vector
products of the form y = Hx and y = Mx, where M is the preconditioner. The savings stems from
the fact that H is generally quite sparse with only O(n) nonzero entries, whereas any factorization

of H will typically generate at least O(n
4

3) nonzeros. With PCG, it is possible to solve systems
with n ≈ 109 in just a few seconds on parallel machines. Direct approaches are currently limited
to n ≈ 106. For a 3D simulation, n = 109 translates into roughly 1000 points in each direction.

For a desired tolerance, ǫ, the number of PCG iterations scales as miter ∼ √
κ log ǫ, where

κ = κ(MH) := µn/µ1 is the condition number of (MH) and µ1, µn represent respective mininum
and maximum eigenvalues of the preconditioned system MH. In the convection dominated (Pe ≫
1) limit, PCG will typically converge very rapidly using a simple diagonal preconditioner, e.g.,
M−1 = diag(H) or even diag(B). In the latter case, the iteration count is governed by the condition
number of B−1H = I + 2∆t

3Pe
B−1A, which will be very close to the identity matrix for small ∆t and

large Pe. With iterative solvers, it is possible to further reduce computational effort by exploiting
the fact that the solution to (6) represents the smooth evolution of a function. As a result, the
solution at tm is very near the solutions at earlier times tm−k, k = 1, . . . , K, and one can use this
information to generate very good approximations to tm without having to solve any system by
projecting um onto span{um−1, um−2, . . . , um−l} in an appropriate (computable) norm.

Further discussion of timestepping issues for the incompressible Navier-Stokes equations, in-
cluding a brief overview of an unconditionally stable characteristics-based scheme, is presented in
Appendix A.

3

3 Galerkin Methods

We turn now to the question of spatial discretization. We introduce the Galerkin method through
the classic Poisson problem in d space dimensions,

−∇2ũ = f on Ω, ũ = 0 on ∂Ω. (8)

Of particular interest for purposes of introduction will be the case d = 1,

−d2ũ

dx2
= f, ũ(±1) = 0. (9)

We use ũ to represent the exact solution to (8) and u to represent our numerical solution.

Beginning with a finite-dimensional approximation space XN
0 and associated set of basis func-

tions {φ1, φ2, . . . , φn} ∈ XN
0 satisfying the homogeneous boundary condition φi = 0 on ∂Ω, the

standard approach to deriving a Galerkin scheme is to multiply both sides of (8) by a test function
v ∈ XN

0 , integrate over the domain, and seek a solution u(x) :=
∑

ujφj(x) satisfying

−
∫

Ω
v∇2u dV =

∫

Ω
vf dV ∀v ∈ XN

0 . (10)

The Galerkin scheme is essentially a method of undetermined coefficients. One has n unknown
basis coefficients, uj , j = 1, . . . , n and generates n equations by successively choosing test functions
v that span XN

0 (e.g., v = φi, i = 1, . . . , n). Equating both sides for every basis function in XN
0

ensures that the residual, r(x; u) := −∇2u − f is orthogonal to XN
0 , which is why these methods

are also referred to weighted residual techniques.

Defining the L2 inner product (f, g) :=
∫
Ω fg dV , (10) is equivalent to finding u ∈ XN

0 for which

(v, r) :=

∫

Ω
v r(x, u) dV = 0, ∀v ∈ XN

0 . (11)

That is, r(u) is orthogonal to v or, in this case, the entire space: r ⊥ XN
0 . Convergence, u −→ ũ,

is achieved by increasing n, the dimension of the approximation space. As the space is completed,
the only function that can be orthogonal to all other functions is the zero function, such that u ≡ ũ.

It is important to manipulate the integrand on the left of (10) to equilibrate the continuity
requirements on u and v. Integrating by parts, one has

−
∫

Ω
v∇2u dV =

∫

Ω
∇v · ∇u dV −

∫

∂Ω
v∇u · n̂ dA (12)

The boundary integral vanishes because v = 0 on ∂Ω (v ∈ XN
0) and the Galerkin formulation reads:

Find u ∈ XN
0 such that

∫

Ω
∇v · ∇u dV =

∫

Ω
vf dV ∀v ∈ XN

0 . (13)

Note that the integration by parts serves to reduce the continuity requirements on u. We need only
find a u that is once differentiable. That is, u will be continuous, but ∇u need not be. Of course, if
∇ũ is continuous, then ∇u will converge to ∇ũ for a properly formulated and implemented method.

4

XXXXXXXXXXXXXXXXXX

������������XXXXXXXXXXXXXXXXXX

������������a
������������:

6

-XN

0

e

u

ũ

Figure 1: a-orthogonal projection of ũ onto XN
0 .

Equation (13) is the point of departure for most finite element, spectral element, and spectral
formulations of this problem. To leading order, these formulations differ primarily in the choice of
the φis and the approach to computing the integrals, both of which influence the computational ef-
ficiency for a given problem. The Galerkin formulation of the Poisson problem has many interesting
properties. We note a few of these here:

• We’ve not yet specified requisite properties of XN
0 , which is typically the starting point (and

often the endpoint) for mathematical analysis of the finite element method. Two function
spaces are of relevance to us: L2, which is the space of functions v satisfying

∫
Ω v2 dV < ∞,

and H1
0, which is the space of functions v ∈ L2 satisfying

∫
Ω ∇v · ∇v dV < ∞ and v = 0 on

∂Ω. Over L2, we have the inner product (v, w) :=
∫
Ω vw dV and norm ||v|| :=

√
(v, v). For any

v, w ∈ H1
0, we also define the energy inner product a(v, w) :=

∫
Ω ∇v · ∇w dV and associated

energy norm, ||w||a :=
√

a(w, w,). For the (continuous) Galerkin method introduced here, we
take XN

0 ⊂ H1
0. A key result of the Galerkin formulation is that, over all functions in XN

0 , u is
the best fit approximation to ũ in the energy norm. That is: ||u− ũ||a ≤ ||w− ũ||a ∀ w ∈ XN

0 .

• The best fit property is readily demonstrated. For any v, w ∈ H1
0, one can show that

(v, r(w)) = a(v, w − ũ). Defining the error e := u − ũ and using the orthogonality of the
residual r(u), one has

0 = (v, r(u)) = a(v, e) ∀v ∈ XN
0

That is, the error is orthogonal to the approximation space in the a inner product, e ⊥a XN
0 .

As depicted in Fig. 1, u is the closest element of XN
0 to ũ.

• For u ∈ XN
0 , and v ∈ Y N

0 we refer to XN
0 as the trial space and Y N

0 as the test space.
Provided that the cardinalities of XN

0 and Y N
0 are equal, the spaces need not be the same.

In particular, if one chooses Y N
0 = span{δ(x− x1), δ(x− x2), . . . , δ(x− xn)} one recovers the

strong form in which (8) is satisfied pointwise. The Galerkin statement (13) is often referred
to as the weak form, the variational form, or the weighted residual form.

• The variational form (13) leads to symmetric positive definite system matrices, even for more
general Neumann or Robin boundary conditions, which is not generally the case for finite
difference methods.

5

Deriving a System of Equations

We develop (13) into a discrete system appropriate for computation by inserting the expansions
v =

∑
i viφi and u =

∑
j ujφj into the integrand on the left of (13) to yield

∫

Ω
∇
(

n∑

i=1

viφi(x)

)

· ∇



n∑

j=1

ujφj(x)



 dV =
n∑

i=1

n∑

j=1

vi

(∫

Ω
∇φi(x) · ∇φj(x) dV

)
uj (14)

Equating (14) to the right side of (13) and defining

Aij :=

∫

Ω
∇φi(x) · ∇φj(x) dV (15)

bi :=

∫

Ω
φi(x)f dV (16)

v := (v1, v2, . . . , vn)T (17)

u := (u1, u2, . . . , un)T (18)

the discrete Galkerin formulation becomes, Find u ∈ lRn such that

n∑

i=1

n∑

j=1

viAijuj =: vT Au = vT b ∀v ∈ lRn, (19)

or, equivalently:

Au = b . (20)

This is the system to be solved for the basis coefficients ui. It is easy to show that A is symmetric
positive definite (xT Ax > 0 ∀x 6= 0) and therefore invertible. The conditioning of A, however,
is not guaranteed to be amenable to finite-precision computation unless some care is exercised in
choosing the basis for approximation. Normally, this amounts merely to finding φis that are nearly
orthogonal or, more to the point, far from being linearly dependent. We discuss good and bad basis
choices shortly. (Generally speaking, one can expect to lose ≈ log10 κ(A) digits due to round-off
effects when solving (20).)

Extensions

Once the requisite properties of the trial/test spaces are identified, the Galerkin scheme is
relatively straightforward to derive. One formally generates the system matrix A with right hand
side b and then solves for the vector of basis coefficients u. Extensions of the Galerkin method
to more complex systems of equations is also straightforward. For the example of the reaction-
convection-diffusion equation, −ν∇2u + c · ∇u + α2u = f , the procedure outlined above leads
to

νAu + Cu + α2Bu = b , (21)

with Cij :=
∫

φi c · ∇φj dV and Bij :=
∫

φi φj dV . We refer to A as the stiffness matrix, B the
mass matrix, and C the convection operator. For the convection dominated case (i.e., ν small,
α = 0), one must be judicious in the choice of trial and test spaces. Another important extension
is the treatment of boundary conditions other than the homogeneous Dirichlet conditions (u = 0
on ∂Ω) considered so far. In addition, development of an efficient procedure requires attention to
the details of the implementation. Before considering these extensions and details, we introduce
some typical examples of bases for XN

0 .

6

1D Examples

We consider a few examples of 1D basis functions. In addition to the trial/test spaces and associated
bases, we will introduce a means to compute the integrals associated with the systems matrices,
A, B, and C. We have the option of using exact integration or inexact quadrature. In the latter
case, we are effectively introducing an additional discretization error and must be mindful of the
potential consequences.

Basis functions (in any space dimension d) come in essentially two forms, nodal and modal.
Nodal basis functions are known as Lagrangian interpolants and have the property that the basis
coefficients ui are also function values at distinct points xi. From the definition of u(x), one has:

u(xi) :=
n∑

j=1

ujφj(xi) = ui, (22)

where the last equality follows from the nodal basis property. Because (22) holds for all uj , La-
grangian bases must satisfy φj(xi) = δij , where δij is the Kronecker delta function that is 1 when
i = j and 0 otherwise. A distinct advantage of Lagrangian bases is that it is relatively simple to
satisfy u = 0 on ∂Ω—one simply excludes φı̂ from the basis set for all xı̂ ∈ ∂Ω. (This statement is
not strictly sufficient for d > 1, but turns out to be correct for most of the commonly used bases.)

Lagrange Polynomials

Figure 2 shows Lagrange polynomial interpolants of degree N for two sets of nodal points {xi}.
(For these bases with Dirichlet conditions at x = ±1, we have n = N − 1.) Both choices lead
to mathematically equivalent bases for XN

0 ⊂ lPN , the space of all polynomials of degree ≤ N .
The first set of points, however, is uniformly distributed and leads to an unstable (ill-conditioned)
formulation. The basis functions become wildly oscillatory for N > 7, resulting in very large values
for φ′

i, particularly near the domain endpoints. The second set is based on the Gauss-Lobatto-
Legendre (GLL) quadrature points. For Ω = [−1, 1], the GLL points are xi = ξi, the roots of
(1 − x2)P ′

N (x), where PN is the Nth-order Legendre polynomial. We see that the GLL-based
interpolants φi are maximal at x = xi and rapidly diminish for |x − xi| > 0. Unlike the uniform
points, the GLL points lead to a stable formulation. As shown in Fig. 4, the condition number of
the 1D stiffness matrix grows exponentially with N in the uniform case and only as O(N3) when
using GLL-based cardinal points.

Stability similarly holds for almost any set of points based on the roots of classic orthogonal
polynomials. One example is the set of Gauss-Lobatto-Chebyshev (GLC) points, which have the
closed-form definition ξC

j = − cos(πj/N). As with other orthogonal polynomials, the GLC points
lead to a high-order quadrature formula for integrals of the form I(p) :=

∫
w(x) p(x) dx, for a

particular weight function w(x) ≥ 0. Only the Legendre points, however, apply for the case
w(x) ≡ 1, which is requisite for a symmetric stiffness matrix A. Because the GLC points are
uniformly spaced on the circle, they have many symmetries that can be applied recursively to
develop a fast Chebyshev transform (FCT) that allows one to change between nodal and modal
bases in O(N log N) operations, a property that is unique to Chebyshev bases for lPN . For large
N (> 50, say) the FCT can be much faster than the matrix-vector product approach (see (28)
below), which requires ∼ 2N2 operations. In the large-N limit it thus may be worthwhile to give
up symmetry of A in favor of speed. (In higher space dimensions, the number of memory accesses

7

x0 x1 x2 x3 x4

Figure 2: Lagrange polynomial basis functions φ2(x) (—) and φ4(x) (- -) for uniformly distributed
points (left) and Gauss-Lobatto-Legendre points (right) with (from top to bottom) N=4, 7, and
8. Note the significant overshoot for the uniform cases with large N . For N ≥ 8, the uniform
distribution even results in interpolants with negative quadrature weights.

8

is ∼ Nd for both approaches, and the work is respectively O(Nd log N) and ∼ 2Nd · N , with the
latter cast as fast matrix-matrix products.)

The GLL points have the particularly attractive property of allowing efficient quadrature (nu-
merical integration). In particular, for any p(x) ∈ lP2N−1,

∫ 1

−1
p(x) dx ≡

N∑

k=0

ρkp(ξk), (23)

with quadrature weights given by

ρk =

∫ 1

−1
φk(x) dx. (24)

Thus, we have the remarkable result that any polynomial of up to degree 2N − 1 can be integrated
exactly (to machine precision) by evaluating it at only N + 1 points. This result is of particular
relevance in computing the entries of the stiffness matrix A. For the 1D case on [−1, 1] one has:

Aij :=

∫ 1

−1
φ′

i(x)φ′
j(x) dx ≡

N∑

k=0

ρkφ
′
i(ξk)φ

′
j(ξk) (25)

=
N∑

k=0

D̂kiB̃kkD̂kj ,

or

A = D̂T B̃D̂. (26)

Here, we have introduced the 1D derivative matrix D̂ki := φ′
i(ξk) and 1D diagonal mass matrix

B̃ki := δkiρi. Note that the integrand in (25) is of degree 2N −2 and (26) is therefore exact. (Quiz:

What are the dimensions of A and B̃ in (26)?)

The nodal bases introduced above are global in that they extend over the entire domain. For
historical reasons, methods using these bases are referred to as spectral methods. They are char-
acterized by rapid (exponential) convergence, with ||u− ũ|| ∼ σN with 0 < σ < 1, for ũ sufficiently
regular (differentiable).

Compactly Supported Bases

As an alternative to global bases, on can consider local bases, such as the space of piecewise
polynomials illustrated by the piecewise linear and quadratic examples shown in Fig. 3. These
are the standard basis functions for the finite element method (FEM) and, at higher orders, the
spectral element method (SEM). These bases have the advantage of allowing a flexible distribution
of gridpoints (element sizes) to capture boundary layers, shocks, and so forth, and moreover lead
to sparse system matrices. The FEM/SEM basis is said to have compact or local support. That
is, individual basis functions are nonzero only over a small subset of Ω. Any two functions φi and
φj that do not have intersecting support will lead to a zero in the i-j entry in all of the system
matrices. Consider the system matrix (15) for the linear (N=1) basis functions of Fig. 3. It is clear
that the product q(x) := φ′

i(x)φ′
j(x) will vanish unless xi and xj are either coincident or adjacent.

9

x0 x1 x2 x3 x4 x5 x6 x7 x8x0 x1 x2 x3 x4 x5 x6 x7 x8

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω1 Ω2 Ω3 Ω4� � � �- - - -

Figure 3: Examples of one-dimensional piecewise linear (left) and piecewise quadratic (right) La-
grangian basis functions, φ2(x) and φ3(x), with associated element support, Ωe, e = 1, . . . , E.

Hence, Aij = 0 whenever |i−j| > 1. That is, A is a tridiagonal matrix. Such systems can be solved
in O(n) time and are hence nominally optimal (in 1D).

For the linear basis of Fig. 3, the convergence rate, ||u − ũ|| = O(n−2), is much slower than
for the spectral case and one may need to take a much larger value of n to realize the desired
accuracy. For this reason, one often considers high-order piecewise polynomial bases as illustrated,
for example, by quadratic basis functions in Fig. 3 (right). Such bases are used in spectral element
and p-type finite element methods. Because polynomials do a much better job of approximating
smooth curvy functions than their piecewise linear counterparts, we may anticipate more rapid
convergence. In general, for piecewise polynomial expansions of order N on each of E elements,
one can expect convergence rates scaling as ∼ (CE)−(N±1). Details in the convergence rate vary
according to the problem at hand, the chosen norm, etc. The slight increase in work associated
with higher order N is usually more than offset by the gain in accuracy, and high-order methods
are finding widespread application in modern simulation codes.

Modal Bases

The second class of basis functions of interest are modal bases. These bases do not satisfy the
Lagrangian condition φi(xj) = δij but generally are designed to have other desirable properties
such as orthogonality with respect to a particular inner product (thus yielding diagonal operators)
or ease of manipulation. 1D examples include Fourier bases consisting of sines and cosines, e.g.,

XN = span{cos 0x, sin πx, cos πx, . . . , sinNπx, cos Nπx}, (27)

which are optimal for constant coefficient operators on periodic domains. (Q: What is n in this
case?) It is common to denote modal basis coefficients with a circumflex (hat) in order to indicate
that they do not represent the value of a function at a point, e.g., u(x) =

∑
k ûkφk(x). For

polynomial spaces, one can consider simple combinations of the monomials, say, φk = xk+1 −xk−1,
k = 1, . . . , n, which satisfy the homogeneous conditions φi(±1) = 0 and are easy to differentiate and
integrate. The conditioning of the resultant systems, however, scales exponentially with N and for
even modest values of N the systems become practically uninvertible in finite precision arithmetic.
Modal bases for lPN are thus typically based on orthogonal polynomials or combinations thereof. A
popular choice is φk = Pk+1 −Pk−1, k = 1, . . . , n where Pk is the Legendre polynomial of degree k.
This basis consists of a set of “bubble functions” that vanish at the domain endpoints (±1). Like
their Fourier counterparts, the bubble functions become more and more oscillatory with increasing
k and also lead to a diagonal stiffness matrix in 1D (verify).

10

0 5 10 15 20 25 30 35 40 45 50
10

0

10
5

10
10

10
15

Condition of 1D Laplacian, u(0)=u’(1)=0

Polynomial Order N

C
on

di
tio

n
N

um
be

r

Figure 4: Condition numbers for 1D discrete Laplacian on [0,1] with u(0) = u′(1) = 0 using single-
domain polynomial expansions of order N . Lagrangian nodal bases on Gauss-Lobatto-Legendre
points: ◦—◦; nodal bases on uniform points: +—+; modal bases with monomial (xk) expansions:
×—×. The condition number for the GLL-based nodal expansions scales as N3.

We reiterate that either modal or nodal bases cover the same approximation space, XN
0 . Only

the representation differs and it easy to change from one representation to the other. If û =
(û1, . . . , ûn)T represents a set of modal basis coefficients, it is clear that nodal values of u are given
by ui := u(xi) =

∑
k ûkφk(xi). In matrix form,

u = V û, Vik := φk(xi). (28)

V is known as the Vandermonde matrix. For a well-chosen modal basis, the modal-to-nodal con-
version (28) is stable for all xi ∈ [−1, 1]. Assuming that the xi are distinct, modal coefficients
can be determined from a set of nodal values through the inverse, û = V −1u. For V −1 to be
well-conditioned the nodal points must be suitably chosen, e.g., GLL or GLC points rather than
uniform. Otherwise, round-off errors lead to loss of information in the modal-to-nodal transform.
Given this equivalence of bases, it is clear that one can also consider element-based modal expan-
sions to represent piecewise polynomial approximation spaces.

Condition Number Example

The condition number of the 1D stiffness matrix for the problem −u′′(x) = f(x), u(0) = u′(1) =
0 is shown in Fig. 4 for N = 1 to 50. Note that all precision is lost for the monomial (xk) modal
basis by N = 10 and for the uniformly-distributed modal basis by N=20. The matlab code for
generating these plots is given below. Note that SEMhat.m generates the standard points, weights,
and 1D stiffness and mass matrices, while unihat.m generates uniformly distributed points on [-1,1]
and the associated derivative matrix, Du.

11

% bad1d.m

for N=1:50;

[Ah,Bh,Ch,Dh,zh,wh] = SEMhat(N); % Standard GLL points

[Au,Bu,Cu,Du,zu,wu] = unihat(N); % Uniform points

No = N+2; % Overintgration

[Ao,Bo,Co,Do,zo,wo] = SEMhat(No); J = interp_mat(zo,zu);

Bu = J’*Bo*J; Au = Du’*Bu*Du; % Full mass and stiffness matrices

n=size(Ah,1);

Ah=Ah(1:n-1,1:n-1); % Dirichlet at x=1; Neumann at x=-1;

Au=Au(1:n-1,1:n-1);

NN(N)=N; cu(N)=cond(Au); cg(N)=cond(Ah);

end;

nmax=25; c=zeros(nmax,1); N=zeros(nmax,1);

for n=1:25; A=zeros(n,n);

for i=1:n; for j=1:n;

A(i,j) = (i*j)/(i+j-1); % Stiffness matrix for phi_i = x^i on (0,1]

end; end;

N(n) = n; c(n) = cond(A);

end;

semilogy(NN,cu,’r+’,NN,cu,’r-’,NN,cg,’bo’,NN,cg,’b-’,N,c,’kx’,N,c,’k-’)

axis([0 50 1 1.e15]); title(’Condition of 1D Laplacian, u(0)=u’’(1)=0’);

xlabel(’Polynomial Order N’); ylabel(’Condition Number’);

print -deps ’bad1d.ps’

4 Higher Space Dimensions

There are many options for generating basis functions in higher space dimensions. The finite element
method proceeds as in the 1D case, using compactly-supported basis functions that are nonzero only
a small subset of the subdomains (elements) whose union composes the entire domain. Elements are
typically either d-dimensional simplices (e.g., triangles for d=2 and tetrahedra for d=3) or tensor
products of the 1D base element, that is, Ω̂ := [−1, 1]d, (e.g. quadrilaterals for d=2 and hexahedra–
curvilinear bricks– for d=3). An excellent discussion of the development of high-order nodal and
modal bases for simplices is given in the recent Springer volume by Hesthaven and Warburton. Here,
we turn our attention to the latter approach, which forms the foundation of the spectral element
method. Specifically, we will consider the case of a single subdomain where Ω = Ω̂ = [−1, 1]2, which
corresponds of course to a global spectral method. The spectral element method derives from this
base construct by employing multiple subdomains and using preconditioned iterative methods to
solve the unstructured linear systems that arise.

If the domain is a d-dimensional box, it is often attractive to use a tensor-product expansion

12

u
00

u
10

u
20

u
30

u
40

u
01

u
11

u
21

u
31

u
41

u
02

u
12

u
22

u
32

u
42

u
03

u
13

u
23

u
33

u
43

u
04

u
14

u
24

u
34

u
44

-1 1
-1

1

e e e e e

e e e e e

e e e e e

e e e e e

e e e e e

Figure 5: Clockwise from upper left: gll nodal point distribution on Ω̂ for M = N = 4, and
Lagrangian basis functions for M = N=10: h10h2, h2h9, and h3h4.

of one-dimensional functions. One could use, for example, any of the one-dimensional bases of
the previous section, including the nodal/modal, FEM/SEM or spectral. For our purposes, we’ll
consider stable 1D Lagrange polynomials, denoted, say, by hi(x), i = 0, . . . , N , based on the GLL
points on [−1, 1]. The corresponding 2D basis function on Ω := [−1, 1]2 would take the form

φk(x, y) := hi(x)hj(y), (29)

with k := i + (N + 1) ∗ j. In principle, everything follows as before. One simply manipulates the
basis functions as required to evaluate the system matrices such as defined in (25)–(26). In the
section below we demonstrate some of the important savings that derive from the tensor-product
structure of (29) that allow straightforward development of efficient 2D and 3D simulation codes.

5 Tensor Products

To begin this section we introduce a number of basic properties of matrices based on tensor-product
forms. Such matrices frequently arise in the numerical solution of PDEs. Their importance for the
development of fast Poisson solvers was recognized in an early paper by Lynch et al. [?]. In 1980,
Orszag [?] pointed out that tensor-product forms were the foundation for efficient implementation
of spectral methods.

The relevance of tensor-product matrices to multidimensional discretizations is illustrated by

13

considering a tensor-product polynomial on the reference domain, (x, y) ∈ Ω̂ := [−1, 1]2:

u(x, y) =
M∑

i=0

N∑

j=0

uijhM,i(x)hN,j(y) . (30)

Here, hM,i (resp., hN,j) is the Lagrangian interpolant of degree M (resp., N) based on Legendre
polynomials introduced in (??). Consequently, the basis coefficients, uij , are also nodal values of
u on the tensor product of Gauss-Lobatto-Legendre (gll) quadrature points, as shown in Fig. 5.
Useful vector representations of the coefficients are denoted by

u := (u1, u2, . . . , ul, . . . , uN)T :=
(
u00, u10, . . . , uij , . . . , uMN

)T
, (31)

where N = (M +1)(N +1) is the number of basis coefficients, and the mapping l = 1+ i+(M +1)j
translates to standard vector form the two-index coefficient representation, with the leading index
advancing most rapidly. This is referred to as the natural, or lexicographical, ordering and is used
throughout this text.

The tensor-product form (30) allows significant simplifications in the application of linear op-
erators to u. For example, suppose wpq is to represent the x-derivative of u at the gll points,
(ξM,p, ξN,q), p, q ∈ {0, . . . , M} × {0, . . . , N},

wpq :=
∂u

∂x
(ξM,p, ξN,q) =

M∑

i=0

N∑

j=0

uijh
′
M,i(ξM,p)hN,j(ξN,q)

=
M∑

i=0

uiqh
′
M,i(ξM,p). (32)

Expressed as a matrix-vector product, (32) reads

w = Dxu :=





D̂x

D̂x

. . .

D̂x









u00

u10
...

uMN




. (33)

Here, D̂x is the one-dimensional derivative matrix (26) associated with the (M + 1) gll points
on the reference interval [−1, 1] and is applied to each row, (u0j , u1j , . . . , uMj)

T , j = 0, . . . , N ,
in the computational grid of Fig. 5. To compute derivatives with respect to y, one applies the
corresponding matrix D̂y to each column. This latter case does not yield a simple block-diagonal
matrix because of the ordering of the coefficients in u. Nonetheless, Dx and Dy are conveniently
expressed as Dx = (I ⊗ D̂x) and Dy = (D̂y ⊗ I), where ⊗ indicates the tensor (or Kronecker)
product, which we now introduce.

Let A and B be k × l and m × n matrices, respectively, and consider the km × ln matrix C,
given in block form as

C :=





a11B a12B . . . a1lB
a21B a22B . . . a2lB

...
...

...
ak1B ak2B . . . aklB




. (34)

14

C is said to be the tensor (or Kronecker) product of A and B, denoted as

C = A ⊗ B. (35)

From the definition (34) one can easily verify that an entry cij (1 ≤ i ≤ km, 1 ≤ j ≤ ln) in C is
equal to

cij = apq brs,

where the index couples of (pq) and (rs) satisfy the relationships

i = r + (p − 1)m, j = s + (q − 1)n.

We will occasionally also refer to cij as crp,sq.

Using the standard definition of matrix multiplication, one may show that

(A ⊗ B) (F ⊗ G) = (AF ⊗ BG) , (36)

for rectangular matrices A, B, F , and G appropriately dimensioned such that the products AF
and BG are well defined. It follows that if A and B are square invertible matrices of orders m and
n, respectively, then

(A−1 ⊗ B−1) (A ⊗ B) = (I ⊗ I) , (37)

where I denotes the identity matrix of appropriate order. Thus, the inverse of (A ⊗ B) is (A−1 ⊗
B−1).

Suppose A and B are diagonalizable square matrices of order m and n, respectively, with
similarity transformations

A = SΛS−1 , B = TMT−1, (38)

where the columns of the matrices S and T are the eigenvectors of A and B, and the entries in the
diagonal matrices Λ and M are the respective eigenvalues. Then

(S−1 ⊗ T−1)(A ⊗ B)(S ⊗ T) = (Λ ⊗M) .

Note that the tensor product of two diagonal matrices is also diagonal. Thus the diagonalization
of C in (35) may be obtained from the diagonalization of the two much smaller systems, A and B.

The following form frequently arises in finite difference discretization of two-dimensional bound-
ary value problems:

C = (A ⊗ I + I ⊗ B)

(e.g., when A and B represent one-dimensional difference operators). Here the inverse is not so easily
obtained as in (37). However, if A and B are diagonalizable as in (38), then the diagonalization of
C is

C = (S ⊗ T) (Λ ⊗ I + I ⊗M) (S−1 ⊗ T−1) , (39)

15

from which it follows that

C−1 = (S ⊗ T) (Λ ⊗ I + I ⊗M)−1 (S−1 ⊗ T−1) . (40)

Note that (Λ ⊗ I + I ⊗M) is diagonal and therefore trivially inverted.

Weighted residual techniques frequently give rise to systems of a more general form, for example,

C = (By ⊗ Ax + Ay ⊗ Bx) , (41)

where A∗ and B∗ are the one-dimensional stiffness and mass matrices associated with their respec-
tive spatial directions. Here the appropriate similarity transformation comes from a generalized
eigenvalue problem of the form

A∗si = λiB∗si.

If A∗ is symmetric and B∗ is symmetric positive definite, then there exists a complete set of
eigenvectors that are orthonormal with respect to the B∗ inner product, that is, sT

i B∗sj = δij . If
Λ = diag(λi) is the diagonal matrix of eigenvalues and S = (s1, . . . , sN) the corresponding matrix
of eigenvectors, then the following similarity transformation holds:

ST A∗S = Λ , ST B∗S = I . (42)

Suppose there exist matrices Λx and Sx such that (42) is satisfied for Ax and Bx, and similarly for
the y operators. Then the inverse of C (41) is given by

C−1 = (Sy ⊗ Sx) (I ⊗ Λx + Λy ⊗ I)−1 (ST
y ⊗ ST

x) . (43)

The preceding tensor-product factorizations readily extend to more dimensions. Rather than
presenting the general form, we merely illustrate the procedure by giving the result for the three-
dimensional case. As we will demonstrate in the next section, weighted residual techniques for
three-dimensional boundary value problems frequently give rise to system matrices of the form

C = (Bz ⊗ By ⊗ Ax + Bz ⊗ Ay ⊗ Bx + Az ⊗ By ⊗ Bx) .

If one assumes that similarity transforms of the form (42) exist for each (K∗, M∗) pair, then C−1

is given by

C−1 = (Sz ⊗ Sy ⊗ Sx)D−1(ST
z ⊗ ST

y ⊗ ST
x) , (44)

where

D = (I ⊗ I ⊗ Λx + I ⊗ Λy ⊗ I + Λz ⊗ I ⊗ I)

is the diagonal matrix containing the eigenvalues of the one-dimensional operators.

The forms (40) and (44) are referred to as fast diagonalization methods because they permit
inversion of an (Nd×Nd) matrix in only O(Nd+1) operations (as the next section will show). They
were proposed for the solution of finite difference problems in [?] and are often used in the solution
of global spectral methods. (For Fourier and Chebyshev methods, the work complexity can be
reduced to O(Nd log N) through the use of fast-transform methods that allow the one-dimensional
operators S∗ and ST

∗ to be applied in O(N log N) operations.) Although strictly applicable only to
constant coefficient problems, the fast diagonalization method has also been shown to be effective
as an approximate local solver for domain decomposition based preconditioners [?, ?] (see Section
7.2).

16

Operator Evaluation

The preceding section illustrates several useful properties of matrices based on tensor-product
forms. Essential for operator evaluation in numerical solution of PDEs is the fact that matrix-vector
products of the form v = (A ⊗ B)u can be evaluated in an order of magnitude fewer operations
than would be possible in the general case.

Suppose for ease of exposition that A and B are square matrices of order n and m, respectively,
and that u is an mn-component vector with entries denoted by a double subscript, uij , i = 1, . . . , m,
j = 1, . . . , n. We associate a natural ordering of these entries with the ı̂th component of u: uı̂ = uij

iff ı̂ = i + m(j − 1). With this convention, the product is

vij =
n∑

l=1

m∑

k=1

ajlbikukl

{
i = 1, . . . , m
j = 1, . . . , n

. (45)

If A and B are full matrices, then C = (A ⊗ B) is full, and computation of Cu by straightforward
matrix-vector multiplication nominally requires nm(2nm − 1) operations, or O(n4) if m = n. (We
denote an operation as either floating-point addition or multiplication.) In practice, however, the
matrix C is never explicitly formed; one evaluates only the action of C on a vector. The usual
approach is to exploit the relationship (36) and the associativity of matrix multiplication to rewrite
Cu as

Cu = (A ⊗ I)(I ⊗ B)u . (46)

One then computes w = (I ⊗ B)u:

wij =
m∑

k=1

bikukj , i = 1, . . . , m , j = 1, . . . , n , (47)

followed by v = (A ⊗ I)w:

vij =
n∑

l=1

ajlwil , i = 1, . . . , m , j = 1, . . . , n ,

=
n∑

l=1

wila
T
lj , i = 1, . . . , m , j = 1, . . . , n . (48)

The total work is only 2nm(n + m − 1), or O(n3) if n = m.

The three-dimensional case follows similarly and yields even greater reduction in the number
of operations. Consider the tensor product of three full n × n matrices, C = Az ⊗ Ay ⊗ Ax. If
formed explicitly, C will contain n6 nonzeros, and the matrix vector product v = Cu will require
2n6 operations. However, if C is factored as C = (Az ⊗ I ⊗ I)(I ⊗ Ay ⊗ I)(I ⊗ I ⊗ Ax) and the
matrix-vector product is carried out as above for the two-dimensional case, the total cost is only
3 × 2n4 operations. In general, the rule for a matrix operator resulting from a discretization with
n mesh points per space dimension, in d-space dimensions (full coupling in each spatial direction),
is that it should be possible to evaluate the action of an operator in only O(nd+1) operations.

We are now in a position to establish an important result for multidimensional problems:
Tensor-product-based high-order methods become increasingly effective as the spatial dimension,

17

d, increases. Consider an example where the number of points required to resolve a function in d
space dimensions to a given accuracy is Nd for a high-order method and N̂d for a low-order scheme
with σ := N/N̂ < 1. For explicit methods and for implicit schemes with iterative solvers, the
leading order cost is associated with operator evaluation, which scales as chNd+1 in the high-order
case and clN̂

d in the low-order case. The work ratio is thus

Work (high-order method)

Work (low-order method)
=

ch

cl

Nσd.

Clearly, any high-order advantage for d = 1 is further increased as d is increased from 1 to 3. We
will see in Section ?? that ch

cl
≈ 1; we have already seen in Table ?? that σ can be significantly less

than unity.

It is important to note that, if we view the entries of u as a matrix U with {U}ij := uij , then
the forms (47)–(48) can be recast as matrix-matrix products

(A ⊗ B)u = B U AT . (49)

A similar form exists for the three-dimensional case. Because of their low memory-bandwidth re-
quirements and high degree of parallelism, optimized matrix-matrix product routines are available
that are extremely fast on modern cache-based and pipelined architectures. This feature is particu-
larly significant for three-dimensional applications, where typically more than 90% of the operation
count is expended on evaluating forms similar to (49).

Boundary Condition Extensions

Another important extension, which is initially somewhat difficult to understand but in fact is
a natural extension of the Galerkin scheme is the incorporation of Neumann or Robin boundary
conditions. We consider homogeneous Neumann conditions first. Assume that we have a mixture
of Dirichlet and Neumann conditions on ∂ΩD and ∂ΩN respectively, such that ∂Ω = ∂ΩD

⋃
∂ΩN .

18

