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Example: Vascular Flow Simulations Loth, Bassiouny, F  (UIC/U Akron / UC / ANL)

Seeking to understand hemodynamics & vascular disease:
Combined in vivo, in vitro, numerical studies of AV grafts
Validated code in a complex geometry using LDA measurements
Identified mechanisms for low Re transition to turbulence in AV grafts

Coherent structures in AV graft at Re=1200; λ2 criterion of Jeong & Hussein (JFM95)



Outline of Lectures

Lecture 1: Introduction
Navier Stokes Equations
Quick overview of  some relevant timestepping issues
Galerkin methods

Introduction
1D examples (2D…?)

Lecture 2:  Galerkin methods cont’d
2D / 3D examples 
Solvers

Iterative
Fast diagonalization methods

Lecture 3:  Putting it all together:  Unsteady Navier-Stokes Solver
Unsteady Stokes / spatial discretization  (velocity/pressure spaces)
System solvers
Examples: natural convection / driven cavity / Kovasznay flow
Extensions to 3D



Objectives

Enable solution of NS in a simple domain

Develop understanding of 
costs/benefits of FEM/SEM/spectral methods
Differences between low/high order,  FEM/FD

Importance of pressure treatment



Stability of Various Timesteppers

Derived from model problem

Stability regions shown in the λΔt plane



Fornberg’s Polynomial Interpolant/Derivative Code

Code available in f77 and matlab – short, stable, fast



Lagrange Polynomials: Good and Bad Nodal Point Distributions

N=4

N=7

φ2                  φ4

N=8

Uniform Gauss-Lobatto-Legendre



Spectral Element Convergence: Exponential with N

Exact Navier-Stokes
solution due to
Kovazsnay(1948):



Lagrangian Bases: Piecewise Linear and Quadratic

Linear case results in A being tridiagonal (b.w. = 1)

Q: What is matrix bandwidth for piecewise quadratic case?



Modal Basis Example

Bad basis choice:       
xi, i=1,…,N

Aij = ij / (i+j-1)

Condition number of 
A grows exponentially 
with N



Long-Time Integration:  Plane Rotation of Gaussian Pulse

N=33

N=43

N=53





Spectral Element Discretization

Convection-Diffusion Equation:

Weighted Residual Formulation:

Inner products – integrals replaced by Gaussian quadrature:



2D basis function, N=10

Spectral Element Basis Functions

Nodal basis:

ξj = Gauss-Lobatto-Legendre quadrature points:

- stability ( not uniformly distributed points )
- allows pointwise quadrature (for most operators…)
- easy to implement BCs and C0 continuity



Stable Lagrange Interpolants

GLL Nodal Basis good conditioning, minimal round-off

Monomials:  xk

Uniform Points

GLL Points ~ N 3



Accuracy
+

Costs



Spectral Element Convergence: Exponential with N

Exact Navier-Stokes
solution due to
Kovazsnay(1948):



Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow 
propagation of small features (size λ) over distances L >> λ.

Dispersion errors accumulate linearly with time: 

~|correct speed – numerical speed| * t ( for each wavenumber )

errort_final ~ ( L / λ ) * | numerical dispersion error |

For fixed final error εf, require:  numerical dispersion error ~ (λ /  L)εf, << 1

High-order methods most efficiently deliver small dispersion errors
(Kreiss & Oliger 72,  Gottlieb et al. 2007)



Excellent transport properties, even for non-smooth solutions

Convection of non-smooth data on a 32x32   
grid   (K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77)



N=10

N=4

Costs

Cost dominated by iterative solver costs,  proportional to
iteration count
matrix-vector product + preconditioner cost

Locally-structured tensor-product forms:

minimal indirect addressing

fast matrix-free operator evaluation 

fast local operator inversion via fast 
diagonalization method  (FDM)
( Approximate, when element deformed. )



Tensor-Product Forms: Matrix-Matrix Based Derivative Evaluation

Local tensor-product form  (2D),

allows derivatives to be evaluated as matrix-matrix products:

Memory access scales only as O(n) 
Work scales as N*O(n),  but CPU time is weakly dependent on N  (WHY?)

mxm

hi (r)



For a deformed spectral element, Ω k, 

Operation count is only O (N 4) not O (N 6) [Orszag ‘80 ]
Memory access is 7 x number of points  (Grr ,Grs, etc., are diagonal )
Work is dominated by (fast) matrix-matrix products involving Dr , Ds , etc.

Local “Matrix-Free” Stiffness Matrix in 3D



9

• For SEM, memory scales as number of gridpoints, n.  

• Work scales as nN, but is in form of (fast) matrix-matrix products.
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Cost vs. Accuracy:  Electromagnetics Example



Stability



Stabilizing High-Order Methods

In the absence of eddy viscosity, some type of stabilization 
is generally required at high Reynolds numbers.

Some options:

high-order upwinding (e.g., DG, WENO)
bubble functions
spectrally vanishing viscosity
filtering
dealiasing



Filter-Based Stabilization 

At end of each time step:
Interpolate u onto GLL points for PN-1
Interpolate back to GLL points for PN

F1 (u) = IN-1 u

Results are smoother with linear combination:                   (F. & Mullen 01)

Fα

 

(u) = (1-α) u + α
 

IN-1 u             (α
 

~ 0.05 - 0.2)

Post-processing  — no change to existing solvers

Preserves interelement continuity and spectral accuracy

Equivalent to multiplying by (1-α) the N th coefficient in the expansion
u(x) = Σ uk φk (x)      u*(x) = Σ σk uk φk (x),  σκ= 1, σΝ = (1-α )
φk (x) := Lk(x) - Lk-2(x)                                                             (Boyd 98)

(Gottlieb et al., Don et al., Vandeven, Boyd, ...)



Numerical Stability Test: Shear Layer Roll-Up 
(Bell et al. JCP 89, Brown & Minion, JCP 95, F. & Mullen, CRAS 2001)
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Spatial and Temporal Convergence        (F. & Mullen, 01)

Base velocity profile and perturbation streamlines

Error in Predicted Growth Rate for 
Orr-Sommerfeld Problem at Re=7500 (Malik & Zang 84)



Filtering permits Reδ99 > 700 for transitional boundary layer calculations

blow up

Re = 700

Re = 1000

Re = 3500



Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )

Double shear layer example:

Ok
High-strain regions
are troublesome…



Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )

Consider the model problem:

Weighted residual formulation:

Discrete problem should never blow up.



Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )

Weighted residual formulation vs. spectral element method:

This suggests the use of over-integration (dealiasing) to ensure 
that skew-symmetry is retained  



Aliased / Dealiased Eigenvalues:

Velocity fields model first-order terms in expansion of straining and rotating flows.
For straining case,

Rotational case is skew-symmetric. 

Filtering attacks the leading-order unstable mode.

N=19, M=19           N=19, M=20

c = (-x,y)

c = (-y,x)



Stabilization Summary

Filtering acts like well-tuned hyperviscosity

Attacks only the fine scale modes (that, numerically speaking, 
shouldn’t have energy anyway…)

Can precisely identify which modes in the SE expansion to suppress 
(unlike differential filters)

Does not compromise spectral convergence

Dealiasing of convection operator recommended for high 
Reynolds number applications to avoid spurious eigenvalues

Can run double shear-layer roll-up problem forever with 

– ν = 0 ,                                                               

– no filtering



Dealiased Shear Layer Roll-Up Problem, 1282

ν = 0, no filter                              ν = 10-5, no filter                   ν = 0,  filter = (.1,.025)



Linear Solvers



Linear Solvers for Incompressible Navier-Stokes

Navier-Stokes time advancement:

Nonlinear term:  explicit  
k th-order backward difference formula / extrapolation 
characteristics   (Pironneau ’82, MPR ‘90)

Stokes problem: pressure/viscous decoupling:
3 Helmholtz solves for velocity                      (“easy” w/ Jacobi-precond. CG)
(consistent) Poisson equation for pressure (computationally dominant)



PN - PN-2 Spectral Element Method for Navier-Stokes (MP 89)

Gauss-Lobatto Legendre points
(velocity)

Gauss Legendre points
(pressure)

Velocity, u in PN ,     continuous
Pressure, p in PN-2 ,  discontinuous



—

Navier-Stokes Solution Strategy

Semi-implicit:  explicit treatment of nonlinear term.
Leads to Stokes saddle problem, which is algebraically split

MPR 90, Blair-Perot 93, Couzy 95

E - consistent Poisson operator for pressure, SPD
Stiffest substep in Navier-Stokes time advancement
Most compute-intensive phase 
Spectrally equivalent to SEM Laplacian, A
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