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Outline

Nek5000 capabilities

Equations, timestepping, and SEM basics
Parallel / serial issues that you should understand
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Some Resources

Code & Algorithm Tips:

– Nek5000 wiki page (google nek5000)

– www.mcs.anl.gov/~fischer/Nek5000

Numerical methods & theory:
– Deville, Fischer, & Mund, Cambridge Univ. Press, 2002

http://www.mcs.anl.gov/~fischer/Nek5000
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Part I

Nek5000 capabilities
– Gallery
– Brief history
– Equations solved
– Features overview:

• Spectral element discretization
• Convergence properties  (nek5_svn/examples)
• Scalability
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Applications

Clockwise from upper left:
Reactor thermal-hydraulics
Astrophysics
Combustion
Oceanography
Vascular flow modeling
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Coarse DNS: Channel Flow at Reb =13,000

Simulations by J. Ohlsson, KTH, Stockholm
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Separation in an Asymmetric Diffuser

Flow separation and recovery
DNS at Re=10,000: E=127750, N=11, 100 convective time units
Comparison w/ exptl results of Cherry et al.

u=.4U

SEM             expt.

Axial Velocity 

Pressure Recovery

. . . . Expt

SEM

Ohlsson, Schlatter, F., and Henningson,, JFM (2010)
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Test Section,  Lx

Recycling
turbulent
inflows

Nek5000 Submission to T-Junction Benchmark

E=62000 spectral elements of order N=7  (n=21 million)
– Mesh generated by SHARP framework group using CUBIT
– Loaded into Nek5000 through parallel MOAB interface
– A group effort  at integrated process, under a time constraint…

ReD = 40,000 for inlet pipes  (exp.: 90,000)
Subgrid dissipation modeled with low-pass spectral filter
Lx ~ 25 D  (cost is quadratic in Lx )
24 hours on 16384 processors of BG/P (850 MHz)  ~ 33x slower than uRANS

F., Obabko, Tautges, Caceres
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Instantaneous Temperature Distributions:

Thermal striping leads to thermal fatigue in structural 
components
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Velocity Comparison Downstream of T-junction 

Medium resolution results are in excellent agreement at x=1.6 & 2.6

Experiment (Re=90K) exhibits more rapid recovery of profile than simulation (Re=40K)

– Horizontal position, y – –Vertical position, z –

Lo-res    Re=40K

Med-res Re=40K

Expt Re=90K
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NEA/OECD 2010 Blind T-Junction Benchmark

– Experiment with hot/cold inlets at Re ~ 105

– Inlet velocity and temperature data provided by Vattenfall.
– Results announced 9/15/10 at CFD4NRS meeting in DC
– Nek5000 submission (21 M points) ranked respectively 1st and 6th in 

temperature and velocity prediction, of 29 entries w/ 1—71 M points.
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Pipe Flow at Re=44,000

Motivated by T-junction benchmark:
Target Re=100,000

– E=12288, N=11, n~16 million
Δt=.0003, CFL ~ 0.35

– PN -PN

– Filter-based dissipation: p101,103=3,.001
– One of many test runs:

• Dyn. Smag.:  good wall shear predictions
– 1-2 million points
– No filter

Comparison with:

– Rudman & Hughes (1999) SEM LES @ Re=36700                 
1.2 million points

– Wu & Moin (2008) 2nd-order FD DNS Re=44000                        
630 m points
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Re=44K Pipe Flow Results

Rudman & Blackburn (1999) – LES; DenToonder & Nieuwstadt (1997) exp (Re=24,600), Wu & Moin (2008) DNS (Re=44,000)

16 million point filter-based SEM gives perfect Reynolds stress agreement 
with 630 million point DNS

Rigged…(sort of…): Filter weight chosen to match target WSS.
– Investigating automatic selection criterion

10% variance in friction factor between Princeton & Oregon expts at 44K. 
– DNS closest to combined curve fit. 
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Resolution Questions: Pipe Flow, Re > 36,700

Plots of w-w* , where w* = low-pass-filtered axial velocity
Illustrates that azimuthal resolution is weak link in current simulations

w – w*                            w – w*            | u – u* |
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Parallel Scaling:  Subassembly 217 Wire-Wrapped Pins

– 3 million 7th-order spectral elements (n=1.01 billion)
– 16384–131072 processors of IBM BG/P

www.mcs.anl.gov/~fischer/sem1b

η=0.8 @ 
P=131072

Parallel Scaling

7300 pts/
processor
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Nek5000 / Star Cross-Channel Velocity Comparison

HEDL geometry 
Reh = 10,500

W.D. Pointer et al., Simulations of Turbulent Diffusion in 
Wire-Wrapped Sodium Fast Reactor Fuel Assemblies, 
Best Paper Award, FR09, Kyoto (2009)
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Moving Mesh Examples

peristaltic flow model
nek5_svn/examples/peris

2D piston, intake stroke:
(15 min. to set up and run)
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Moving Mesh Examples

Free surface case
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Moving Mesh Examples

Free surface verification:

– agreement with linear theory to 3 significant digits

– long time solution requires filtering
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Nek5000 Brief History

DNS / LES code for fluid dynamics, heat transfer, MHD, combustion,…
– 100K lines of code:    f77  (70K)   &   C  (30K)
– Interfaces w/ VisIt & MOAB/Cubit

Based on high-order spectral element method (Patera ’84, Maday & Patera ’89)

– Initially Nekton 2.0,  first 3D SEM code.       (F., Ho, Ronquist, Mavriplis ‘86-’89)

First commercially-available code for distributed memory computers 
(marketed by Fluent as Nekton into the mid 90s)

Nek5000 is a highly scalable variant of Nekton
– Gordon Bell Prize in HPC, 4096 processors   (Tufo & F. ’99)

– 20% of peak on 262,000 processors of BGP     (Kerkemeier, Parker & F. ’10)
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Motivation for High-Order

Large problem sizes enabled by peta- and exascale computers allow      
propagation of small features (size λ) over distances L >> λ.

– Dispersion errors accumulate linearly with time: 

~|correct speed – numerical speed| * t ( for each wavenumber )

errort_final ~ ( L / λ ) * | numerical dispersion error |

– For fixed final error εf , require:  numerical dispersion error ~ (λ /  L)εf , << 1

– High-order methods most efficiently deliver small dispersion errors 
(Kreiss & Oliger 72,  Gottlieb et al. 2007)
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1D Advection Example

For a complex signal typical of turbulence (-5/3 spectrum), only 
N >15 case delivers err ~ 0.01 after ten revolutions of the signal, 
out of all cases using 600 points in space.

Exact Solution N=1 Approximation         Error vs time, 600 pts

N=1

N=15

x                                           x         time   
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Spectral Element Convergence: Exponential with N
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SEM Excellent transport properties, even for non-smooth solutions

Convection of non-smooth data on a 32x32   
grid   (K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77)
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Strengths of Nek5000

High-order accuracy at low cost
– Extremely rapid (exponential) convergence in space
– 3rd-order accuracy in time

Highly scalable
– Fast scalable multigrid solvers
– Scales to > 290,000 processors with ~104 pts/proc on BGP

Extensively tested
> 10s of platforms over 25 years
> 150 journal articles & > 60 users worldwide
> 400 tests after each build to ensure verified source 

(more tests to be added)
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Magneto-rotational instability                 (Obabko, Cattaneo & F.)
– E=140000, N=9  ( n = 112 M ),  P=32768  (BG/L)
– ~ 1.2 sec/step
– ~ 8 iterations / step for U & B
– Key is to have a scalable coarse-grid solver

Iterations / Step

ooo – U
ooo - B

Solver Performance: Hybrid Schwarz-Multigrid
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Scaling to P=262144 Cores

Parallel Efficiency for Autoignition Application:
> 83% on P=131K, for n/P ~ 6200,   E=810,000,  N=9
> 73% on P=131K, for n/P ~ 3100,   E=810,000,  N=7

# Cores

BG/P Strong Scaling: P=8192 – 131072                               P=32768 – 262144

32768    65536         131072  163840                  262144

# Cores

Parallel Efficiency, Model Problem:
> 70% on P=262K
> 7 billion points ( tests n > 231 )

Production combustion and reactor simulations on ALCF BG/P demonstrate scaling 
to P=131072 with n/P ~ 5000-10,000 and η ~ .7

Test problem with 7 billion points scales to P=262144 on Julich BG/P with η ~ .7
– tests 64-bit global addressing for gs communication framework

Stefan Kerkemeier
ETHZ / ANL
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Limitations of Nek5000

No steady-state NS  or RANS:
– unsteady RANS under development / test – Aithal

Lack of monotonicity for under-resolved simulations
– limits, e.g., LES + combustion
– A high priority for 2011-12

Meshing complex geometries:
– fundamental: meshing always a challenge;

hex-based meshes intrinsically anisotropic

– technical: meshing traditionally not supported as part 
of advanced modeling development
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Mesh Anisotropy

A common refinement scenario (somewhat exaggerated):

Refinement propagation leads to
– unwanted elements in far-field
– high aspect-ratio cells that are detrimental 

to iterative solver performance  (F. JCP’97)

Refinement in 
region of interest…

yields unwanted high aspect-ratio
cells in the far field
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Some Meshing Options

genbox:  unions of tensor-product boxes

prenek:   basically 2D + some 3D or 3D via extrusion (n2to3)

Grow your own: 217 pin mesh via matlab; BioMesh

3rd party:  CUBIT + MOAB, TrueGrid, Gambit, Star CD

Morphing:
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Equations, timestepping, and 
spectral element formulation 

…but first, a bit of code structure.

Part 2 (a)
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nek5_svn repository

Key subdirectories in the repo:

– nek5_svn

• trunk
– nek    – makenek script and source files
– tools  – several utilities (prenek, genbox, etc.) and scripts

• examples – several case studies

Typical steps to run a case:
– Create a working directory and copy contents of a similar example 

case to this directory
– Modify case files to suit
– Copy makenek from nek and type makenek <case>
– Run job using a script (tools/scripts) and analyze results (postx/VisIt)
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nek5_svn repository

nek5_svn
|-- 3rd_party
|-- branches
|-- examples
|   |-- axi
|   |-- benard
|   |-- conj_ht
|   |-- eddy
|   |-- fs_2
|   |-- fs_hydro
|   |-- kovasznay
|   |-- lowMach_test
|   |-- moab
|   |-- peris
|   |-- pipe
|   |-- rayleigh
|   |-- shear4
|   |-- timing
|   |-- turbChannel
|   |-- turbJet
|   `-- vortex
|-- tags
|-- tests
`-- trunk

nek5_svn
|-- :
|-- :
`-- trunk

|-- nek 
|   |         :
|   |-- source files….
|   |         :
`-- tools

|-- amg_matlab
|-- avg
|-- genbox
|-- genmap
|-- makefile
|-- maketools
|-- n2to3
|-- nekmerge
|-- postnek
|-- prenek
|-- reatore2
`-- scripts
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Base Nek5000 Case Files

SIZE – an f77 include file that determines 
– spatial dimension (ldim =2 or 3)
– approximation order (lx1,lx2,lx3,lxd)  - N := lx1-1
– upper bound on number of elements per processor:  lelt
– upper bound on total number of elements, lelg

<case>.rea – a file specifying
– job control parameters ( viscosity, dt, Nsteps, integrator, etc. )
– geometry – element vertex and curvature information
– boundary condition types
– restart conditions

<case>.usr – f77 source file specifying
– initial and boundary conditions
– variable properties
– forcing and volumetric heating
– geometry morphing
– data analysis options: min/max, runtime average, rms, etc.
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Snapshot of SIZE
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Snapshots of .rea file

Parameters section Geometry and boundary conditions
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Snapshot of .usr file
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Derived Nek5000 Case Files

<case>.re2 – binary file specifying
– geometry – element vertex and curvature information
– boundary condition types

This file is not requisite for small problems but important for element 
counts E >  ~10,000

<case>.map – ascii file derived from .rea/.re2 files specifying
– mesh interconnect topology
– element-to-processor map

This file is needed for each run and is generated by running the 
“genmap” tool (once, for a given .rea file).

amg…dat – binary files derived from .rea/.re2 files specifying
– algebraic multigrid coarse-grid solver parameters

These files are needed only for large processor counts (P > 10,000) 
and element counts (E > 50,000).
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Equations, timestepping, and 
spectral element formulation

Part 2 (b)
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Outline

Nek5000 capabilities

Equations, timestepping, and SEM basics
Parallel / serial issues that you should understand



Argonne National 
Laboratory

Equation Sets (2D/3D)

Incompressible Navier-Stokes plus energy equation

plus additional passive scalars:

Also supports incompressible MHD, low Mach-number hydro, 
free-surface, and conjugate heat transfer formulations.
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Steady State Equations

Steady Stokes (plus boundary conditions):

Steady conduction (plus boundary conditions):
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Constant Property Equation Set
Incompressible Navier-Stokes + energy equation 

In Nek parlance, material properties specified in .rea file as:
dimensional nondimensional (convective time scale)

or as variable properties in f77 routine uservp()  (.usr file)

Nek provides a scalable framework to advance these equations with user-defined 
properties.   LES & RANS can be incorporated in this framework. (See /examples.)
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Incompressible MHD

— plus appropriate boundary conditions on u and B

Typically, Re >> Rm >> 1

Semi-implicit formulation yields independent Stokes problems 
for u and B
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Timestepping
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Navier-Stokes Time Advancement

Nonlinear term:  explicit via BDFk/EXTk or characteristics 
(Pironneau ‘82) 

Linear Stokes problem: pressure/viscous decoupling:
– 3 Helmholtz solves for velocity       (“easy” w/ Jacobi-preconditioned CG)
– (consistent) Poisson equation for pressure   (computationally dominant)

Filter velocity (& temperature), if required

(Order is slightly different for PN -PN .)
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Timestepping Design

Implicit:
– symmetric and (generally) linear terms,
– fixed flow rate conditions

Explicit:
– nonlinear, nonsymmetric terms,
– user-provided rhs terms, including 

• Boussinesq and Coriolis forcing

Rationale:
– div u = 0 constraint is fastest timescale
– Viscous terms: explicit treatment of 2nd-order derivatives Δt ~ O(Δx2) 
– Convective terms require only Δt ~ O(Δx)
– For  high Re, temporal-spatial accuracy dictates Δt ~ O(Δx)
– Linear symmetric is “easy” – nonlinear nonsymmetric is “hard”
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BDF2/EXT2 Example
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BDFk/EXTk

BDF3/EXT3 is essentially the same as BDF2/EXT2
– O(Δt3) accuracy
– essentially same cost  
– accessed by setting Torder=3 (2 or 1) in .rea file

For convection-diffusion and Navier-Stokes, the “EXTk” part of the 
timestepper implies a CFL (Courant-Friedrichs-Lewy) constraint

For the spectral element method, Δx ~ N -2, which is restrictive.
– We therefore often use a characteristics-based timestepper.

(IFCHAR = T in the .rea file)



Argonne National 
Laboratory

Characteristics Timestepping

Apply BDFk to material derivative, e.g., for k=2:

Amounts to finite-differencing along the characteristic leading into xj
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Characteristics Timestepping

Δt can be >> ΔtCFL (e.g., Δt ~ 5-10 x ΔtCFL )

Don’t need position (e.g., Xj
n-1) of characteristic departure point, 

only the value of un-1(x) at these points.

These values satisfy the pure hyperbolic problem:

which is solved via explicit timestepping with Δs ~ ΔtCFL
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Spatial Discretization
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Spectral Element Method (Patera 84, Maday & Patera 89)

Variational method, similar to FEM, using GL quadrature.

Domain partitioned into E high-order quadrilateral (or hexahedral) elements 
(decomposition may be nonconforming - localized refinement) 

Trial and test functions represented as N th-order tensor-product polynomials 
within each element.  (N ~ 4 -- 15, typ.)

EN 3 gridpoints in 3D,  EN 2 gridpoints in 2D.

Converges exponentially fast with N for smooth solutions. 

3D nonconforming mesh for 
arterio-venous graft simulations:
E = 6168 elements, N = 7
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Spectral Element Method: Poisson Example
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Spectral Element Method: Poisson Example
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SEM Function Representation

Key point is that there is a continuous representation of all variables:

Since φj(x) is known a priori, we know how to differentiate and integrate.

Moreover, choose φjs to be computationally convenient
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1D Basis Functions

Stable high-order basis for Nth-order polynomial approximation space:

– poor choices:

– good choices:

hi (x)
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Condition Number of 1D Stiffness Matrix

GLL Nodal Basis good conditioning, minimal round-off error

Monomials:  xk

Uniform Points

GLL Points ~ N 3
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Integration (projection) in 1D
Replace integrals with Gauss-Lobatto-Legendre quadrature:

with

where

Yields a diagonal mass matrix; preserves spectral accuracy.
(However, beware stability issues….)



Argonne National 
Laboratory

Extension to 2D

N=10

N=4

Nodal bases on the Gauss-Lobatto-Legendre points:

basis coefficients
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Matrix-Matrix Based Derivative Evaluation

Local tensor-product form  (2D),

allows derivatives to be evaluated as matrix-matrix products:

In 3D, ~90% of all ops in mxm – high optimization important.

mxm

hi (r)
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Mapped Geometries

2D basis function, N=10
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Notes about Mapped Elements

Best to use affine (i.e., linear) transformations in order to preserve 
underlying GLL spacing for stability and accurate quadrature.

Avoid singular corners - ~180o or ~0o

Avoid high-aspect-ratio cells, if possible
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Multidimensional Integration

Given that we have Lagrangian interpolants based on GLL quadrature 
points, we have

In particular,

In Nek, this vector reduction is implemented as:  alpha = glsc2(u,bm1,n)
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Navier-Stokes Discretization Options

Imposition of the constraint div u = 0 is a major difficulty in solving the incompressible 
Navier-Stokes equations, both from theoretical and implementation perspectives.  

Was not well-understood till the mid-80s (give, or take…).

The fundamental difficulty is that the discrete operators do not commute, except under 
special circumstances (e.g., Fourier bases).

Nek supports two distinct approaches:
– Option 1 (PN -PN-2 ): 

• discretize in space using compatible approximation spaces
• solve coupled system for pressure/velocity

– Option 2 (PN -PN , or splitting): 
• discretize in time first
• take continuous divergence of momentum equation to arrive at a Poisson 

equation for pressure, with special boundary conditions
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PN - PN-2 Spectral Element Method for Navier-Stokes (MP 89)

Gauss-Lobatto Legendre points
(velocity)

Gauss Legendre points
(pressure)

Velocity, u in PN ,     continuous
Pressure, p in PN-2 ,  discontinuous
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Consistent Splitting for Unsteady Stokes 
(MPR 90, Blair-Perot 93, Couzy 95)

E - consistent Poisson operator for pressure, SPD
– boundary conditions applied in velocity space
– most compute-intensive phase 
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Comparison of PN - PN-2 and PN - PN Options in Nek 

PN - PN-2 PN – PN

– SIZE: lx2=lx1-2 lx2=lx1
– pressure: discontinuous continuous
– solver: E = DB-1DT A  (std. Laplacian)
– preconditioner: SEMG Schwarz (but to be upgraded)
– free-surface Yes No
– ALE Yes No
– low Mach No Yes
– LES OK Better
– low Re Better OK
– var. prop. Implicit (stress formulation) semi-implicit
– spectrally accurate Yes Yes

Nek will ensure that the problem type is compatible with the discretization choice.

For most cases, speed is determined by the pressure solve, which addresses the fastest timescales 
in the system (the acoustic waves).

– For PN - PN-2 , the solver has been highly optimized over the last 15 years.

– The PN - PN version was developed by the ETH group (Tomboulides, Frouzakis, Kerkemeier) 
for low Mach-number combustion and has only recently been folded into the production 
Nek5000 code.
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Navier-Stokes Boundary Conditions

A few key boundary conditions are listed below.

There are many more, particularly for moving walls, free surface, etc.

Special conditions include:
– Recycling boundary conditions (special form of “v”)
– Accelerated outflow to avoid incoming characteristics
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Thermal Boundary Conditions

A few key boundary conditions are listed below.
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Filtering, Dealiasing, and LES

LES, or more properly, subgrid scale (sgs) stress models invariably 
rely on dissipation to remove energy that otherwise piles up at the 
gridscale.  WHY?
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Stabilizing High-Order Methods

In the absence of eddy viscosity, some type of stabilization is 
generally required at high Reynolds numbers.

Some options:

– high-order upwinding (e.g., DG, WENO)
– bubble functions
– spectrally vanishing viscosity
– filtering
– dealiasing
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Filter-Based Stabilization 

At end of each time step:
– Interpolate u onto GLL points for PN-1

– Interpolate back to GLL points for PN

F1 (u) = IN-1 u

– Results are smoother with linear combination:                   (F. & 
Mullen 01)

Fα

 

(u) = (1-α) u + α
 

IN-1 u             (α
 

~ 0.05 - 0.2)

Post-processing  — no change to existing solvers

Preserves interelement continuity and spectral accuracy

Equivalent to multiplying by (1-α) the N th coefficient in the expansion
– u(x) = Σ

 
uk φk (x)      u*(x) = Σ σk uk φk (x),  σκ= 1, σΝ = (1-α )

φk (x) := Lk(x) - Lk-2(x)                                                             (Boyd 98)

(Gottlieb et al., Don et al., Vandeven, Boyd, ...)
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Numerical Stability Test: Shear Layer Roll-Up 
(Bell et al. JCP 89, Brown & Minion, JCP 95, F. & Mullen, CRAS 2001)

2562

2562

1282 2562

25621282
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Spatial and Temporal Convergence        (F. & Mullen, 01)

Base velocity profile and perturbation streamlines

Error in Predicted Growth Rate for 
Orr-Sommerfeld Problem at Re=7500 (Malik & Zang 84)
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Filtering permits Reδ99 > 700 for transitional boundary layer calculations

blow up

Re = 700

Re = 1000

Re = 3500
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Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )

Double shear layer example:

Ok
High-strain regions
are troublesome…
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Consider the model problem:

Weighted residual formulation:

Discrete problem should never blow up.

Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )
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Weighted residual formulation vs. spectral element method:

This suggests the use of over-integration (dealiasing) to ensure 
that skew-symmetry is retained  

Why Does Filtering Work ?  
( Or, Why Do the Unfiltered Equations Fail? )
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c = (-x,y)

c = (-y,x)

Aliased / Dealiased Eigenvalues:

Velocity fields model first-order terms in expansion of straining and rotating flows.

– For straining case,

– Rotational case is skew-symmetric. 

– Filtering attacks the leading-order unstable mode.

N=19, M=19           N=19, M=20
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Stabilization Summary

Filtering acts like well-tuned hyperviscosity

– Attacks only the fine scale modes (that, numerically speaking, 
shouldn’t have energy anyway…)

– Can precisely identify which modes in the SE expansion to 
suppress (unlike differential filters)

– Does not compromise spectral convergence

Dealiasing of convection operator recommended for high 
Reynolds number applications to avoid spurious eigenvalues

– Can run double shear-layer roll-up problem forever with 

– ν = 0 ,                                                               

– no filtering
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Dealiased Shear Layer Roll-Up Problem, 1282

ν = 0, no filter                              ν = 10-5, no filter                   ν = 0,  filter = (.1,.025)
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Linear Solvers
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—

Navier-Stokes Solution Strategy

Semi-implicit:  explicit treatment of nonlinear term.
Leads to Stokes saddle problem, which is algebraically split

MPR 90, Blair-Perot 93, 
Couzy 95

E - consistent Poisson operator for pressure, SPD
– Stiffest substep in Navier-Stokes time advancement
– Most compute-intensive phase 
– Spectrally equivalent to SEM Laplacian, A
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Pressure Solution Strategy: Epn = gn

1. Projection: compute best approximation from previous time steps

– Compute p* in span{ pn-1, pn-2, … , pn-l } through straightforward 
projection.

– Typically a 2-fold savings in Navier-Stokes solution time.

– Cost:  1 (or 2) matvecs in E per timestep

2. Preconditioned CG or GMRES to solve

E Δp = gn - E p*
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Initial Guess for Axn = bn via Projection    ( 
A=E, SPD)

(best fit solution)
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Initial guess for Epn = gn via projection onto 
previous solutions

|| pn - p*||E = O(Δtl) + O( εtol )

two additional mat-vecs per step

storage:  2+lmax vectors

results with/without projection (1.6 million pressure nodes)

ICASE TR ‘93;  CMAME ‘98
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Overlapping Additive Schwarz Preconditioner / Smoother 

δ

Local Overlapping Solves: FEM-based
Poisson problems with homogeneous 

Dirichlet boundary conditions, Ae .

Coarse Grid Solve: Poisson problem
using linear finite elements on entire

spectral element mesh, A0 (GLOBAL).

(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)
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E-Based Schwarz vs. SEMG for High-Aspect Ratio 
Elements

Base mesh of E=93 elements                         2D Navier-Stokes Model Problem

– Quad refine to generate E=372 and                                                        
E=1488 elements, 

– N=4,…,16
– SEMG reduces E and N dependence
– 2.5 X reduction in Navier-Stokes CPU                                                      

time for N=16

Overlapping                                   Weighted
Schwarz                                        Schwarz/MG

N                                                   N

Ite
ra

tio
n 

co
un

t

(F. & Lottes, 2004)
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Magneto-rotational instability                 (Obabko, Cattaneo & F.)
– E=140000, N=9  ( n = 112 M ),  P=32768  (BG/L)
– ~ 1.2 sec/step
– ~ 8 iterations / step for U & B
– Key is to have a scalable coarse-grid solver

Iterations / Step

ooo – U
ooo - B

Solver Performance: Hybrid Schwarz-Multigrid
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AMG vs. XXT Performance 

Cannot consider XXT on larger problems.

“a4096” case is  relies on pairwise + all_reduce
– First version (not shown, pairwise-only), was 

not much faster than XXT.  Why?

Navier-Stokes Solution time break down for n=120 M, nc = 417000
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Outline

Nek5000 capabilities

Equations, timestepping, and SEM basics
Parallel / serial issues that you should understand
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Serial / Parallel Issues

Locally, the SEM is structured.

Globally, the SEM is unstructured.

Vectorization and serial performance derive from the 
structured aspects of the computation.

Parallelism and geometric flexibility derive from the 
unstructured, element-by-element, operator evaluation.

Elements, or groups of elements are distributed across 
processors, but an element is never subdivided.
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Parallel Structure

Elements are assigned in ascending order to each processor

Serial, global element numbering

5        2          1         3   4

2         1                          1         2 3

proc 0 proc1
Parallel, local element numbering
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Parallel Structure

For the most part, don’t care about global element numbering
– (We’ll show some examples where one might)

Key point is that, 
– on proc 0, nelt=2       (nelt = # elements in temperature domain)
– on proc 1, nelt=3       (nelv = # elements in fluid domain, usually = nelt)

Serial, global element numbering

5        2          1         3   4

2         1                          1         2 3

proc 0 proc1
Parallel, local element numbering
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Parallel Structure

Arrays that distinguish which processor has which elements:

– proc 0 proc 1
• nelt=2 nelt=3
• lglel=(2,5) lglel=(1,3,4)

Common arrays (scaling as nelgt, but only two such arrays):
– gllel=(1,1,2,3,2), gllnid=(1,0,1,1,0)

5        2          1         3   4

2         1                          1         2 3

proc 0 proc1
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Serial Structure

All data contiguously packed (and quad-aligned):

real u(lx1,ly1,lz1,lelt)
• Indicates that u is a collection of elements, 

e=1,…,Nelt =< lelt, each of size (N+1)d, d=2 or 3
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Serial / Parallel Usage

A common operation (1st way…)

s=0
do e=1,nelv
do iz=1,nz1
do iy=1,ny1
do ix=1,nx1

s=s+u(ix,iy,iz,e)
enddo,…,enddo

Parallel Version

s=0
do e=1,nelv
do iz=1,nz1
do iy=1,ny1
do ix=1,nx1

s=s+u(ix,iy,iz,e)
enddo,…,enddo

s=glsum(s,1)
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Serial / Parallel Usage

A common operation (2nd way…)

n=nx1*ny1*nz1*nelv
s=0
do i=1,n

s=s+u(i,1,1,1)
enddo

Parallel Version

n=nx1*ny1*nz1*nelv
s=0
do i=1,n

s=s+u(i,1,1,1)
enddo

s=glmax(s,1)
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Serial / Parallel Usage

A common operation (3rd way…)

n=nx1*ny1*nz1*nelv

s=glsum(u,n)

– If you want a local max:

s=vlsum(u,n)

– Note:  Important that every processor calls glmax()!!

Parallel Version

n=nx1*ny1*nz1*nelv

s=glsum(u,n)
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Considerations as you move forward

For performance:
– Optimal tuning for mxm ?
– What about the pressure solve?

• Projection on?

For stability:
– Dealiasing on?
– Filtering on?

Open issues we expect to address in the next 12-24 months:
– SEMG for the PN -PN formulation
– (near) monotone advection schemes
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Thank You!
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