

A comparison of Nek5000 and OpenFOAM for DNS of turbulent channel flow

Michael A. Sprague

Michael.A.Sprague@nrel.gov Scientific Computing National Renewable Energy Lab

Nek5000 Users Meeting Argonne National Lab 10 December 2010

Matthew Churchfield, Avi Purkayastha, Patrick Moriarty, Sang Lee

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Motivating Problem

NREL LDRD Project (PI-Moriarty):

Wind Turbine Array Fluid Dynamic and Aero-elastic-simulations

- Couple Weather Research and Forecasting (WRF) code to OpenFOAM
- Couple OpenFOAM to NREL's aeroelastic design code, FAST
 - Actuator-line method (Sorensen & Shen, JFE 2002)

Example OpenFOAM simulation of 3×3 turbine array (M. Churchfield):

> Ux (m/s) - 8 - 7.6 - 7.2 - 6.8 - 6.4 - 6 - 5.6 - 5.2 - 4.8

Motivating Questions

Question 1: Why might one use a high-order code like Nek5000 instead of a low-order code like OpenFOAM?

- Difficult to answer in general may be problem specific, and may have many competing facets
- We focus on two sub-questions for a straight-forward DNS problem:
 - For a given spatial grid, how much more accurate is the high-order code?
 - For a given accuracy level, which method provides shorter time to solution?

Question 2: How do Nek5000 and OpenFOAM scale?

Test problem: DNS of turbulent channel Flow

The Competitors

- 1. Nek5000 http://nek5000.mcs.anl.gov
 - Open-source spectral finite-element code
 - Written in Fortran77 & C with MPI communication
- 2. OpenFOAM http://www.openfoam.com
 - Open-source finite-volume code
 - OpenFOAM: Open Field Operation and Manipulation
 - Written in C++ with MPI communication

KMM Channel Flow – Problem Description

- Incompressible viscous flow driven by a constant pressure gradient between two infinite parallel plates (Kim, Moin & Moser, JFM 1987)
- Computational domain: $(L_x, L_y, L_z) = (4\pi\delta, 2\delta, 2\pi\delta)$
 - no-slip boundary conditions at $y = \pm \delta$
 - periodic boundary conditions in x and z directions
- Reynolds number: $Re = \frac{U_m \delta}{\nu} = 2800$, U_m is the bulk mean velocity

Spatial Grids

	identifier	$n_{e,x} \times n_{e,y} \times n_{e,z}$	$n_x \times n_y \times n_z$
	low	7 imes 4 imes 6	$50 \times 29 \times 43$
Nek5000	med	$14 \times 9 \times 11$	$99 \times 64 \times 78$
(N=7)	high	$27 \times 18 \times 23$	$190 \times 127 \times 162$
	low	$48 \times 32 \times 40$	$48 \times 32 \times 40$
OpenFOAM	med	$96 \times 64 \times 80$	$96 \times 64 \times 80$
	high	$192 \times 130 \times 160$	$192 \times 130 \times 160$
KMM (1987)			$192 \times 129 \times 160$

Element sizes uniform in x and z; for y, equally-spaced-element boundaries mapped as $y'/\delta = \operatorname{sgn}(y) \{1 - \sinh[3.25(1 - \operatorname{sgn}(y)y/\delta)]/\sinh(3.25)\}$ Representative Grids:

Time Integration

— Nek5000:

- Integrated with $C \approx 2$ (Courant number) and constant Δt
 - third-order accurate

— OpenFOAM:

- PISO (Pressure-Implicit Splitting Operation) method; integrated with $C \approx 1$ and variable Δt
 - second-order accurate
- Time steps for simulations:

grid	Nek5000	OpenFOAM		
resolution	Δt_{const}	Δt_{avg}		
low	0.070	0.050		
med	0.034	0.049		
high	0.017	0.030		

Linear-System Solvers

— Nek5000:

- Pressure solve: GMRES; residual tolerance 10^{-5}
- Velocity solve: Preconditioned CG; residual tolerance 10^{-8}

— OpenFOAM:

- Pressure solve: diagonal incomplete Cholesky-preconditioned CG; divergence tolerance 10^{-6}
- Velocity solve: diagonal incomplete LU-preconditioned bi-conjugate gradient solver; residual tolerance 10^{-8}

Initialization & Statistics Gathering

— Initial condition:

$$u/U_m = 5(1-y^4)/4 + 0.3\cos(12z)e^{0.5-32.4(1-|y|)^2}(1-|y|)$$

$$v/U_m = 0$$

$$w/U_m = 21.6\sin(12x)e^{-32.4(1-|y|)^2}(1-|y|)$$

- Statistically steady turbulence established over $0 \le (t U_m/\delta) \le 200$
- Statistics gathered over $200 \le (t U_m/\delta) \le 700$

Computational Resources

Red Mesa Computational Cluster

- NREL's 15,360 core HPC system
- Intel Xeon 5570 "Nehalem" cores
- Quad-Data-Rate Infiniband interconnect arranged in a 3D torus topology
- Lustre file system with about 1 petabyte of total storage

Results: Friction Velocity

- Benchmark results: Moser, Kim & Mansour, 1999 Physics of Fluids

- For a given accuracy, OpenFOAM needs approximately twice as many grid points across layer
 - \rightarrow eight-times as many grid points in 3-D

Results: Mean-Velocity Profiles

Results: RMS-Velocity Profiles

Scaling Study: Model Parameters

	$n_x \times n_y \times n_z$	grid pts.	$\Delta t \ U_m / \delta$	C	# time steps
Nek5000	$253 \times 183 \times 218$	$\approx 10^7$	0.012	≈ 2	8333
OpenFOAM	$262 \times 178 \times 218$	$\approx 10^7$	0.018 avg	≈ 1	≈ 5430

— Simulations run for $200 \leq (t \ U_m/\delta) \leq 300$

- I/O minimized; statistics gathering disabled
- number of cores: 32 2048

Results: Wall-Clock Time

number of cores

- Nek5000 and OpenFOAM exhibit similar scaling and wall-clock times for the same number of gridpoints
- Good scaling exhibited when gridponts-per-core $\gtrsim 50K$

Summary & Conclusions

- For a given number of gridpoints, Nek5000 (with N = 7) is significantly more accurate than OpenFOAM
 - OpenFOAM requires over eight times the number of gridpoints to achieve similar accuracy
- For a given number of gridpoints, Nek5000 and OpenFOAM show similar strong scaling and wall-clock times
 - For a given accuracy, time-to solution is significantly less for Nek5000
- OpenFOAM linear-system solvers are too inefficient
 - Better options in the *Extended Project* version of OpenFOAM http://www.extend-project.de/

Comments on Visualization

- Python scripts for converting Nek5000 .fld/.fXXX files to .vtk/.vtu
- work in progress; uses tvtk wrapper
- "wrapped" Fortran for speed
- Mayavi2 (built on python) for visualization
- http://code.enthought.com/projects/mayavi/

