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Chapter 1. Introduction

This manual provides an introduction to the use of Nek5000, which
is a simulation code for analyzing unsteady incompressible fluid
flow with thermal and passive scalar transport. Nek5000 can treat
general two- and three-dimensional domains described by isopara-
metric quad or hex elements. In addition, it can be used to compute
axisymmetric flows. It is a time-stepping based code and does not
currently support steady-state solvers, other than steady Stokes flow
and steady heat conduction.

Nek5000 is based on the Nekton 2.0 spectral element code written
by Paul Fischer, Lee Ho, and Einar Rønquist in 1986-1991, un-
der direction and theoretical guidance from Tony Patera and Yvon
Maday. Nekton 2.0 was the first three-dimensional spectral ele-
ment code and one of the first commercially available codes for
distributed-memory parallel processors. Nek5000 development was
continued from the 90s through the present by Paul Fischer, Jerry
Kruse, Julie Mullen, Henry Tufo, James Lottes, Stefan Kerkemeier,
Katie Heisey, and Ananias Tomboulides.



Chapter 2. Quick Start

This chapter provides a quick overview to using Nek5000 for some
basic flow problems provided in the .../examples directory.

2.1 Download and Initial Build

Nek5000 runs under linux or any linux-like OS such as MAC, AIX,
BG, Cray etc. The source is maintained in an svn repository and
can be downloaded from the Nek5000 homepage (google nek5000)
or, on linux systems, with the svn checkout command:

svn co https://svn.mcs.anl.gov/repos/nek5 nek5_svn

After downloading, build the tools by typing

cd nek5_svn/trunk/tools

maketools all

which will put the tools genbox, genmap, n2to3, postx, prex,

and pretex in the top-level /bin directory (and will create /bin if
it does not exist). It may be necessary to edit the maketools file
to change the compilers (e.g., to pgf77/pgcc or ifort/icc). However,
the default gfortran/gcc is generally fine. 1

In addition to the compiled tools, there are numerous scripts in

nek5_svn/trunk/tools/scripts

that are useful to have in the execution path, achieved either by
adding this directory to the path or copying its contents to the
top-level /bin directory. In the following, we assume that scripts
such as nek and nekb are in the path. We further assume that the
nek5 svn/ prefix is implied in any future directory reference, unless
otherwise specified.

1In some cases it may be necessary to reduce the memory footprint of some of
the tools. The procedures are (will be) described in sec. troubleshooting.
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2.2 Running the First 2D Example

As a first example, we consider the eddy problem due to Walsh 2

To get started, execute the following commands,

cd

mkdir eddy

cd eddy

cp ~/nek5_svn/examples/eddy/* .

cp ~/nek5_svn/trunk/nek/makenek .

If you do not have mpi installed on your system, edit makenek,Modify makenek.
uncomment the IFMPI="false" flag, and change the Fortran and
C compilers according to what is available on your machine. (Most
any Fortran compiler save g77 or g95 will work.) If you have mpi

installed on your system or have made the prescribed changes to
makenek, the eddy problem can be compiled as follows

makenek eddy uvCompiling nek.

which, if all works properly, will generate the executable nek5000

using eddy uv.usr to provide user-supplied initial conditions and
analysis. Note that if you encountered a problem during a prior
attempt to build the code you should type

makenek clean;

makenek eddy uv

Once compilation is successful, start the simulation by typing

nekb eddy uvRunning a case:

which runs the executable in the background (nekb, as opposed to
nek, which will run in the foreground). If you are running on a
multi-processor machine that supports MPI, you can also run this
case via

nekbmpi eddy uv 4A parallel run:

which would run on 4 processors. If you are running on a system
that supports queuing for batch jobs (e.g., pbs), then the following
would be a typical job submission command

nekpbs eddy uv 4

2O. Walsh, “Eddy solutions of the Navier-Stokes equations,” The NSE II-

Theory and Numerical Methods, J.G. Heywood, K. Masuda, R. Rautmann, and
V.A. Solonikkov, eds., Springer, pp. 306–309 (1992)
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In most cases, however, the details of the nekpbs script would need
to be modified to accommodate an individual’s user account, the
desired runtime and perhaps the particular queue. Note that the
scripts nek, nekb, nekmpi, nekbmpi, etc. perform some essential
file manipulations prior to executing nek5000, so it is important to
use them rather than invoking nek5000 directly.

To check the error for this case, type

grep -i err eddy_uv.log | tail

or equivalently

grep -i err logfile | tail

where, because of the nekb script, logfile is linked to the .log file
of the given simulation. If the run has completed, the above grep
command should yield lines like

1000 1.000000E-01 6.759103E-05 2.764445E+00 2.764444E+00 1.000000E+00 X err

1000 1.000000E-01 7.842019E-05 1.818632E+00 1.818628E+00 3.000000E-01 Y err

which gives for the x- and y-velocity components the step number,
the physical time, the maxiumum error, the maximum exact and
computed values and the mean (bulk) values.

A common command to check on the progress of a simulation is

grep tep logfile | tail

which typically produces lines such as

Step 996, t= 9.9600000E-02, DT= 1.0000000E-04, C= 0.015 4.6555E+01 3.7611E-02

indicating, respectively, the step number, the physical time, the
timestep size, the Courant (or CFL) number, the cumulative wall
clock time (in seconds) and the wall-clock time for the most recent
step. Generally, one would adjust ∆t to have a CFL of ∼0.5. See
Section 7 for a comprehensive discussion of timestep selection.
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2.3 Viewing the First 2D Example

The preferred mode for data visualization and analysis with Nek5000
is to use VisIt, which is described in Section ??. For a quick peek at
the data, however, we list a few commands for the native Nek5000
postprocessor. Assuming that the maketools script has been exe-
cuted and that /bin is in the execution path, then typing

postx

in the working directory should open a new window with a sidebar
menu. With the cursor focus in this window (move the cursor to
the window and left click), hit return on the keyboard accept the
default session name and click plot with the left mouse button.
This should bring up a color plot of the pressure distribution for the
first output file from the simulation (here, eddy uv.fld01), which
contains the geometry, velocity, and pressure.

To see the vorticity at the final time, load the last output file,
eddy uv.fld12, by clicking/typing the following in the postx win-
dow:

click type comment
1. SET TIME 12 load fld12
2. SET QUANTITY
3. VORTICITY
4. PLOT

For this case, the error has been written to eddy uv.fld11 by mak-Plotting the error:
ing a call to outpost() in the userchk() routine in eddy uv.usr.
The error in the velocity components is stored in the velocity-field
locations and can be viewed with postx through the following se-
quence:

click type comment
1. SET TIME 11 load fld11
2. SET QUANTITY
3. VELOCITY
4. MAGNITUDE
5. PLOT

2.4 Modifying the First Example

A common step in the Nek5000 workflow is to rerun with a higher
polynomial order. Typically, one runs a relatively low-order case
(e.g., lx1=5) for one or two flow-through times and then uses the
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result as an initial condition for a higher-order run (e.g., lx1=8).
We illustrate the procedure with the eddy uv example.

Assuming that the contents of nek5 svn/trunk/tools/scripts are
in the execution path, begin by typing

cpn eddy_uv eddy_new

which will copy the requisite eddy uv case files to eddy new. Next,
edit SIZE and change the two lines defining lx1 and lxd from

parameter (lx1=8,ly1=lx1,lz1=1,lelt=300,lelv=lelt)

parameter (lxd=12,lyd=lxd,lzd=1)

to

parameter (lx1=12,ly1=lx1,lz1=1,lelt=300,lelv=lelt)

parameter (lxd=18,lyd=lxd,lzd=1)

Then recompile the source by typing

makenek eddy_new

Next, edit eddy new.rea and change the line

0 PRESOLVE/RESTART OPTIONS *****

(found roughly 33 lines from the bottom of the file) to

1 PRESOLVE/RESTART OPTIONS *****

eddy_uv.fld11

which tells nek5000 to use the contents of eddy uv.fld11 as the
initial condition for eddy new. (Don’t use fld12 – that has vorticity
in it because of the outpost call placed in userchk.) The simulation
is started in the usual way:

nekb eddy_new

after which the command

grep err logfile | tail
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will show a much smaller error (∼ 10−9) than the lx1=8 case.

Note that one normally would not use a restart file for the eddy prob-
lem, which is really designed as a convergence study (see Section
??). The purpose here, however, was two-fold, namely, to illustrate
a change of order and its impact on the error, and to demonstrate
the frequently-used restart procedure.
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Nek5000 consists of three principal modules: the preprocessor prex,
the solver nek5000, and the postprocessor postx. prex and postx

are based upon an X-windows GUI. Nek5000 output formats can
also be read by the parallel visualization package VisIt developed
by Hank Childs and colleagues at LLNL/LBNL. VisIt is manda-
tory for large problems (e.g., more than 100,000 spectral elements).
Nek5000 is written in f77 and C. It uses MPI for message passing
(but can be compiled without MPI for serial applications) and some
LAPACK routines for eigenvalue computations (depending on the
particular solver employed). In addition, it can be optionally cou-
pled with MOAB, which provides an interface to meshes generated
with CUBIT.

Each simulation is defined by three files, the .rea file, the .usr file,
and the SIZE file. In addition, there is a derived .map file that is
generated from the .rea file by running genmap. Suppose you are
doing a calculation called “shear.” The key files defining the prob-
lem would be shear.rea, shear.map, and shear.usr. SIZE controls
(at compile time) the polynomial degree used in the simulation, as
well as the space dimension d = 2 or 3.

This chapter provides an introduction to the basic files required to
set up a Nek5000 simulation.

3.1 Contents of .rea file

The .rea file consists of several sections:

parameters These control the runtime parameters such as viscos-
ity, conductivity, number of steps, timestep size, order of the
timestepping, frequency of output, iteration tolerances, flow
rate, filter strength, etc. There are also a number of free pa-
rameters that the user can use as handles to be passed into
the user defined routines in the .usr file.

logicals These determine whether one is computing a steady or
unsteady solution, whether advection is turned on, etc.
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geometry The geometry is specified in an arcane format speci-
fying the xyz locations of each of the eight points for each
element, or the xy locations of each of the four points for each
element in 2D. (For several reasons, this format is due to be
changed in the future.)

curvature This section descibes the deformation for elements that
are curved. Currently-supported curved side or edge defini-
tions include “C” for circles, “s” for spheres, and “m” for
midside-node positions associated with quadratic edge dis-
placement.

boundary conditions Boundary conditions (BCs) are specified
for each face of each element, for each field (velocity, tem-
perature, passive scalar #1, etc.). A common BC is P, which
indicates that an element face is connected to another element
to establish a periodic BC. Many of the BCs support either
a constant specification or a user defined specification which
may be an arbitrary function. For example, a constant Dirich-
let BC for velocity is specified by V, while a user defined BC
is specified by v. This upper/lower-case distinction is used for
all cases. There are about 70 different types of boundary con-
ditions in all, including free-surface, moving boundary, heat
flux, convective cooling, etc.

restart conditions Here, one can specify a file to use as an initial
condition. The initial condition need not be of the same poly-
nomial order as the current simulation. One can also specify
that, for example, the velocity is to come from one file and
the temperature from another. The initial time is taken from
the last specified restart file, but this can be overridden.

output specifications Outputs are discussed in a separate sec-
tion below.

It is important to note that Nek5000 currently supports two input
file formats, ascii and binary. The .rea file format described above
is ascii. For the binary format, all sections of the .rea file having
storage requirements that scale with number of elements (i.e., geom-
etry, curvature, and boundary conditions) are moved to a second,
.re2, file and written in binary. The remaining sections continue
to reside in the .rea file. The distinction between the ascii and
binary formats is indicated in the .rea file by having a negative
number of elements. There are converters, reatore2 and re2torea,
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in the Nek5000 tools directory to change between formats. The bi-
nary file format is essential for i/o performance when the number
of elements is large ( > 100000).

3.2 Contents of .usr file

The most important interface to Nek5000 is the set of fortran sub-
routines that are contained in the .usr file. This file allows direct
access to all runtime variables. Here, the user may specify spa-
tially varying properties (e.g., viscosity), volumetric heating sources,
body forces, and so forth. One can also specify arbitrary initial and
boundary conditions through the routines useric() and userbc().
The routine userchk() allows the user to interrogate the solution
at the end of each timestep for diagnostic purposes. The .usr files
provided in the /examples/... directories illustrate several of
the more common analysis tools. For instance, there are utilities
for computing the time average of u, u2, etc. so that one can an-
alyze mean and rms distributions with the postprocessor. There
are routines for computing the vorticity or the scalar λ2 for vortex
identification, and so forth.

3.3 Contents of SIZE file

The SIZE file governs the memory allocation for most of the arrays
in Nek5000, with the exception of those required by the C utilities.
The primary parameters of interest in SIZE are:

ldim = 2 or 3. This must be set to 2 for two-dimensional or
axisymmetric simulations (the latter only partially supported)
or to 3 for three-dimensional simulations.

lx1 controls the polynomial order of the approximation, N=lx1-1.

lxd controls the polynomial order of the integration for convective
terms. Generally, lxd=3*lx1/2. On some platforms, however,
it is important for memory access performance that lx1 and
lxd be even.

lx2 = lx1 or lx1-2. This determines the formulation for the Navier-
Stokes solver (i.e., the choice between the lPN–lPN or lPN–
lPN−2 methods) and the approximation order for the pressure,
lx2-1.

lelt determines the maximum number of elements per processor.
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3.4 Memory Requirements

Per-processor memory requirements for Nek5000 scale roughly as
400 8-byte words per allocated gridpoint. The number of allo-
cated gridpoints per processor is nmax=lx1*ly1*lz1*lelt. (For 3D,
lz1=ly1=lx1; for 2D, lz1=1, ly1=lx1.) If required for a particular
simulation, more memory may be made available by using addi-
tional processors. For example, suppose one needed to run a simu-
lation with 6000 elements of orderN = 9. To leading order, the total
memory requirements would be ≈ E(N+1)3points×400(wds/pt)×
8bytes/wd = 6000 × 103 × 400 × 8 = 19.2 GB. Assuming there is
400 MB of memory per core available to the user (after account-
ing for OS requirements), then one could run this simulation with
P ≥ 19, 200MB/(400MB/proc) = 48 processors. To do so, it would
be necessary to set lelt ≥ 6000/48 = 125.

We note two other parameters of interest in the parallel context:

lp, the maximum number of processors that can be used.

lelg, an upper bound on the number of elements in the simulation.

There is a slight memory penalty associated with these variables,
so one generally does not want to have them excessively large. It is
common, however, to have lp be as large as anticipated for a given
case so that the executable can be run without recompiling on any
admissable number of processors (Pmem ≤ P ≤ E, where Pmem is
the value computed above).
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This chapter describes the capabilities of Nek5000 by introducing
the set of governing equations together with boundary conditions,
initial conditions, and material property/forcing functions that the
program can solve numerically.

4.1 Governing Equations

Nek5000 is designed to simulate laminar, transitional, and turbu-
lent incompressible or low Mach-number flows with heat transfer
and species transport. It is also suitable for incompressible magne-
tohydrodynamics (MHD), described in Section ??.

Nek5000 solves the unsteady incompressible two-dimensional, ax-
isymmetric, or three-dimensional Stokes or Navier-Stokes equations
with forced or natural convection heat transfer in both stationary
(fixed) or time-dependent geometry. The solution variables are
the fluid velocity u = (ux, uy, uz), the pressure p, the tempera-
ture T , independent passive scalar fields φi, i=1,2,. . . , mesh veloc-
ity w = (wx, wy, wz) (for time-dependent geometry), and magnetic
field B = (Bx, By, Bz) (for MHD). All of the above field variables
are functions of space x = (x, y, z) and time t in domains Ωf and/or
Ωs defined in Fig. 4.1 The governing equations used are: the mo-
mentum equations in Ωf ,

ρ(∂tu+ u · ∇u) = −∇p+∇ · [µ(∇u+ (∇u)T )] + ρf , (4.1)

the continuity (mass conservation) equation in Ωf ,

∇ · u = 0 , (4.2)

the energy equation in Ωf ∪ Ωs,

ρcp(∂tT + u · ∇T ) = ∇ · (k∇T ) + qvol , (4.3)

and a convection-diffusion equation for each passive scalar φi, i=1,2,. . .
in Ωf ∪ Ωs

(ρcp)i(∂tφi + u · ∇φi) = ∇ · (ki∇φi) + (qvol)i. (4.4)
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Figure 4.1: Computational domain showing respective fluid and
solid subdomains, Ωf and Ωs.
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The above governing equations are subject to boundary conditions
and initial conditions described in the following sections.

It should be noted that Nek5000 can solve not only the above fully
coupled system, but also various subsets of these equations. Namely,
Nek5000 recognizes the following subsets.

1. Fluid flow only; i.e., the momentum and continuity equations
only.

2. Fluid flow and heat transfer only; i.e., the momentum, conti-
nuity and energy equations only.

3. Fluid flow, heat transfer, and an arbitrary subset of pas-
sive scalar fields; i.e., the momentum, continuity, energy and
convective-diffusive equations for φi

4. Fluid flow with the nonstress formulation; i.e., the momentum
equation, in which the term (∇u)T in the viscous contribution
is set to zero, the continuity equation, and with or without the
energy and convective-diffusive equations.

5. LowMach-number flows where density may vary due to thermal-
dilation effects.

6. Unsteady Stokes flow; i.e., the momentum equation, in which
the nonlinear term u · ∇u is set to zero, and the continuity
equation.

7. Steady Stokes flow; i.e., the momentum and continuity equa-
tions with the nonlinear term u · ∇u and transient term ∂tu
set to zero.

8. Transient heat transfer; i.e., the energy equation only with
prescribed steady or unsteady velocity.

9. Steady conduction heat transfer; i.e., only the energy equation
in which the advection term u·∇T and the transient term ∂tT
are zero.

Any combination of these equation characteristics is permissible
with the following restrictions. First, the equation must be set to
unsteady if it is time-dependent or if there is any type of advection.
For these cases, the steady-state (if it exists) is found as stable evo-
lution of the initial-value-problem. Secondly, the stress formulation
must be selected if the geometry is time-dependent. In addition,
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stress formulation must be employed if there are traction boundary
conditions applied on any fluid boundary, or if any mixed veloc-
ity/traction boundaries, such as symmetry and outflow/n, are not
aligned with either one of the Cartesian x, y or z axes. Using the
minimum set of equations possible for a given application clearly
saves computational time as Nek5000 solves only those equations
specified.

4.1.1 Linearized Equations

In addition to the basic evolution equations described above, Nek5000
provides support for the evolution of small perturbations about a
base state by solving the linearized equations

ρ(∂tu
′

i + u · ∇u′

i + u′

i · ∇u) = −∇p
′

i + µ∇2u′

i, ∇ · u′

i = 0,(4.5)

for multiple perturbation fields i = 1, 2, . . . subject to different ini-
tial conditions and (typically) homogeneous boundary conditions.
These solutions can be evolved concurrently with the base fields
(u, p, T ). There is also support for computing perturbation solu-
tions to the Boussinesq equations for natural convection. Calcula-
tions such as these can be used to estimate Lyapunov exponents of
chaotic flows, etc.

4.2 Geometry

4.2.1 Convention and Restrictions

The domain in which the fluid flow/heat transfer problem is solved
consists of two distinct subdomains. The first subdomain is that
part of the region occupied by fluid, denoted Ωf , while the second
subdomain is that part of the region occupied by a solid, denoted Ωs.
These two subdomains are depicted in Fig. 2.1 for several different
geometries. The entire domain is denoted as D = Ωf∪Ωs. The fluid
problem is solved in the domain Ωf , while the temperature in the
energy equation is solved in the entire domain; the passive scalars
can be solved in either the fluid or the entire domain.

We denote the entire boundary of Ωf as ∂Ωf , that part of the
boundary of Ωf which is not shared by Ωs as ∂Ω′

f , and that part

of the boundary of Ωf which is shared by Ωs as ∂Ω
′

f ( note ∂Ωf =

∂Ω′

f∪∂Ω
′

f ). In addition, ∂Ωs, ∂Ω
′

s and ∂Ω
′

s are analogously defined.
These distinct portions of the domain boundary are illustrated in
Fig. 2.1. The restrictions on the domain for Nek5000 are itemized
below.
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• The domain Ω = Ωf ∪ Ωs must correspond either to a pla-
nar (Cartesian) two-dimensional geometry, or to the cross-
section of an axisymmetric region specified by revolution of
the cross-section about a specified axis, or by a (Cartesian)
three-dimensional geometry.

• For two-dimensional and axisymmetric geometries, the bound-
aries of both subdomains, ∂Ωf and ∂Ωs, must be representable
as (or at least approximated by) the union of straight line seg-
ments, splines, or circular arcs.

• Nek5000 can interpret a two-dimensional image as either a
planar Cartesian geometry, or the cross-section of an axisym-
metric body. In the case of the latter, it is assumed that the
y-direction is the radial direction, that is, the axis of revo-
lution is at y=0. Although an axisymmetric geometry is, in
fact, three-dimensional, Nek5000 can assume that the field
variables are also axisymmetric ( that is, do not depend on
azimuth, but only y, that is, radius, x, and t ), thus reducing
the relevant equations to ”two-dimensional” form.

• In the geometry generation using PRENEK, a three-dimensional
geometry must correspond to a series of layers of planar two-
dimensional geometries. Each of those layers must adhere to
the rules governing planar two-dimensional geometries. In ad-
dition, it is assumed that the parallel planes which seperate
the layers of elements are oriented parallel to the x-y plane,
and that the first such plane is located at z = 0. Subsequent
planes are located at arbitrarily increasing values of z. Note
that this is a PRENEK restriction as Nek5000 can readily
accept general three-dimensional geometries.

Fully general three-dimensional meshes generated by other softwares
packages can be input to PRENEK as import meshes. Currently,
meshes generated by PRE-BFC and I-DEAS can be accepted by
PRENEK.

4.2.2 Moving Geometry

If the imposed boundary conditions allow for motion of the bound-
ary during the solution period (for example, moving walls, free-
surfaces, melting fronts, fluid layers), then the geometry of the
computational domain is automatically considered in Nek5000 as
being time-dependent.
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For time-dependent geometry problems, a mesh velocity w is de-
fined at each collocation point of the computational domain (mesh)
to characterize the deformation of the mesh. In the solution of the
mesh velocity, the value of the mesh velocity at the moving bound-
aries are first computed using appropriate kinematic conditions (for
free-surfaces, moving walls and fluid layers) or dynamic conditions
(for melting fronts). On all other external boundaries, the normal
mesh velocity on the boundary is always set to zero. In the tan-
gential direction, either a zero tangential velocity condition or a
zero tangential traction condition is imposed; this selection is auto-
matically performed by Nek5000 based on the fluid and/or thermal
boundary conditions specified on the boundary. However, under
special circumstances the user may want to override the defaults set
by Nek5000, this is described in the PRENEK manual in Section
5.7. If the zero tangential mesh velocity is imposed, then the mesh
is fixed in space; if the zero traction condition is imposed, then the
mesh can slide along the tangential directions on the boundary. The
resulting boundary-value-problem for the mesh velocity is solved in
Nek5000 using a elastostatic solver, with the Poisson ratio typically
set to zero. The new mesh geometry is then computed by inte-
grating the mesh velocity explicitly in time and updating the nodal
coordinates of the collocation points.

Note that the number of macro-elements, the order of the macro-
elements and the topology of the mesh remain unchanged even
though the geometry is time-dependent. The use of an arbitrary-
Lagrangian-Eulerian description in Nek5000 ensures that the mov-
ing fronts are tracked with the minimum amount of mesh distortion;
in addition, the elastostatic mesh solver can handle moderately large
mesh distortion. However, it is the responsibity of the user to de-
cide when a mesh would become ”too deformed” and thus requires
remeshing. The execution of the program will terminate when the
mesh becomes unacceptable, that is, a one-to-one mapping between
the physical coordinates and the isoparametric local coordinates for
any macro-element no longer exists.

4.3 Boundary Conditions

The boundary conditions for the governing equations given in the
previous section are described in the following. Note that if the
boundary conditions (for any field variable) are nonzero, the inho-
mogeneities can either be defined as constant, or as fortran functions
of appropriate parameters such as space, time, temperature, etc. In
this case, the user is responsible for using relevant variables in all
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fortran function definitions.

4.3.1 Fluid Velocity

Two types of boundary conditions are applicable to the fluid veloc-
ity : essential (Dirichlet) boundary condition in which the velocity is
specified; natural (Neumann) boundary condition in which the trac-
tion is specified. For segments that constitute the boundary ∂Ωf

(refer to Fig. 2.1), one of these two types of boundary conditions
must be assigned to each component of the fluid velocity. The fluid
boundary condition can be all Dirichlet if all velocity components
of u are specified; or it can be all Neumann if all traction compo-
nents t = [−pI+µ(∇u+(∇u)T )] ·n, where I is the identity tensor,
n is the unit normal and µ is the dynamic viscosity, are specified;
or it can be mixed Dirichlet/Neumann if Dirichlet and Neumann
conditions are selected for different velocity components. Exam-
ples for all Dirchlet, all Neumann and mixed Dirichhlet/Neumann
boundaries are wall, free-surface and symmetry, respectively. If the
nonstress formulation is selected, then traction is not defined on the
boundary. In this case, any Neumann boundary condition imposed
must be homogeneous; i.e., equal to zero. In addition, mixed Dirich-
let/Neumann boundaries must be aligned with one of the Cartesian
axes.

For flow geometry which consists of a periodic repetition of a par-
ticular geometric unit, the periodic boundary conditions can be im-
posed, as illustrated in Fig. 2.2. For a fully-developed flow in
such a configuration, one can effect great computational efficiencies
by considering the problem in a single geometric unit (here taken
to be of length L), and requiring periodicity of the field variables.
Nek5000 requires that the pairs of sides (or faces, in the case of
a three-dimensional mesh) identified as periodic be identical (i.e.,
that the geometry be periodic).

For an axisymmetric flow geometry, the axis boundary condition is
provided for boundary segments that lie entirely on the axis of sym-
metry. This is essentially a symmetry (mixed Dirichlet/Neumann)
boundary condition in which the normal velocity and the tangential
traction are set to zero.

For free-surface boundary segments, the inhomogeneous traction
boundary conditions involve both the surface tension coefficient σ
and the mean curvature of the free surface.



4.3 Boundary Conditions 21



22 Chapter 4 — Simulation Capabilities

4.3.2 Temperature

The three types of boundary conditions applicable to the temper-
ature are: essential (Dirichlet) boundary condition in which the
temperature is specified; natural (Neumann) boundary condition in
which the heat flux is specified; and mixed (Robin) boundary condi-
tion in which the heat flux is dependent on the temperature on the
boundary. For segments that constitute the boundary ∂Ω′

f ∪ ∂Ω
′

s

(refer to Fig. 2.1), one of the above three types of boundary condi-
tions must be assigned to the temperature.

The two types of Robin boundary condition for temperature are :
convection boundary conditions for which the heat flux into the do-
main depends on the heat transfer coefficient hc and the difference
between the environmental temperature T∞ and the surface tem-
perature; and radiation boundary conditions for which the heat flux
into the domain depends on the Stefan-Boltzmann constant/view-
factor product hrad and the difference between the fourth power
of the environmental temperature T∞ and the fourth power of the
surface temperature.

4.3.3 Passive scalar

The boundary conditions for the passive scalar fields are analogous
to those used for the temperature field. Thus, the temperature
boundary condition menu will reappear for each passive scalar field
so that the user can specify an independent set of boundary condi-
tions for each passive scalar field. The terminology and restrictions
of the temperature equations are retained for the passive scalars,
so that it is the responsibility of the user to convert the notation
of the passive scalar parameters to their thermal analogues. For
example, in the context of mass transfer, the user should recognize
that the values specified for temperature and heat flux will represent
concentration and mass flux, respectively.

4.3.4 Internal Boundary Conditions

In the spatial discretization, the entire computational domain is
subdivided into macro-elements, the boundary segments shared by
any two of these macro-elements in Ωf and Ωs are denoted as inter-
nal boundaries. For fluid flow analysis with a single-fluid system or
heat transfer analysis without change-of-phase, internal boundary
conditions are irrelevant as the corresponding field variables on these
segments are part of the solution. However, for a multi-fluid system
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and for heat transfer analysis with change-of-phase, special condi-
tions are required at particular internal boundaries, as described in
the following.

For a fluid system composes of multiple immiscible fluids, the bound-
ary (and hence the identity) of each fluid must be tracked, and a
jump in the normal traction exists at the fluid-fluid interface if the
surface tension coefficient is nonzero. For this purpose, the inter-
face between any two fluids of different identity must be defined as
a special type of internal boundary, namely, a fluid layer; and the
associated surface tension coefficient also needs to be specified.

In a heat transfer analysis with change-of-phase, Nek5000 assumes
that both phases exist at the start of the solution, and that all solid-
liquid interfaces are specified as special internal boundaries, namely,
the melting fronts. If the fluid flow problem is considered, i.e., the
energy equation is solved in conjunction with the momentum and
continuty equations, then only the common boundary between the
fluid and the solid (i.e., all or portion of ∂Ω

′

f in Fig. 2.1) can be

defined as the melting front. In this case, segments on ∂Ω
′

f that be-
long to the dynamic melting/freezing interface need to be specified
by the user. Nek5000 always assumes that the density of the two
phases are the same (i.e., no Stefan flow); therefore at the melting
front, the boundary condition for the fluid velocity is the same as
that for a stationary wall, that is, all velocity components are zero.
If no fluid flow is considered, i.e., only the energy equation is solved,
then any internal boundary can be defined as a melting front. The
temperature boundary condition at the melting front corresponds
to a Dirichlet condition; that is, the entire segment maintains a con-
stant temperature equal to the user-specified melting tempertaure
Tmelt throughout the solution. In addition, the volumetric latent
heat of fusion ρL for the two phases, which is also assumed to be
constant, should be specified.

4.4 Initial Conditions

For time-dependent problems Nek5000 allows the user to choose
among the following types of initial conditions for the velocity, tem-
perature and passive scalars:

• Zero initial conditions: default; if nothing is specified.

• Fortran function: This option allows the user to specify the
initial condition as a fortran function, e.g., as a function of x,
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y and z.

• Presolv: For a temperature problem the presolv option gives
the steady conduction solution as initial condition for the tem-
perature. For a fluid problem this option can give the steady
Stokes solution as the initial condition for the velocity pro-
vided that the classical splitting scheme is not used.

• Restart: this option allows the user to read in results from an
earlier simulation, and use these as initial conditions.

A tabulated summary of the compatibility of these initial condition
options with various other solution strategies/parameters is given
in the appendix.

4.5 Material Properties and Forcing Functions

The following restrictions are imposed on the material property
and forcing function parameters in the governing equations and ini-
tial and boundary conditions described in the above sections (here
and in what follows time-independent implies no variation in time,
whereas constant refers to uniform in space).

• ρ, the density, is taken to be time-independent and constant;
however, in a multi-fluid system different fluids can have dif-
ferent value of constant density.

• µ, the dynamic viscosity can vary arbitrarily in time and
space; it can also be a function of temperature (if the energy
equation is included) and strainrate invariants (if the stress
formulation is selected).

• σ, the surface-tension coefficient can vary arbitrarily in time
and space; it can also be a function of temperature and passive
scalars.

• f(t), the body force per unit mass term can vary with time,
space, temperature and passive scalars.

• ρcp, the volumetric specific heat, can vary arbitrarily with
time, space and temperature.

• ρL, the volumetric latent heat of fusion at a front, is taken
to be time-independent and constant; however, different con-
stants can be assigned to different fronts.
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• k, the thermal conductivity, can vary with time, space and
temperature.

• qvol, the volumetric heat generation, can vary with time, space
and temperature.

• hc, the convection heat transfer coefficient, can vary with time,
space and temperature.

• hrad, the Stefan-Boltzmann constant/view-factor product, can
vary with time, space and temperature.

• T∞, the environmental temperature, can vary with time and
space.

• Tmelt, the melting temperature at a front, is taken with time
and space; however, different melting temperature can be as-
signed to different fronts.

In the solution of the governing equations together with the bound-
ary and initial conditions, Nek5000 treats the above parameters as
pure numerical values; their physical significance depends on the
user’s choice of units. The system of units used is arbitrary (MKS,
English, CGS, etc.). However, the system chosen must be used
consistently throughout. For instance, if the equations and geome-
try have been non-dimensionalized, the µ/ρ in the fluid momentum
equation is in fact the inverse Reynolds number, whereas if the equa-
tions are dimensional, µ/ρ represents the kinematic viscosity with
dimensions of length2/time.
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This chapter identifies data layout within Nek5000 along with key
variables that are typically interrogated for analysis.

To begin, we consider the basic notation associated with the the-
ory. In the spectral element method (SEM), data is represented
on sets of non-overlapping subdomains, Ωe, e = 1, . . . , E, with the
entire domain Ω :=

⋃

Ωe. For conjugate heat transfer applications
comprising solid and fluid subdomains, we denote

Ωf :=
Ef
⋃

e=1

Ωe, Ω = Ωt :=
E
⋃

e=1

Ωe, (5.1)

where Ωf denotes the fluid-only domain and Ωt(≡ Ω) denotes the
thermal domain. Note that the fluid domain is always a subset
of the thermal domain and, because they are numbered first, fluid
elements can be identified with a restriction e ∈ [1, Ef ].

On each element, a typical variable u(x) has the representation

u(x)|
Ωe = u(x, y, z)|

Ωe =
N
∑

k=0

N
∑

j=0

N
∑

i=0

ueijk hi(r)hj(s)hk(t),(5.2)

where ueijk are the basis coefficients (typically, the unknown velocity
or temperature values); hi(r), hj(s), hk(t) are the Nth-order 1-D
Lagrange polynomials based on the GLL1 points; and r := (r, s, t)
are the coordinates in the canonical reference element, Ω̂ := [−1, 1]3.
(There should be no confusion with t, the time variable, as the
distinction will be clear from context.) Here, we also assume that
x := (x, y, z) ∈ Ωe is given by the isoparametric mapping,

x|
Ωe = xe =

N
∑

k=0

N
∑

j=0

N
∑

i=0

xe
ijk hi(r)hj(s)hk(t). (5.3)

That is, Ωe is the image of Ω̂ under the polynomial mapping (5.3).
We further assume that the mapping is invertible, which implies
that angles at the corners in Ωe are bounded away from 0 and 180
degrees. Because of the polynomial map (5.3), it is also important
that the edges of Ωe be smooth. Corners can be accommodated if
they coincide with element vertices.

1Gauss-Lobatto-Legendre quadrature points.
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5.1 Data Layout

With these preliminaries, we turn to the variable and data layout.
We note that almost all of the variables in Nek5000 can be accessed
via the include statements:

include ’SIZE’

include ’TOTAL’

within any subroutine. To illustrate the data layout, we consider
the x-component of velocity, which has the declaration

real vx(lx1,ly1,lz1,lelt)

Here, the (fortran) parameters lx1=ly1=lz1 correspond to N + 1
(one greater than the polynomial order), and lelt corresponds to
an upper bound on the number of elements per processor (in fact, per
mpi process, but we will use ‘processor’ throughout to emphasize
the notion of distinct, independent, computing resources).

For a given problem, the number of elements (Ef , Et) is specified by
nelv,nelt in the .rea (or, if present, .re2) file. However, when pro-
cessing in parallel, nelv,nelt represent the number of fluid/thermal
elements assigned to the given processor. Thus, we have one defini-
tion of nelv/nelt associated with the problem, and one associated
with the subproblem running on each processor. When running in
serial, the two are coincident. Note that, in each case, nelv ≤ nelt

≤ lelt, and the fluid elements are ordered first on each processor.

For performance reasons, data in Nek5000 is contiguous in mem-
ory, with ue0,0,0 followed by ue1,0,0, and so on, up to with ueN,N,N

[:=u(lx1,ly1,lz1,e)]. Because fortran passes data by reference,
one can pass the contents of the eth element of u to a routine with
a call of the following form

call my_routine(u(1,1,1,e),...)

In addition, one can access the contents of, say, vx via the following
loop structure:

include ’SIZE’

include ’TOTAL’

:

:



28 Chapter 5 — Nek5000 Variables

n = nx1*ny1*nz1*nelv

sum=0

do i=1,n

sum = sum+vx(i,1,1,1)

enddo

which would provide the local sum of vx on the given processor.
Note that the sum, as written, would be different on each processor.
To get the full sum across all processors, one would add

sum = glsum(sum,1) ! global sum

after then enddo statement in the preceding code segment. In this
case, the entire operation could also be written as

n = nx1*ny1*nz1*nelv

sum = glsum(vx,n) ! global sum

which computes the vector reduction within each processor followed
by the requisite global sum across all processors. The result is
returned to each processor. Note that glsum requires participation
of each processor and thus must not be put in a loop whose length
varies from processor to processor (e.g., not in a loop of length
nelv). On most parallel machines (with the exception of the Blue
Gene series), the cost of vector reductions scales as α log2 P , where
P is the number of processors and α is the communication latency.
It is thus relatively expenseive.

It is worth noting that a proper average of vx, defined as

ū :=

∫

Ω u dV
∫

Ω 1 dV
(5.4)

would be computed as

n = nx1*ny1*nz1*nelv

ubar = glsc2(bm1,vx,n)/volvm1

Here, the ’m1’ suffix refers to Mesh 1, which is where velocity and
temperature are represented. Because Nek5000 supports a discon-
tinous pressure of order N − 2 (for the lPN − lPN−2 formulation),
there is also a set of variables represented on Mesh 2. Specifically,
the pressure has a declaration of the form
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real pr(lx2,ly2,lz2,lelv)

with lx2=lx1-2 declared in SIZE. If one is using the continuous-
pressure lPN − lPN formulation, then lx2=lx1.

There are several variables that have dual representation, including
the geometry,

xm1(lx1,ly1,lz1,lelv) ! x on mesh 1

ym1(lx1,ly1,lz1,lelv) ! etc.

zm1(lx1,ly1,lz1,lelv)

xm2(lx2,ly2,lz2,lelv) ! x on mesh 2

ym2(lx2,ly2,lz2,lelv) ! etc.

zm2(lx2,ly2,lz2,lelv)

the mass matrices,

bm1(lx1,ly1,lz1,lelv) ! B on mesh 1

bm2(lx2,ly2,lz2,lelv) ! B on mesh 2

and to domain volumes, volvm1, voltm1, volvm2, voltm2, which
are the respective volumes for Ωf and Ωt represented on Mesh 1 and
Mesh 2.

5.2 Variables

This section provides a listing of several of the key variables in
Nek5000. We begin with the principal dependent variables followed
by independent variables, although it worth remarking that geom-
etry is a dependent variable in the case of free-surface and other
moving-mesh simulations.

vx(lx1,ly1,lz1,lelv), vy(lx1,ly1,lz1,lelv), vz(lx1,ly1,lz1,lelv)Velocity:

pr(lx2,ly2,lz2,lelv), pm1(lx1,ly1,lz1,lelv)Pressure:

t(lx1,ly1,lz1,lelt,ldimt)Temperature and

Passive Scalars:

bm1(lx1,ly1,lz1,lelt), bm2(lx2,ly2,lz2,lelt)Mass Matrices:

xm1(lx1,ly1,lz1,lelt), ym1(lx1,ly1,lz1,lelt), zm1(lx1,ly1,lz1,lelt)Geometry:
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xm2(lx1,ly1,lz1,lelt), ym2(lx1,ly1,lz1,lelt), zm2(lx1,ly1,lz1,lelt)

In addition to volumetric arrays of the types listed above, there are
several surface arrays associated with geometry that are convenient
for computing quantities involving surface integrals such as drag
and thermal fluxes. Four of the most important arrays are the sur-
face Jacobian (area()) and the associated components of the unit
normal vectors, which point outward away from the given element.
The following lists the data layout for these arrays.

area(lx1,lz1,6,lelt)Surface Geometry:

unx(lx1,lz1,6,lelt), uny(lx1,lz1,6,lelt), unz(lx1,lz1,6,lelt)

The ordering of the surface arrays follows the lexicographical order-
ing of the volumetric data. A typical access pattern for surface data
is shown in the following example, which calculates the net and av-
erage flux through the aggregate set of faces associated with the “t”
boundary condition.

subroutine my_flux_calc

common /mystuff/ tx(lx1,ly1,lz1,lelt)

$ , ty(lx1,ly1,lz1,lelt)

$ , tz(lx1,ly1,lz1,lelt)

integer e,f

nface = 2*ndim

a = 0.

s = 0.

call gradm1(tx,ty,tz,t) ! grad T

do e=1,nelv

do f=1,nface

if (cbc(f,e,2).eq.’t ’) then

call facind(i0,i1,j0,j1,k0,k1,nx1,ny1,nz1,f)

l=0

do k=k0,k1 ! March over face f

do j=j0,j1

do i=i0,i1

l = l + 1

s = s + (unx(l,1,f,e)*tx(i,j,k,e)

$ + uny(l,1,f,e)*ty(i,j,k,e)

$ + unz(l,1,f,e)*tz(i,j,k,e))*area(l,1,f,e)

a = a + area(l,1,f,e)

enddo

enddo

enddo

endif
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enddo

enddo

a=glsum(a,1) ! Sum across processors

s=glsum(s,1)

abar = s/a

if (nid.eq.0) write(6,1) istep,time,s,a,abar

1 format(i9,1p4e13.5,’ net flux’)

return

end
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6.1 Setting Initial Conditions

If not using restart (Sec. ??), initial conditions are defined in the
.usr file within the useric() routine, which is called once for each
gridpoint, for each field (ifield=1,2,. . . , for velocity, temperature,
passive scalar 1, etc.). It is important to note that the number
of calls to useric is large and can vary from one processor to the
next because of variability in the number of elements assigned to
each processor. As a consequence, one would not want to call com-
plex functions within useric, particularly any that would involve
interelement (and, hence, interprocessor) communication. On the
other hand, because useric is called only at the beginning of the
computation, it’s not imperative to optimize performance as might
be the case for userbc (Sec. 6.2), which is called every timestep, for
each field and for each gridpoint having user-prescribed boundary
values.

One typically specifies initial conditions as a function of position. A
simple example would be to give a tensor product of cosine functions
in a square duct with (x, y) ∈ [−1, 1]2 for arbitrary z. The following
example illustrates this case:

c-------------------------------

c I.C. EXAMPLE 1.

subroutine useric(ix,iy,iz,eg)

include ’SIZE’

include ’NEKUSE’

include ’TOTAL’

integer e,eg

ux=0

uy=0

uz=cos(.5*pi*x)*cos(.5*pi*y)

temp=0

return

end

c-------------------------------



6.1 Setting Initial Conditions 33

In this example, the independent variables, x, y, and z, as well as
the dependent variables, ux, uy, uz, and temp, are passed through
the common blocks in the NEKUSE include file. The constant pi
comes through TSTEP, which is included in TOTAL. Initial conditions
are set on a field-by-field basis, so the following example would be
equivalent to the above.

c-------------------------------

c I.C. EXAMPLE 2.

subroutine useric(ix,iy,iz,eg)

include ’SIZE’

include ’NEKUSE’

include ’TOTAL’

integer e,eg

if (ifield.eq.1) then ! Set velocity i.c.

ux=0

uy=0

uz=cos(.5*pi*x)*cos(.5*pi*y)

elseif (ifield.eq.2) then ! Set temperature i.c.

temp=0

else

temp=0 ! Set i.c. for all other passive scalars

endif

return

end

c-------------------------------

Notice that all passive scalars are set by defining temp. Different
passive scalar assigments are discriminated by the value of ifield,
which is set to 2 for temperature, 3 for the next passive scalar, etc.
(Precise usage of useric can be found via grep -i useric *.f in
nek5 svn/trunk/nek.)



34 Chapter 6 — Nek5000 Usage

6.2 Setting Boundary Conditions

Boundary conditions are assigned in a manner similar to initial con-
ditions, save for a few technical differences. First, userbc() is called
for every timestep, rather than just at the start of a simulation. Sec-
ond, it is called only for a subset of the points in the domain, rather
than for every point. In a parallel computation, it is likely that
only a fraction of the processors will actually call userbc and one
must therefore be concerned with load-balance as well as avoidance
of any communication, for example, as would be required to resolve
vector reduction operations such as global max (glmax) or a global
sum (glsum). Because of the potential for load imbalance in high
processor-count cases, it is common to precompute and store expen-
sive function evaluations in userchk() and to then de-reference the
results in userbc. The advantage of this approach is that it allows
for vectorization (which is inhibited with the point-by-point call-
ing convention of userbc) and/or storage of temporally-invariant
results. The examples below illustrate some of these points.

In the first example, we see that the boundary condition assignment
is identical to that of the initial condition above. The only difference
in the argument list is the inclusion of iside, which indicates the
element face number that is requiring boundary conditions. Gen-
erally, one does not need to reference iside, it is included simply
to provide an additional boundary discriminator. (Another bound-
ary condition discriminator is the 3-character string cbu, which is
passed through NEKUSE.)

c-------------------------------

c B.C. EXAMPLE 1.

subroutine userbc(ix,iy,iz,iside,eg)

include ’SIZE’

include ’NEKUSE’

include ’TOTAL’

integer e,eg

ux=0

uy=0

uz=cos(.5*pi*x)*cos(.5*pi*y)

temp=0

return

end

c-------------------------------
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The second example illustrates a case where the z-component of
velocity is defined by the contents of an array that the user would
typically declare and fill in usrchk().

c-------------------------------

c B.C. EXAMPLE 2. Illustrating dereference of

c a previously computed BC.

subroutine userbc(ix,iy,iz,iside,eg)

include ’SIZE’

include ’NEKUSE’

include ’TOTAL’

common /my_uvw/ u3(lx1,ly1,lz1,lelt)

integer e,eg

e = gllel(eg) ! local element number

if (ifield.eq.1) then ! Set velocity b.c.

ux=0

uy=0

uz=u3(ix,iy,iz,e)

elseif (ifield.eq.2) then ! Set temperature b.c.

temp=0

else

temp=0 ! Set b.c. for all other passive scalars

endif

return

end

c-------------------------------

The code snippet below shows a typical way to fill u3() on the first
call.

c-------------------------------

subroutine userchk

include ’SIZE’

include ’TOTAL’

common /my_uvw/ u3(lx1,ly1,lz1,lelt)

n = nx1*ny1*nz1*nelv

if (istep.eq.0) then

do i=1,n
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x=xm1(i,1,1,1)

y=ym1(i,1,1,1)

u3(i,1,1,1)=cos(.5*pi*x)*cos(.5*pi*y)

enddo

endif

return

end

c-------------------------------

A time varying boundary condition can also be prescribed either by
modifying userchk or directly in userbc, as illustrated in the next
two examples.

c-------------------------------

subroutine userchk

include ’SIZE’

include ’TOTAL’

common /my_uvw/ u3(lx1,ly1,lz1,lelt)

n = nx1*ny1*nz1*nelv

eps = 0.1

omega = 5.0

amp = 1 + eps*sin(omega*time)

do i=1,n

x=xm1(i,1,1,1)

y=ym1(i,1,1,1)

u3(i,1,1,1)=cos(.5*pi*x)*cos(.5*pi*y)*amp

enddo

return

end

c-------------------------------

c-------------------------------

c B.C. EXAMPLE 3. - time varying boundary condition

subroutine userbc(ix,iy,iz,iside,eg)

include ’SIZE’

include ’NEKUSE’

include ’TOTAL’

integer e,eg
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eps = 0.1

omega = 5.0

amp = 1 + eps*sin(omega*time)

ux=0

uy=0

uz=amp*cos(.5*pi*x)*cos(.5*pi*y)

temp=0

return

end

c-------------------------------



Chapter 7. Timestepping

In this chapter, we consider theoretical and practical issues relat-
ing to the timestepping schemes used in Nek5000. In particular,
we constrast the conditionally-stable BDFk/EXTk scheme with the
“unconditionally-stable” characteristics-based timestepper.

7.1 Theoretical Background

We consider semi-implicit numerical solution of convection-dominated
problems such as the incompressible Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u in Ω, (7.1)

∇ · u = 0 in Ω,

and the convection-diffusion equation

∂φ

∂t
+ c · ∇φ =

1

Pe
∇2φ + f, in Ω. (7.2)

subject to appropriate initial and boundary conditions on u and
φ. As with the Navier-Stokes case, we assume a divergence-free
convecting velocity field, ∇ · c = 0.

We would like to construct a high-order scheme in time that treats
the nonsymmetric convection term explicitly while treating the dif-
fusion term implicitly. One possible approach is to use Crank-
Nicolson (CN) for the diffusion term and third-order Adams-Bashforth
(AB3) for the convection term. This approach amounts to comput-
ing φn by approximately integrating the time-derivative of φ over
the interval [tn−1, tn]. The diffusion term is integrated using the
trapezoidal rule, and the convection term is integrated by extrapo-
lating the convection contribution over the interval [tn−1, tn] based
on available values from prior timesteps, tn−q, q = 1, . . . , 3. The
CN/AB3 scheme is

φn − φn−1

∆t
=

1

2

1

Pe
(∇2φn +∇2φn−1) (7.3)

+
1

12
(23 c · ∇φ|tn−1 − 16 c · ∇φ|tn−2 + 5 c · ∇φ|tn−3) +

1

2
(fn + fn−1)
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If f happens to be dependent on φn, it can alternatively be lumped
with the AB3 terms. The scheme is globally second-order accurate
in time. We choose AB3 over AB2 because the work is essentially
the same and because the stability region for AB3 encloses a signifi-
cant portion of the imaginary axis and thus contains the eigenvalues
of the convection-diffusion operator in the zero-diffusion limit.

An alternative approach to the CN-AB3 scheme is to use backward
differentiation of order k (BDFk). Here the time-derivative of φ is
approximated to order k, using a one-sided difference formula, and
the convection and diffusion terms are evaluated at time tn. To
avoid implicit treatment of the nonsymmetric convection term, we
approximate c ·∇φ at tn by extrapolation of order k (EXTk), using
values from tn−q, q = 1, . . . , k. The values for f can be extrapolated,
if they are dependent on φn, or evaluated directly at tn, if known.
A BDF2/EXT2 formulation is given by

3φn − 4φn−1 + φn−2

2∆t
=

1

Pe
∇2φn − (2 c · ∇φ|tn−1 − c · ∇φ|tn−2) + fn.(7.4)

The scheme is globally second-order accurate in time. It is read-
ily extended to kth-order accuracy by changing the second-order
approximation to the time derivative on the left-hand side of (7.4)
and using kth-order extrapolation for the convection term on the
right. As with the CN/AB3 scheme, the cost for this approach
is dominated by the work associated with the implicit solve. The
added cost of increasing k is thus essentially nil. Note that it’s not
appropriate to use ABk coefficients on the right-hand side of (7.4)
because (7.4) is an approximation to the value of the function at tn,
rather than an approximation to the integral of the function over
the interval [tn−1, tn].

7.2 Generalization of BDFk/EXTk

To extend the the BDFk/EXTk scheme to variable timestep sizes,
we first rewrite (7.4) in a more general form:

k
∑

q=0

βqφ
n−q = −

k
∑

p=1

γp c · ∇φ|tn−p + I
n, (7.5)

where In accounts for all the implicit contributions. The terms
βq are the differentiation coefficients associated with the approxi-
mation of a derivative at time tn based on known values at tn−q,
q = 0, . . . , k. The terms γp are interpolation coefficients required
to approximate a function at time tn based on known values at
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tn−p, p = 1, . . . , k. These coefficients are readily determined from
any standard approach to polynomial interpolation at knot points
[tn−k, ..., tn−j ] (j = 0 or 1). A convenient code is the general-purpose
routine for interpolation/differentiation weights, fd weights, de-
veloped by Bengt Fornberg [?]. Note that, because of potential
round-off errors, it is probably better for long time integrations to
use just the change in time values, δn−q := tn−q−tn, rather than the
time values themselves, to determine the interpolation/differentiation
coefficients. Of course, the values of δn−q should be computed by
summing ∆tn−j, j = 0, . . . , q, rather than taking the difference
tn−q − tn.

7.3 Stability Considerations

The explicit treatment of the convection term leads to timestep
size restrictions in the CN/AB3 and BDFk/EXTk schemes given
in (7.3)–(7.5) above. Assuming a closed domain (c · n ≡ 0), the
linear operator will be skew-symmetric in the zero-diffusion limit,
Assuming that the skew symmetry of the continuous (in space) op-
erator is preserved in the numerical discretization, we should seek
a temporal discretization that encloses a portion of the imaginary
axis near the origin. Both AB3 and BDF3/EXT3 accomplish this.

Consider the linear convection problem

∂φ

∂t
+ c · ∇φ = 0, (7.6)

subject to appropriate initial and boundary conditions, and assume
that it has been discretized in space to yield

dφ

dt
= −Cφ, (7.7)

where φ is the vector of unknown basis coefficients and C is the
discrete skew-symmetric convection operator. Discretizing (7.7) in
time using AB3 yields

φn = φn−1 −
∆t

12
(23Cφn−1 − 16Cφn−2 + 5Cφn−3), (7.8)

where we have assumed that the timestep size, ∆t, is constant and
that the velocity field c and, hence, C, is time invariant. The sta-
bility region for AB3 is found by considering the model problem
ut = λu, inserting this into (7.8) (φ← u, −C ← λ), and solving for
the locus of points in the complex (λ∆t)-plane such that the magni-
tude of u is unchanging (see, e.g., [?] and Appendix A.) Figure 7.1
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Figure 7.1: Stability regions for (left) AB2 and BDF2/EXT2, (cen-
ter) AB3 and BDF3/EXT3, and (right) AB3 and BDF2/EXT2a.

shows the stability region for AB3 and for BDF3/EXT3. We see
that both schemes enclose a substantial portion of the imaginary
axis near the origin. It is also possible to improve the stability of
BDF2/EXT2 by using a three-term treatment of the second-order
extrapolation. For example, for fixed ∆t, the choice γ1 = 8/3,
γ2 = −7/3, and γ3 = 2/3, will provide a stability region that is
similar to AB3, as seen in the right panel of Fig. 7.1.

The implications of Fig. 7.1 are that, for stability, one must choose
∆t ≤ zcrit/max |λ|, where zcrit = .7236 for AB3 and .6339 for
BDF3/EXT3. The value of max |λ| depends on the spatial dis-
cretization and on the computational mesh size. For classical cen-
tered finite differences (FD), one has

max |λ| =
|c|

∆x
,

which leads to the well known Courant-Friedrichs-Lewy (CFL) num-
ber

CFL :=
|c|∆t

∆x
= max |λ|∆t.

Thus, for FD + AB3, we must have CFL ≤ .7236. For a spa-
tial discretizations based on one-dimensional Fourier methods, the
maximum eigenvalue is

max |λ| = π
|c|

∆x

[?], which implies that CFL ≤ .7236/π is required for stability. For
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spectral element methods, the bound is

max |λ| = S
|c|

∆xmin

,

where S is a value ranging between 1.52 and 1.16 as the polynomial
order N is increased from 3 to ∞ [?]. Note that, for the spectral
element method, ∆xmin scales as O(N

−2) as a result of the clustering
of the Gauss-Lobatto-Legendre points near the ends of the reference
interval. Schemes that avoid the CFL restriction are thus of greater
interest in the SEM case.

7.4 Characteristics Method

The characteristics scheme due to Pironneau [?] avoids the CFL
constraint in the semi-implicit formulation by rewriting the convec-
tive term in (7.2) as a material derivative to yield

Dφ

Dt
=

1

Pe
∇2φ + f, (7.9)

where

Dφ

Dt
:=

∂φ

∂t
+ c · ∇φ (7.10)

represents the change of φ along the path line (or characteristic) as-
sociated with the convecting velocity field c. The basic idea behind
this method is to apply BDFk to (7.9), to yield (e.g., for k=2):

3φn − 4φ̃n−1 + φ̃n−2

2∆t
=

1

Pe
∇2φn + fn. (7.11)

(As before, if fn is dependent upon φn, it can be approximated
using EXTk.) In (7.11), φ̃n−q represents the value of φ at an earlier
point in time (tn−q) and at the point in space, Xn−q, from which
it originates prior to being convected forward by the velocity field.
That is,

φ̃n−q(x) := φ(Xn−q(x), tn−q). (7.12)

Note that the domain of φ̃n−q is coincident with Ω(tn), whereas the
domain of φ(., tn−q) must be coincident with Ω(tn−q). This is a
subtle point, but the implications are that spatial discretization of
(7.11) can proceed with the usual weighted residual formalism, that
is, by multiplying (7.11) by a test function v, integrating over Ω, and
restricting the search (trial) and test spaces to finite dimensional
subspaces of H1

0 (Ω).
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j

Figure 7.2: BDF2 approximation of material derivative Dφ/Dt
along the characteristic emanating from xj. Xn−q

j is the foot of
the characteristic corresponding to tn − q∆t.

To illustrate the principal implementation aspects of the character-
istics scheme, we consider the fully discretized system (in time and
space), assuming a nodal basis for φ and introducing gridpoints xj.
Assume that the spatial discretization of (7.11) leads to the follow-
ing linear system

(

−
1

Pe
A+

3

2∆t
B
)

φn = Bgn, (7.13)

where A is the stiffness matrix, B is the mass matrix, and the right-
hand side

gn := B
(

fn +
4

2∆t
φ̃
n−1
−

1

2∆t
φ̃
n−2

)

, (7.14)

accounts for the data and the values of φ at the feet of the charac-
teristics.

The central question with the characteristics scheme is how to find
the values of φ at the foot of the characteristic associated with
gridpoint xj, that is,

φ̃n−q
j := φ(Xn−q

j , tn−q),

where Xn−q
j is the foot of the characteristic emanating from xj, as

illustrated in Fig. 7.2. The standard semi-Lagrangian formulation,
suggested by Pironneau and followed by others, is,
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• starting at each point xj, march backwards along the velocity
characteristic for an amount of time q∆t,

• evaluate Xn−q
j (the endpoint of the trajectory in the preceding

step)

• then evaluate φ(Xn−q, tn−q) := φn−q(Xn−q).

This obviously requires that one interpolate φn−q(x) at points that
are not coincident with the gridpoints since, in general, one will not
haveXn−q

j = xj′ for any j
′. In fact, the situation is somewhat worse.

In addition to interpolating φ, it is necessary to interpolate the vec-
tor field c at each point along the characteristic, in order to accu-
rately march back along the trajectory. In low-order unstructured
methods, most of the interpolation cost arises from determination
of the cell containing the point of interest. In high-order meth-
ods, one has an additional cost because off-grid interpolation for an
Nth-order discretization in d space dimensions has a complexity of
O(Nd) per interpolated value. For a spectral element discretization
comprising E elements of order N , there are ∼ ENd gridpoints,
and the semi-Lagrangian evaluation cost is thus O(EN2d). More-
over, the constant is not small, given that several interpolations are
required, the Lagrangian bases need to be constructed, and, for de-
formed geometries, Newton’s method must be applied to find the
computational coordinates in the reference element as a function of
Xn−q

j . This cost must be contrasted to the cost of Eulerian operator
evaluations which have operation count scaling as O(ENd+1) and
relatively small constants (e.g., for the spectral element method, one
can evaluate w = c · ∇φ in approximately 2dENd+1 operations).

7.5 The Operator-Integration Factor Scheme

The operator-integration factor scheme (OIFS), due to Maday, Pa-
tera, and Rønquist [?] can be viewed as a variant of the characteris-
tics scheme (7.11) in which the values of φ̃n−q are obtained without
using off-grid interpolation. The basic idea is to recognize that to
evaluate φ̃n−q, one does not need to know Xn−q as (7.12) would
seem to indicate. Rather, one can find φ̃n−q by simply solving the
following initial-boundary value problem:

∂φ̃

∂s
+ c · ∇φ̃ = 0, s ∈ [tn−q, tn] (7.15)

φ̃(x, tn−q) = φ(x, tn−q) φ̃(x, t) = φ(x, t) ∀x ∈ ∂Ωc.
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Here, ∂Ωc is defined as the subset of the boundary ∂Ω where c ·n <
0, that is, the portion of ∂Ω having incoming velocity characteristics.
(Note that, in practice, one can assign φ̃(x, t) = φ(x, tn−q) on ∂Ωc.
PF, verify.)

Equation (7.15) is a pure convection problem. It has the effect
of propagating the initial condition (in this case, the values of φ
at time tn−q) forward, along the characteristics of the convecting
field c. After a time of q∆t, the values of φ̃ at the gridpoints xj are
precisely the desired values φ̃n−q(xj) := φ(Xn−q

j , tn−q). These values
can be inserted directly into (7.14). Note that no interpolation
is required to find φ̃n−q because (7.15) is solved in the Eulerian
framework, using explicit time marching with a stepsize, ∆s ≤ ∆t,
that is sufficiently small to satisfy the CFL constraint. Because
of the short duration of the time integration (q∆t), it is preferable
to solve (7.15) using a multistage integrator such as Runge-Kutta,
rather than a multistep integrator such as ABk, to avoid the start-
up problems associated with lack of information prior to the first
time step. Note that if c is a function of t and known only at discrete
times tn−q, then interpolation will need to be used to approximate it
at intermediate times (e.g., tn−q +∆s, tn−q +2∆s, etc.). Fornberg’s
interpolation routine is also useful in this context.

In summary, the OIF scheme involves solving (7.15) k times, with
different initial conditions and over different time intervals; sum-
ming these solutions together with weights βq to construct the right-
hand side (7.14); and finally solving the Helmholtz problem (7.13)
to advance the solution to the next step.

As it stands, the OIF scheme has a complexity scaling as O(k2), for
there are k integrations to be performed over time intervals ranging
from ∆t to k∆t in length. For example, suppse that one wishes
to use OIFS with BDF3, using a ∆t-based CFL of 5. To compute
φ̃n−3, one needs to integrate (7.15) from tn−3 to tn, or a total of 3∆t
in time. Using RK4, whose stability curve intersects the imaginary
axis at λ∆t ≈ 2i, and assuming, with some margin of safety, that the
maximum eigenvalue of the spectral element discretization satifes
λmax∆t ≈ 2CFL, one should set the substep size ∆s ≈ ∆t/5. That
is, five RK4 steps, each requiring four function evaluations, would
be required for each ∆t interval covered by the integration. The
total number of function evaluations would thus be 5× 4× 3 = 60
for the computation of φ̃n−3. For φ̃n−2, one would have 40, and for
φ̃n−1, one would have 20.

This complexity can be reduced to O(k) by recognizing that (7.15)
is linear. Therefore superposition can be used to compute the k
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solutions in a single pass. We replace (7.15) with the following
system: For q = k, k − 1, . . . , 1:

∂ψq

∂s
+ c · ∇ψq = 0, s ∈ [tn−q, tn−q+1] (7.16)

ψ(x, tn−q) = ψq+1(tn−q) + βqφ(x, t
n−q) ψ(x, t) = φ(x, t) ∀x ∈ ∂Ωc.

With ψk+1 := 0, the final result is

ψ1(tn) =
k
∑

q=1

βqφ̃
n−q, (7.17)

which is the desired contribution to the right-hand side of (7.14).

7.6 Extension to Navier-Stokes

The extension of the characteristics/OIF method to the Navier-
Stokes equations is straightforward. Following the formalism used
above for the convection-diffusion equations, we write (7.1) as

Du

Dt
= −∇p +

1

Re
∇2u in Ω, (7.18)

∇ · u = 0 in Ω.

The (here nonlinear) convective term has again been expressed as
a material derivative. As in the convection-diffusion problem, the
objective is to replace the conditionally stable treatment of the con-
vective term with an unconditionally stable BDFk treatment of the
material derivative. (Note that large values of k are of particular in-
terest here since one needs to compensate for accuracy loss resulting
from larger values of ∆t.) Using this approach, the semidiscretized
Navier-Stokes equations for k = 2 are

3un − 4ũn−1 + ũn−2

2∆t
= = −∇pn +

1

Re
∇2un in Ω,(7.19)

∇ · un = 0 in Ω.

Again, the values ũn−q represent the field u at the foot of the charac-
teristics. These may be computed using the usual semi-Lagrangian
formulation involving off-grid interpolation, or by the OIF approach,
in which one solves the convective subproblems

∂ũ

∂s
+ u · ∇ũ = 0, s ∈ [tn−q, tn] (7.20)

ũ(x, tn−q) = φ(x, tn−q) ũ(x, t) = φ(x, t) ∀x ∈ ∂Ωc,
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where, ∂Ωc is defined as the subset of the boundary ∂Ω where u·n <
0.

Note that there should be no confusion in (7.20) between the con-
vected field, ũ, and the convecting field, u, which is the solution to
(7.19). In solving (7.20), one treats ũ as a passive advected vec-
tor field. Values of u on the interval [tn−k, tn] are computed by
interpolating from the known fields un−k, un−k+1, . . . ,un−1, which
guarantees a divergence-free convecting field in (7.20). Unlike the
convection-diffusion problem, however, one does not have access to
un, so u is effectively extrapolated on (tn−1, t]. One has the option of
iterating between (7.20) and (7.19) to get an estimate of un, which
can then be employed in the interpolation step required when solv-
ing (7.20) on a second (third, etc.) pass. Formally, this should not
be required, as the extrapolation-based scheme is O(∆tk) accurate.
However, it may be of interest in particularly challenging applica-
tions. If properly coded, (e.g., by relying on general interpolation
routines such as Fornberg’s), this iterative approach can be included
as an option in the OIFS implementation from the outset with little
overhead.

Remark on Steady State Error

We comment that one advantage of the BDFk/EXTk formulation
is that there is no temporal error for problems that have evolved
to a steady state solution. That is, the final result (and error) is
independent of ∆t. To see this, consider (7.4) under steady-state
conditions, φn = φn−1 = . . .. The lefthand side of (7.4) vanishes
identically and represents the only term containing ∆t. The right-
hand side vanishes through a balance of the diffusion and advection
terms that are independent of ∆t and the error will (ultimately)
reflect only the spatial discretization parameters.

On the other hand, the OIFS formulation does retain a steady state
error that is influenced by ∆t. This is evident from (7.11). Under
steady state conditions, we again have φn = φn−1 = . . ., but these
are not the terms that are required to balance. The lefthand side
of (7.11) inolves weighted differences of φn, φ̃n−1, and φ̃n−2 that are
divided by ∆t. In fact, there should be no expectation that the
lefthand side should vanish, even as ∆t −→ 0, because the lefthand
side represents the variation of φ as one travels along the charac-
teristic. This material derivative will generally be nonzero and the
temporal finite difference scheme will retain an O(∆t) dependence
even under steady-state conditions. The characteristics-based OIFS
scheme amounts to mixing spatial and temporal discretizations and
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care must be exercised when implementing such methods, particu-
larly in a high-order context.

Appendix A: Stability Region Evaluation

The matlab code used to generate Fig. 7.1 is presented below. The
neutral stability curves are generated by considering application of a
particular timestepping scheme to the homogeneous model problem

du

dt
= λu.

Assume that a uniform stepsize, ∆t, is employed and that the
timestepping scheme is of the form:

1

∆t

k1
∑

q=0

βqu
n−q = λ

k2
∑

p=1

γpu
n−p. (7.21)

Eq. (7.21) has solutions of the form

un = (z)nu0, (7.22)

where (.) is used to indicate that the (generally complex) argument
z is raised to the nth power. In order for (7.22) to be neutrally
stable, we require |z| = 1, that is, z = eiθ for some value of θ
between 0 and 2π. Inserting (7.22) into (7.21) and solving for λ∆t
yields

λ∆t =

∑k1
q=0 βqe

−iqθ

∑k2
p=1 γpe

−ipθ.
. (7.23)

Evaluating (7.23) for 0 ≤ θ < 2π yields the locus associated with
the neutral stability curve.

The matlab code below fills a vector ei with complex values on the
unit circle, then creates column vectors exp(q*ei) for q=1,0,-1,-2.
Linear combinations of these column vectors form the numerator
and denominator of (7.23). The matlab plot routine is used to plot
the locus of complex pairs.
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Matlab Code for Stability Analysis

ii=sqrt(-1);

th=0:.001:2*pi; th=th’;

ith=ii*th;

ei=exp(ith);

E = [ ei 1+0*ei 1./ei 1./(ei.*ei) ];

ep = 1.e-13

ab0 = [1 0.0 0.0 0.]’;

ab1 = [0 1.0 0.0 0.]’;

ab2 = [0 1.5 -.5 0.]’;

ab3 = [0 23./12. -16./12. 5./12.]’;

bdf1 = (([ 1. -1. 0. 0.])/1.)’;

bdf2 = (([ 3. -4. 1. 0.])/2.)’;

bdf3 = (([11. -18. 9. -2.])/6.)’;

ex0 = [0 1 0 0]’;

ex1 = [0 2 -1 0]’;

ex2 = [0 3 -3 1]’;

yaxis = [-1.0*ii 1.0*ii]’;

xaxis = [-2.0+ep*ii 2.0+ep*ii]’;

du = [1. -1. 0. 0. ]’;

hold off; plot (yaxis,’k-’); axis square; axis([-1.5 0.5 -1 1]); hold on;

plot (xaxis,’k-’);

ab3 = (E*du)./(E*ab3); plot (ab3 ,’r-’);

bdf3ex2 = (E*bdf3)./(E*ex2); plot (bdf3ex2,’k-’);

print -deps ab3bdf3.eps

hold off; plot (yaxis,’k-’); axis square; axis([-1.5 0.5 -1 1]); hold on;

plot (xaxis,’k-’);

ab2 = (E*du)./(E*ab2); plot (ab2 ,’r-’);

bdf2ex1 = (E*bdf2)./(E*ex1); plot (bdf2ex1,’k-’);

print -deps ab2bdf2.eps


