
Implementation Considerations for the OIFS/Characteristics

Approach to Convection Problems

P. F. Fischer
∗

Abstract

∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.

fischer@mcs.anl.gov

1

1 Introduction

We consider semi-implicit numerical solution of convection problems such as the incom-

pressible Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2

u in Ω, (1)

∇ · u = 0 in Ω,

and the convection-diffusion equation

∂φ

∂t
+ c · ∇φ =

1

Pe
∇2φ + f, in Ω. (2)

subject to appropriate initial and boundary conditions on u and φ. As with the Navier-

Stokes case, we assume a divergence free convecting velocity field, ∇ · c = 0.

We would like to construct a high-order scheme in time that treats the nonsymmet-

ric convection term explicitly while treating the diffusion term implicitly. One possible

approach is to use Crank-Nicolson (CN) for the diffusion term and third-order Adams-

Bashforth (AB3) for the convection term. This approach amounts to computing φn by

approximately integrating the time-derivative of φ over the interval [tn−1, tn]. The diffusion

term is integrated using the trapezoidal rule, and the convection term is integrated by ex-

trapolating the convection contribution over the interval [tn−1, tn] based on available values

from prior timesteps, tn−q, q = 1, . . . , 3. The CN/AB3 scheme is

φn − φn−1

∆t
=

1

2

1

Pe
(∇2φn +∇2φn−1) (3)

+
1

12
(23 c · ∇φ|tn−1 − 16 c · ∇φ|tn−2 + 5 c · ∇φ|tn−3) +

1

2
(fn + fn−1).

If f happens to be dependent on φn, it can alternatively be lumped with the AB3 terms.

The scheme is globally second-order accurate in time. We choose AB3 over AB2 because the

work is essentially the same and because the stability region for AB3 encloses a significant

portion of the imaginary axis and thus contains the eigenvalues of the convection-diffusion

operator in the zero-diffusion limit.

An alternative approach to the CN-AB3 scheme is to use backward differentiation of

order k (BDFk). Here the time-derivative of φ is approximated to order k, using a one-

sided difference formula, and the convection and diffusion terms are evaluated at time tn.

To avoid implicit treatment of the nonsymmetric convection term, we approximate c ·∇φ at

tn by extrapolation of order k (EXTk), using values from tn−q, q = 1, . . . , k. The values for

f can be extrapolated, if they are dependent on φn, or evaluated directly at tn, if known.

A BDF2/EXT2 formulation is given by

3φn − 4φn−1 + φn−2

2∆t
=

1

Pe
∇2φn − (2 c · ∇φ|tn−1 − c · ∇φ|tn−2) + fn. (4)

2

The scheme is globally second-order accurate in time. It is readily extended to kth-order

accuracy by changing the second-order approximation to the time derivative on the left-

hand side of (4) and using kth-order extrapolation for the convection term on the right. As

with the CN/AB3 scheme, the cost for this approach is dominated by the work associated

with the implicit solve. The added cost of increasing k is thus essentially nil. Note that

it’s not appropriate to use ABk coefficients on the right-hand side of (4) because (4) is

an approximation to the value of the function at tn, rather than an approximation to the

integral of the function over the interval [tn−1, tn].

2 Generalization of BDFk/EXTk

To extend the the BDFk/EXTk scheme to variable timestep sizes, we first rewrite (4) in a

more general form:

k
∑

q=0

βqφ
n−q = −

k
∑

p=1

γp c · ∇φ|tn−p + In, (5)

where In accounts for all the implicit contributions. The terms βq are the differentiation

coefficients associated with the approximation of a derivative at time tn based on known

values at tn−q, q = 0, . . . , k. The terms γp are interpolation coefficients required to approx-

imate a function at time tn based on known values at tn−p, p = 1, . . . , k. These coefficients

are readily determined from any standard approach to polynomial interpolation at knot

points [tn−k, ..., tn−j] (j = 0 or 1). A convenient code is the general-purpose routine for

interpolation/differentiation weights, fd weights, developed by Bengt Fornberg [?]. Note

that, because of potential round-off errors, it is probably better for long time integrations

to use just the change in time values, δn−q := tn−q − tn, rather than the time values them-

selves, to determine the interpolation/differentiation coefficients. Of course, the values of

δn−q should be computed by summing ∆tn−j , j = 0, . . . , q, rather than taking the difference

tn−q − tn.

3 Stability Considerations

The explicit treatment of the convection term leads to timestep size restrictions in the

CN/AB3 and BDFk/EXTk schemes given in (3)–(5) above. Assuming a closed domain

(c ·n ≡ 0), the linear operator will be skew-symmetric in the zero-diffusion limit, Assuming

that the skew symmetry of the continuous (in space) operator is preserved in the numeri-

cal discretization, we should seek a temporal discretization that encloses a portion of the

imaginary axis near the origin. Both AB3 and BDF3/EXT3 accomplish this.

3

−1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Stability regions for (left) AB2 and BDF2/EXT2, (center) AB3 and BDF3/EXT3,

and (right) AB3 and BDF2/EXT2a.

Consider the linear convection problem

∂φ

∂t
+ c · ∇φ = 0, (6)

subject to appropriate initial and boundary conditions, and assume that it has been dis-

cretized in space to yield

dφ

dt
= −Cφ, (7)

where φ is the vector of unknown basis coefficients and C is the discrete skew-symmetric

convection operator. Discretizing (7) in time using AB3 yields

φn = φn−1 −
∆t

12
(23Cφn−1 − 16Cφn−2 + 5Cφn−3), (8)

where we have assumed that the timestep size, ∆t, is constant and that the velocity field c

and, hence, C, is time invariant. The stability region for AB3 is found by considering the

model problem ut = λu, inserting this into (8) (φ← u, −C ← λ), and solving for the locus

of points in the complex (λ∆t)-plane such that the magnitude of u is unchanging (see, e.g.,

[?] and Appendix A.) Figure 1 shows the stability region for AB3 and for BDF3/EXT3. We

see that both schemes enclose a substantial portion of the imaginary axis near the origin. It

is also possible to improve the stability of BDF2/EXT2 by using a three-term treatment of

the second-order extrapolation. For example, for fixed ∆t, the choice γ1 = 8/3, γ2 = −7/3,

and γ3 = 2/3, will provide a stability region that is similar to AB3, as seen in the right

panel of Fig. 1.

The implications of Fig. 1 are that, for stability, one must choose ∆t ≤ zcrit/max |λ|,

where zcrit = .7236 for AB3 and .6339 for BDF3/EXT3. The value of max |λ| depends on

the spatial discretization and on the computational mesh size. For classical centered finite

differences (FD), one has

max |λ| =
|c|

∆x
,

4

which leads to the well known Courant-Friedrichs-Lewy (CFL) number

CFL :=
|c|∆t

∆x
= max |λ|∆t.

Thus, for FD + AB3, we must have CFL ≤ .7236. For a spatial discretizations based on

one-dimensional Fourier methods, the maximum eigenvalue is

max |λ| = π
|c|

∆x

[?], which implies that CFL ≤ .7236/π is required for stability. For spectral element

methods, the bound is

max |λ| = S
|c|

∆xmin

,

where S is a value ranging between 1.52 and 1.16 as the polynomial order N is increased

from 3 to ∞ [?]. Note that, for the spectral element method, ∆xmin scales as O(N−2) as a

result of the clustering of the Gauss-Lobatto-Legendre points near the ends of the reference

interval. Schemes that avoid the CFL restriction are thus of greater interest in the SEM

case.

4 Characteristics Method

The characteristics scheme due to Pironneau [?] avoids the CFL constraint in the semi-

implicit formulation by rewriting the convective term in (2) as a material derivative to

yield

Dφ

Dt
=

1

Pe
∇2φ + f, (9)

where

Dφ

Dt
:=

∂φ

∂t
+ c · ∇φ (10)

represents the change of φ along the path line (or characteristic) associated with the con-

vecting velocity field c. The basic idea behind this method is to apply BDFk to (9), to

yield (e.g., for k=2):

3φn − 4φ̃n−1 + φ̃n−2

2∆t
=

1

Pe
∇2φn + fn. (11)

(As before, if fn is dependent upon φn, it can be approximated using EXTk.) In (11), φ̃n−q

represents the value of φ at an earlier point in time (tn−q) and at the point in space, X
n−q,

from which it originates prior to being convected forward by the velocity field. That is,

φ̃n−q(x) := φ(Xn−q(x), tn−q). (12)

5

Xn−2
j

Xn−1
j

Xn
j := xj

φ̃
n−2

j

φ̃
n−1

j

φn

j

Figure 2: BDF2 approximation of material derivative Dφ/Dt along the characteristic em-

anating from xj . X
n−q
j is the foot of the characteristic corresponding to tn − q∆t.

Note that the domain of φ̃n−q is coincident with Ω(tn), whereas the domain of φ(., tn−q)

must be coincident with Ω(tn−q). This is a subtle point, but the implications are that

spatial discretization of (11) can proceed with the usual weighted residual formalism, that

is, by multiplying (11) by a test function v, integrating over Ω, and restricting the search

(trial) and test spaces to finite dimensional subspaces of H1
0 (Ω).

To illustrate the principal implementation aspects of the characteristics scheme, we

consider the fully discretized system (in time and space), assuming a nodal basis for φ

and introducing gridpoints xj . Assume that the spatial discretization of (11) leads to the

following linear system

(

−
1

Pe
A+

3

2∆t
B

)

φn = Bgn, (13)

where A is the stiffness matrix, B is the mass matrix, and the right-hand side

gn := B

(

fn +
4

2∆t
φ̃

n−1
−

1

2∆t
φ̃

n−2
)

, (14)

accounts for the data and the values of φ at the feet of the characteristics.

The central question with the characteristics scheme is how to find the values of φ at

the foot of the characteristic associated with gridpoint xj , that is,

φ̃n−q
j := φ(Xn−q

j , tn−q),

where X
n−q
j is the foot of the characteristic emanating from xj , as illustrated in Fig. 2. The

standard semi-Lagrangian formulation, suggested by Pironneau and followed by others, is,

6

• starting at each point xj , march backwards along the velocity characteristic for an

amount of time q∆t,

• evaluate X
n−q
j (the endpoint of the trajectory in the preceding step)

• then evaluate φ(Xn−q, tn−q) := φn−q(Xn−q).

This obviously requires that one interpolate φn−q(x) at points that are not coincident with

the gridpoints since, in general, one will not have X
n−q
j = xj′ for any j′. In fact, the situation

is somewhat worse. In addition to interpolating φ, it is necessary to interpolate the vector

field c at each point along the characteristic, in order to accurately march back along

the trajectory. In low-order unstructured methods, most of the interpolation cost arises

from determination of the cell containing the point of interest. In high-order methods, one

has an additional cost because off-grid interpolation for an Nth-order discretization in d

space dimensions has a complexity of O(Nd) per interpolated value. For a spectral element

discretization comprising E elements of order N , there are ∼ ENd gridpoints, and the

semi-Lagrangian evaluation cost is thus O(EN2d). Moreover, the constant is not small,

given that several interpolations are required, the Lagrangian bases need to be constructed,

and, for deformed geometries, Newton’s method must be applied to find the computational

coordinates in the reference element as a function of X
n−q
j . This cost must be contrasted to

the cost of Eulerian operator evaluations which have operation count scaling as O(ENd+1)

and relatively small constants (e.g., for the spectral element method, one can evaluate

w = c · ∇φ in approximately 2dENd+1 operations).

5 The Operator-Integration Factor Scheme

The operator-integration factor scheme (OIFS), due to Maday, Patera, and Rønquist [?]

can be viewed as a variant of the characteristics scheme (11) in which the values of φ̃n−q

are obtained without using off-grid interpolation. The basic idea is to recognize that to

evaluate φ̃n−q, one does not need to know X
n−q as (12) would seem to indicate. Rather,

one can find φ̃n−q by simply solving the following initial-boundary value problem:

∂φ̃

∂s
+ c · ∇φ̃ = 0, s ∈ [tn−q, tn] (15)

φ̃(x, tn−q) = φ(x, tn−q) φ̃(x, t) = φ(x, t) ∀x ∈ ∂Ωc.

Here, ∂Ωc is defined as the subset of the boundary ∂Ω where c · n < 0, that is, the portion

of ∂Ω having incoming velocity characteristics. (Note that, in practice, one can assign

φ̃(x, t) = φ(x, tn−q) on ∂Ωc. PF, verify.)

Equation (15) is a pure convection problem. It has the effect of propagating the initial

condition (in this case, the values of φ at time tn−q) forward, along the characteristics of the

7

convecting field c. After a time of q∆t, the values of φ̃ at the gridpoints xj are precisely the

desired values φ̃n−q(xj) := φ(Xn−q
j , tn−q). These values can be inserted directly into (14).

Note that no interpolation is required to find φ̃n−q because (15) is solved in the Eulerian

framework, using explicit time marching with a stepsize, ∆s ≤ ∆t, that is sufficiently small

to satisfy the CFL constraint. Because of the short duration of the time integration (q∆t),

it is preferable to solve (15) using a multistage integrator such as Runge-Kutta, rather than

a multistep integrator such as ABk, to avoid the start-up problems associated with lack

of information prior to the first time step. Note that if c is a function of t and known

only at discrete times tn−q, then interpolation will need to be used to approximate it at

intermediate times (e.g., tn−q + ∆s, tn−q + 2∆s, etc.). Fornberg’s interpolation routine is

also useful in this context.

In summary, the OIF scheme involves solving (15) k times, with different initial con-

ditions and over different time intervals; summing these solutions together with weights βq

to construct the right-hand side (14); and finally solving the Helmholtz problem (13) to

advance the solution to the next step.

As it stands, the OIF scheme has a complexity scaling as O(k2), for there are k integra-

tions to be performed over time intervals ranging from ∆t to k∆t in length. For example,

suppse that one wishes to use OIFS with BDF3, using a ∆t-based CFL of 5. To compute

φ̃n−3, one needs to integrate (15) from tn−3 to tn, or a total of 3∆t in time. Using RK4,

whose stability curve intersects the imaginary axis at λ∆t ≈ 2i, and assuming, with some

margin of safety, that the maximum eigenvalue of the spectral element discretization satifes

λmax∆t ≈ 2CFL, one should set the substep size ∆s ≈ ∆t/5. That is, five RK4 steps, each

requiring four function evaluations, would be required for each ∆t interval covered by the

integration. The total number of function evaluations would thus be 5× 4× 3 = 60 for the

computation of φ̃n−3. For φ̃n−2, one would have 40, and for φ̃n−1, one would have 20.

This complexity can be reduced to O(k) by recognizing that (15) is linear. Therefore

superposition can be used to compute the k solutions in a single pass. We replace (15) with

the following system: For q = k, k − 1, . . . , 1:

∂ψq

∂s
+ c · ∇ψq = 0, s ∈ [tn−q, tn−q+1] (16)

ψ(x, tn−q) = ψq+1(tn−q) + βqφ(x, tn−q) ψ(x, t) = φ(x, t) ∀x ∈ ∂Ωc.

With ψk+1 := 0, the final result is

ψ1(tn) =
k

∑

q=1

βqφ̃
n−q, (17)

which is the desired contribution to the right-hand side of (14).

8

6 Extension to Navier-Stokes

The extension of the characteristics/OIF method to the Navier-Stokes equations is straight-

forward. Following the formalism used above for the convection-diffusion equations, we write

(1) as

Du

Dt
= −∇p +

1

Re
∇2

u in Ω, (18)

∇ · u = 0 in Ω.

The (here nonlinear) convective term has again been expressed as a material derivative.

As in the convection-diffusion problem, the objective is to replace the conditionally stable

treatment of the convective term with an unconditionally stable BDFk treatment of the

material derivative. (Note that large values of k are of particular interest here since one

needs to compensate for accuracy loss resulting from larger values of ∆t.) Using this

approach, the semidiscretized Navier-Stokes equations for k = 2 are

3un − 4ũn−1 + ũ
n−2

2∆t
= = −∇pn +

1

Re
∇2

u
n in Ω, (19)

∇ · un = 0 in Ω.

Again, the values ũ
n−q represent the field u at the foot of the characteristics. These may

be computed using the usual semi-Lagrangian formulation involving off-grid interpolation,

or by the OIF approach, in which one solves the convective subproblems

∂ũ

∂s
+ u · ∇ũ = 0, s ∈ [tn−q, tn] (20)

ũ(x, tn−q) = φ(x, tn−q) ũ(x, t) = φ(x, t) ∀x ∈ ∂Ωc,

where, ∂Ωc is defined as the subset of the boundary ∂Ω where u · n < 0.

Note that there should be no confusion in (20) between the convected field, ũ, and

the convecting field, u, which is the solution to (19). In solving (20), one treats ũ as

a passive advected vector field. Values of u on the interval [tn−k, tn] are computed by

interpolating from the known fields u
n−k, un−k+1, . . . ,un−1, which guarantees a divergence-

free convecting field in (20). Unlike the convection-diffusion problem, however, one does

not have access to u
n, so u is effectively extrapolated on (tn−1, t]. One has the option of

iterating between (20) and (19) to get an estimate of u
n, which can then be employed in the

interpolation step required when solving (20) on a second (third, etc.) pass. Formally, this

should not be required, as the extrapolation-based scheme is O(∆tk) accurate. However,

it may be of interest in particularly challenging applications. If properly coded, (e.g., by

relying on general interpolation routines such as Fornberg’s), this iterative approach can be

included as an option in the OIFS implementation from the outset with little overhead.

9

Remark on Steady State Error

We comment that one advantage of the BDFk/EXTk formulation is that there is no tempo-

ral error for problems that have evolved to a steady state solution. That is, the final result

(and error) is independent of ∆t. To see this, consider (4) under steady-state conditions,

φn = φn−1 = The lefthand side of (4) vanishes identically and represents the only

term containing ∆t. The righthand side vanishes through a balance of the diffusion and

advection terms that are independent of ∆t and the error will (ultimately) reflect only the

spatial discretization parameters.

On the other hand, the OIFS formulation does retain a steady state error that is

influenced by ∆t. This is evident from (11). Under steady state conditions, we again have

φn = φn−1 = . . ., but these are not the terms that are required to balance. The lefthand

side of (11) inolves weighted differences of φn, φ̃n−1, and φ̃n−2 that are divided by ∆t. In

fact, there should be no expectation that the lefthand side should vanish, even as ∆t −→ 0,

because the lefthand side represents the variation of φ as one travels along the characteristic.

This material derivative will generally be nonzero and the temporal finite difference scheme

will retain an O(∆t) dependence even under steady-state conditions. The characteristics-

based OIFS scheme amounts to mixing spatial and temporal discretizations and care must

be exercised when implementing such methods, particularly in a high-order context.

Appendix A: Stability Region Evaluation

The matlab code used to generate Fig. 1 is presented below. The neutral stability curves

are generated by considering application of a particular timestepping scheme to the homo-

geneous model problem

du

dt
= λu.

Assume that a uniform stepsize, ∆t, is employed and that the timestepping scheme is of

the form:

1

∆t

k1
∑

q=0

βqu
n−q = λ

k2
∑

p=1

γpu
n−p. (21)

Eq. (21) has solutions of the form

un = (z)nu0, (22)

where (.) is used to indicate that the (generally complex) argument z is raised to the nth

power. In order for (22) to be neutrally stable, we require |z| = 1, that is, z = eiθ for some

value of θ between 0 and 2π. Inserting (22) into (21) and solving for λ∆t yields

λ∆t =

∑k1

q=0 βqe
−iqθ

∑k2

p=1 γpe−ipθ.
. (23)

10

Evaluating (23) for 0 ≤ θ < 2π yields the locus associated with the neutral stability curve.

The matlab code below fills a vector ei with complex values on the unit circle, then

creates column vectors exp(q*ei) for q=1,0,-1,-2. Linear combinations of these column

vectors form the numerator and denominator of (23). The matlab plot routine is used to

plot the locus of complex pairs.

Matlab Code

ii=sqrt(-1);

th=0:.001:2*pi; th=th’;

ith=ii*th;

ei=exp(ith);

E = [ei 1+0*ei 1./ei 1./(ei.*ei)];

ep = 1.e-13

ab0 = [1 0.0 0.0 0.]’;

ab1 = [0 1.0 0.0 0.]’;

ab2 = [0 1.5 -.5 0.]’;

ab3 = [0 23./12. -16./12. 5./12.]’;

bdf1 = (([1. -1. 0. 0.])/1.)’;

bdf2 = (([3. -4. 1. 0.])/2.)’;

bdf3 = (([11. -18. 9. -2.])/6.)’;

ex0 = [0 1 0 0]’;

ex1 = [0 2 -1 0]’;

ex2 = [0 3 -3 1]’;

yaxis = [-1.0*ii 1.0*ii]’;

xaxis = [-2.0+ep*ii 2.0+ep*ii]’;

du = [1. -1. 0. 0.]’;

hold off; plot (yaxis,’k-’); axis square; axis([-1.5 0.5 -1 1]); hold on;

plot (xaxis,’k-’);

ab3 = (E*du)./(E*ab3); plot (ab3 ,’r-’);

bdf3ex2 = (E*bdf3)./(E*ex2); plot (bdf3ex2,’k-’);

print -deps ab3bdf3.eps

hold off; plot (yaxis,’k-’); axis square; axis([-1.5 0.5 -1 1]); hold on;

plot (xaxis,’k-’);

11

ab2 = (E*du)./(E*ab2); plot (ab2 ,’r-’);

bdf2ex1 = (E*bdf2)./(E*ex1); plot (bdf2ex1,’k-’);

print -deps ab2bdf2.eps

12

