
Nek5000 Primer

This is a short primer on the basics of using Nek5000, which is based on the Nekton 2.0 spectral
element code written by Paul Fischer, Lee Ho, and Einar Rønquist in 1986-1991, with technical
input from A. Patera and Y. Maday. Nekton 2.0 was the first three-dimensional spectral element
code and one of the first commercially available codes for distributed-memory parallel processors.
The Nek5000 development was continued from the 90s through the present by P. Fischer, Jerry
Kruse, Julie Mullen, Henry Tufo, James Lottes, Chaman Verma, and Stefan Kerkemeier.

1 Introduction to Nek5000

Nek5000 simulates unsteady incompressible fluid flow with thermal and passive scalar transport.
It can handle general two- and three-dimensional domains described by isoparametric quad or hex
elements. In addition, it can be used to compute axisymmetric flows. It is a time-stepping based
code and does not currently support steady-state solvers, other than steady Stokes and steady heat
conduction.

Nek5000 consists of three principal modules: the pre-processor prex, the solver nek5000, and the
post-processor postx. Prex and postx are based upon an X-windows GUI. Nek5000 output formats
can also be read by the parallel visualization package VisIt developed by Hank Childs and colleagues
at LLNL/LBNL. VisIt is mandatory for large problems (e.g., more than 50,000 spectral elements).
Nek5000 is written in F77 and C and uses MPI for message passing and some LAPACK routines
for eigenvalue computations (depending on the particular solver employed).

In this section, we discuss the input and output files associated with the simulation engine, nek5000.

1.1 Input Data

Each simulation is defined by three files, the .rea file, the .usr file, and the SIZEu file. In addition,
there is a derived .map file that is generated from the .rea file by running genmap. Suppose you are
doing a calculation called “shear.” The key files defining the problem would be shear.rea, shear.map,
and shear.usr. SIZEu controls (at compile time) the polynomial degree used in the simulation, as
well as the space dimension d = 2 or 3.

1.1.1 .rea files

The file shear.rea consists of several sections:

parameters These control the runtime parameters such as viscosity, conductivity, number of steps,
timestep size, order of the timestepping, frequency of output, iteration tolerances, flow rate,
filter strength, etc. There are also a number of free parameters that the user can use as handles
to be passed into the user defined routines in the .usr file.

logicals These determine whether one is computing a steady or unsteady solution, whether ad-
vection is turned on, etc.

geometry The geometry is specified in an arcane format specifying the xyz locations of each of
the eight points for each element, or the xy locations of each of the four points for each element
in 2D. (For several reasons, this format is due to be changed in the future.)

curvature This section descibes the deformation for elements that are curved.

boundary conditions Boundary conditions (BCs) are specified for each face of each element,
for each field (velocity, temperature, passive scalar #1, etc.). The most common BC is E,
which indicates that an element is connected to another element. Many of the boundary
conditions support either a constant specification or a user defined specification which may
be an arbitrary function. For example, a constant Dirichlet BC for velocity is specified by
V, while a user defined BC is specified by v. This upper/lower-case distinction is used for all
cases. There are about 70 different types of boundary conditions in all.

restart conditions Here, you can specify a file to use as an initial condition. The initial condition
need not be of the same polynomial order as the current simulation. You can also specify that,
for example, the velocity come from one file and the temperature from another. The initial
time is taken from the restart file, but this can be overridden.

output specifications Outputs are discussed in a separate section below.

It is important to note that Nek5000 currently supports two file input formats, ascii and binary.
The .rea file format described above is ascii. For the binary format, all sections of the .rea file having
storage requirements that scale with number of elements (i.e., geometry, curvature, and boundary
conditions) are moved to a second, .re2, file and written in binary. The remaining sections continue
to reside in the .rea file. The distinction between the ascii and binary formats is indicated in the
.rea file by having a negative number of elements. There are converters, reatore2 and re2torea, in
the Nek5000 tools directory to change between formats. The binary file format is the default and
important for i/o performance when the number of elements is large (> 200000, say).

1.1.2 .usr files

The file shear.usr would contain set of fortran subroutines that allows the user direct access to all the
variables during the course of the simulation. Here, the user may specify spatially varying properties
(e.g., viscosity), volumetric heating sources, body forces, and so forth. One can specify arbitrary
initial and boundary conditions through the routines useric() and userbc(). The routine userchk()
allows the user to interrogate the solution at the end of each timestep for diagnostic purposes. Some
such routines are already provided. For example, there are utilities for computing the time average
of u, u2, etc. so that one can analyze mean and rms distributions with the postprocessor. There
are routine for computing the vorticity inside the solver if one is interested in tracking that, and so
forth. Examples of .usr files can be found below and also with the particular case examples provided
in repository.

1.1.3 SIZEu file

The SIZEu file governs the memory allocation for most of the arrays in Nek5000, with the exception
of those required by the C utilities. The primary parameters of interest in SIZEu are:

ldim = 2 or 3. This must be set to 2 for two-dimensional or axisymmetric simulations (the latter
only partially supported) or to 3 for three-dimensional simulations.

lx1 controls the polynomial order of the approximation, N=lx1-1.

lxd controls the polynomial order of the integration for convective terms. Generally, lxd=3*lx1/2.
On some platforms, however, it is important for memory access performance that lx1 and lxd
be even.

lx2 = lx1 or lx1-2. This determines the formulation for the Navier-Stokes solver (i.e., the choice
between the lPN–lPN or lPN–lPN−2 methods) and the approximation order for the pressure,
lx2-1.

lelt determine the maximum number of elements per processor.

Memory Requirements

Per-processor memory requirements for Nek5000 scale roughly as 400 8-byte words per allocated
gridpoint. The number of allocated gridpoints per processor is nmax=lx1*ly1*lz1*lelt. (For 3D,
lz1=ly1=lx1; for 2D, lz1=1, ly1=lx1.) If required for a particular simulation, more memory may be
made available by using additional processors. For example, suppose one needed to run a simulation
with 6000 elements of order N = 9. To leading order, the total memory requirements would be
≈ E(N + 1)3points× 400(wds/pt)× 8bytes/wd = 6000× 103 × 400× 8 = 19.2 GB. Assuming there
is 400 MB of memory per core available to the user (after accounting for OS requirements), then
one could run this simulation with P ≥ 19, 200MB/(400MB/proc) = 48 processors. To do so, it
would be necessary to set lelt ≥ 6000/48 = 125.

We point out two other parameters of interest in the parallel context:

lp, the maximum number of processors that can be used.

lelg, an upper bound on the number of elements in the simulation.

There is a slight memory penalty associated with these variables, so one generally does not want
to have them excessively large. It is common, however, to have lp be as large as anticipated for a
given simulation so that the executable can be run without recompiling on any admissable number
of processors (Pmem ≤ P ≤ E, where Pmem is the value computed above).

2 Getting Started with Meshing

Some basic programs are available to quickly generate spectral element meshes that consist of
tensor-product arrays of elements. The generic name for the program is “genbox,” though it has

1

 X

 Y

Figure 1: 5 × 3 mesh generated by genbox.

gone through several generations and the current version is genb6.f. It works for 2D, axisymmetric,
or 3D, and can be used to couple multiple boxes together, so that the overall domain need not be
a tensor-product box. In addition, any mesh built by genbox can be modified with prenek, merged
with any other SE mesh by using prenek, or modified in the solver through some user-specified mesh
deformation. We illustrate some of the basic concepts with the following axisymmetric example.

2.1 Uniformly Distributed Mesh

Suppose you wish to simulate flow through an axisymmetric pipe, of radius R = 0.5 and length
L = 4. You estimate that you will need 3 elements in radial (y) direction, and 5 in the x direction,
as depicted in Fig. 1. This would be specified by the following input file (called pipe.box) to genbox:

axisymmetric.rea

2 spatial dimension

1 number of fields

#==

#

comments: This is the axisymmetric pipe example

#

#==

#

Box 1 Pipe

-5 -3 Nelx Nely

0.0 4.0 1.0 x0 x1 ratio

0.0 0.5 1.0 y0 y1 ratio

v ,O ,A ,W , , BC’s: (cbx0, cbx1, cby0, cby1, cbz0, cbz1)

• The first line of this file supplies the name of an existing 2D .rea file that has the appropriate
run parameters (viscosity, timestep size, etc.). These parameters can be modified later, but it
is important that axisymmetric.rea be a 2D file, and not a 3D file.

• The second line indicates the number of fields for this simulation, in this case, just 1, corre-
sponding to the velocity field (i.e., no heat transfer).

• The next set of lines just shows how one can place comments into a genbox input file.

• The line that starts with “Box” indicates that a new box is starting, and that the following
lines describe a typical box input. Other possible key characters (the first character of Box,
“B”) are “C” and “M”, more on those later.

• The first line after “Box” specifies the number of elements in the x and y directions. The fact
that these values are negative indicates that you want genbox to automatically generate the
element distribution along each axis, rather than providing it by hand. (More on this below.)

• The next line specifies the distibution of the 5 elements in the x direction. The mesh starts at
x = 0 and ends at x = 4.0. The ratio indicates the relative size of each element, progressing
from left to right. Here,

• The next line specifies the distibution of the 3 elements in the y direction, starting at y = 0
and going to y = 0.5. Again, ratio=1.0 indicates that the elements will be of uniform height.

• The last line specifies boundary conditions on each of the 4 sides of the box:

– Lower-case v indicates that the left (x) boundary is to be a velocity boundary condition,
with a user-specified distribution determined by routine userbc in the .usr file. (Upper-case
V would indicate that the velocity is constant, with values specified in the .rea file.)

– O indicates that the right (x) boundary is an outflow boundary – the flow leaves the
domain at the left and the default exit pressure is p = 0.

– A indicates that the lower (y) boundary is the axis—this condition is mandatory for the
axisymmetric case, given the fact that the lower domain boundary is at y = 0, which
corresponds to r = 0.

– W indicates that the upper (y) boundary is a wall. This would be equivalent to a v or V
boundary condition, with u = 0.

2.2 Graded Mesh

 X

 Y

Figure 2: 5 × 2 mesh generated by genbox.

Suppose you wish to have the mesh be graded, that you have increased resolution near the wall. In
this case you change ratio in the y-specification of the element distribution. For example, changing
the 3 lines in the above genbox input file from

-5 -3 Nelx Nely

0.0 4.0 1.0 x0 x1 ratio

0.0 0.5 1.0 y0 y1 ratio

to

-5 -4 Nelx Nely

0.0 4.0 1.0 x0 x1 ratio

0.0 0.5 0.7 y0 y1 ratio

yields the mesh shown in Fig. 2.

2.3 User-Specified Distribution

 X

 Y

Figure 3: 5 × 4 mesh generated by genbox.

You can also specify your own, precise, distribution of element locations. For example, another
graded mesh similar to the one of the preceding example could be built by changing the genbox
input file to contain:

-5 4 Nelx Nely

0.0 4.0 1.0 x0 x1 ratio

0.000 0.250 0.375 0.450 0.500 y0 y1 ... y4

Here, the positive number of elements for the y direction indicates that genbox is expecting Nely+1
values of y positions on the y-element distribution line. This is the genbox default, which explains
why it corresponds to Nely > 0. The corresponding mesh is shown in Fig. 3.

2.4 Mesh Modification in Nek5000

For complex shapes, it is often convenient to modify the mesh direction in the simulation code,
Nek5000. This can be done throught the usrdat2 routine provided in the .usr file. The routine usr-
dat2 is called by nek5000 immediately after the geometry, as specifed by the .rea file, is established.
Thus, one can use the existing geometry to map to a new geometry of interest.

For example, suppose you want the above pipe geometry to have a sinusoidal wall. Let x := (x, y)
denote the old geometry, and x′ := (x′, y′) denote the new geometry. For a domain with y ∈ [0, 0.5],
the following function will map the straight pipe geometry to a wavy wall with amplitude A,
wavelength λ:

y′(x, y) = y + yA sin(2πx/λ).

Note that, as y −→ 0, the perturbation, yA sin(2πx/λ), goes to zero. So, near the axis, the mesh
recovers its original form.

In nek5000, you would specify this through usrdat2 as follows

c---

subroutine usrdat2

include ’SIZE’

include ’TOTAL’

c

real lambda

c

ntot = nx1*ny1*nz1*nelt

c

lambda = 3.

A = 0.1

c

do i=1,ntot

argx = 2*pi*xm1(i,1,1,1)/lambda

ym1(i,1,1,1) = ym1(i,1,1,1) + ym1(i,1,1,1)*A*sin(argx)

enddo

c

param(59) = 1. ! Force nek5 to recognize element deformation.

c

return

end

c---

Note that, since nek5000 is modifying the mesh, postx will not recognize the current mesh unless
you tell it to, because postx looks to the .rea file for the mesh geometry. The only way for nek5000
to communicate the new mesh to postx is via the .fld file, so you must request that the geometry
be dumped to the .fld file. This is done by modifying the OUTPUT SPECIFICATIONS, which are
found near the bottom of the .rea file. Specifically, change

***** OUTPUT FIELD SPECIFICATION *****

6 SPECIFICATIONS FOLLOW

F COORDINATES

T VELOCITY

T PRESSURE

T TEMPERATURE

F TEMPERATURE GRADIENT

0 PASSIVE SCALARS

to

***** OUTPUT FIELD SPECIFICATION *****

6 SPECIFICATIONS FOLLOW

T COORDINATES <------ CHANGE HERE

T VELOCITY

T PRESSURE

T TEMPERATURE

F TEMPERATURE GRADIENT

0 PASSIVE SCALARS

The result of above changes is shown in Fig. 4.

 X

 Y

Figure 4: Wavy pipe generated by using usrdat2 to modify the mesh of 3.

2.5 Cylindrical/Cartesian-transition Annuli (update: 7/28/04)

 X

 Y

 X

 Y

Figure 5: Left: Cylinder/Cartesian-transition mesh generated by genb7 using box7.2d input file. Right: Mesh
generated using box7.2da input file, followed by one level of quad-refine in prenek.

An updated version of genb6, known as genb7, is currently under development and designed to
simply/automate the construction of cylindrical annuli, including basic transition-to-Cartesian el-
ements. More sophisticated transition treatments may be generated using the GLOBAL REFINE
options in prenek or through an upgrade of genb7, as demand warrants.

Example 2D and 3D input files are provided in the nek5/doc files box7.2d and box7.3d. Figure 5
shows a 2D example generated using the box7.2d input file, which reads:

x2d.rea

2 spatial dimension

1 number of fields

#

comments

#

#

#==

#

Y cYlinder

3 -24 1 nelr,nel_theta,nelz

.5 .3 x0,y0 - center of cylinder

ccbb descriptors: c-cyl, o-oct, b-box (1 character + space)

.5 .55 .7 .8 r0 r1 ... r_nelr

0 1 1 theta0/2pi theta1/2pi ratio

v ,W ,E ,E , bc’s (3 characters + comma)

An example of a mesh built with box7.2da is shown in Fig. 5, right. The mesh has been quad-
refined once with oct-refine option of prenek. The 3D counterpart to this mesh could joined to a
hemisphere/Cartesian transition built with the spherical mesh option in prenek. (See below.)

3 Flows in Periodic Domains

Nek5000 supports a wide variety of periodic boundary conditions, in all cooridinate directions. This
section describes some of the principal issues involved.

3.1 Specifying Periodic Boundaries

Periodicity is specified in the .rea file by identifying pairs of element sides that are to share common
degrees of freedom. A simple example would be a 2D channel flow generated using genbox, as shown
below.

#

orr2d.box: This is a 2D channel flow example

#

orr2d.rea

2 spatial dimension

1 number of fields

Box 1 Channel

-3 5 Nelx Nely

0.0 6.28319 1.0 x0 x1 ratio ! NOTE: use usrdat2() to get 2*pi!

-1. -.80 -.35 .35 .80 1. y0 ... y5

P ,P ,W ,W , , BC’s: (cbx0, cbx1, cby0, cby1, cbz0, cbz1)

Note that the genbox input uses a symmetric ordering of the faces, given in 2D as:

3--------[4]--------4

| |

| ^ |

| s| |

| | |

[1] +-----> [2]

| r |

| |

| (1) |

| |

1--------[3]--------2

Thus the periodic boundary conditions above apply to faces [1] and [2] of the elements, which
correspond to the x-faces for this particular mesh. On the other hand, the Nek5000 .rea uses a
rotational vertex and faces ordering, given in 2D as:

4--------[3]--------3

| |

| ^ |

| s| |

| | |

[4] +-----> [2]

| r |

| |

| (1) |

| |

1--------[1]--------2

The output of genbox, box.rea, will be in rotational form in order to adhere to the input format
expected by Nek5000, prenek, and postnek.

A quick search of “ P ” in box.rea generated by genbox shows the periodic boundary conditions:

P 1 4 3.000000 2.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 3 2 1.000000 4.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 4 4 6.000000 2.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 6 2 4.000000 4.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 7 4 9.000000 2.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 9 2 7.000000 4.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 10 4 12.00000 2.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 12 2 10.00000 4.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 13 4 15.00000 2.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

P 15 2 13.00000 4.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00

which indicates that face 4 of element 1 is periodic with element 3, face 2, and so forth.

3.2 Building Extruded Meshes with n2to3

In nek5/tools, there is a code n2to3.f that can be compiled with your local fortran compiler (pre-
ferrably not g77). By running this code, you can extend two dimensional domains to three di-
mensional ones with a user-specified number of levels in the z-direction. Such a mesh can then be
modified using the mesh modification approach described in Section 2.4. Assuming you have a valid
two-dimensional mesh, n2to3 is straightforward to run. Below is a typical session:

n2to3

This is the code that establishes proper

element connectivities, as of Oct., 2006.

Input old (source) file name:

h2e

Input new (output) file name:

h3e

input number of levels: (1, 2, 3,... etc.?):

16

input z min:

0

input z max:

16

input gain (0=custom,1=uniform,other=geometric spacing):

1

This is for CEM: yes or no:

n

Enter Z (5) boundary condition (P,v,O):

v

Enter Z (6) boundary condition (v,O):

O

this is cbz: v O <---

320 elements written to h3e.rea

FORTRAN STOP

3.3 Building Spherical Meshes in PRENEK

Shperical meshes can come in many flavors. Three basic ones are the interior of a sphere, the
exterior of a sphere, and a spherical shell mesh. All of these can be built with prenek. Here, we
give the procedure for the latter two cases, starting with the spherical shell.

3.3.1 A Basic Spherical Shell Mesh

The following commands will build a spherical shell mesh, having inner radius 0.5 and outer radius
0.6, using 24 spectral elements.

preh

sph_sh

READ PREVIOUS PARAMETERS

base_ns (found in nek5/doc)

BUILD FROM FILE

<cr> (take default)

REVIEW/MODIFY

DELETE ELEMENT (delete single element)

CURVE SIDES

SPHERICAL MESH

0 0 0 (coordinate of sphere center)

w (whole sphere)

n (no prolate spheroid)

s (spherical shell)

0.5

s (spherical shell)

0.6

e (exit spherical mesh generator)

BUILD MENU

END ELEMENTS

ACCEPT MATL,QVOL

SET BCs

SET ENTIRE LEVEL

VELOCITY

FORTRAN FUNCTION (set bcs to "v")

END LEVEL

ACCEPT B.C.’s

EXIT

The mesh can subsequently be refined with oct- or quad-refine options in GLOBAL refine, upon
reentering prenek.

3.3.2 A Spherical Shell Mesh in a Cartesian Box

The following commands will build a spherical shell mesh, having inner radius 0.5 and outer radius
0.6, using 24 spectral elements, inside a layered Cartesian box.

preh

sph_sh

READ PREVIOUS PARAMETERS

base_ns (found in nek5/doc)

BUILD FROM FILE

<cr> (take default)

REVIEW/MODIFY

DELETE ELEMENT (delete single element)

CURVE SIDES

SPHERICAL MESH

0 0 0 (coordinate of sphere center)

w (whole sphere)

n (no prolate spheroid)

s (spherical shell)

0.5

s (spherical shell)

0.6

c (extend to Cartesian box)

0.9

c (extend to Cartesian box)

1.5

c (extend to Cartesian box)

2.5

c (extend to Cartesian box)

4.0

c (extend to Cartesian box)

6.5

c (extend to Cartesian box)

10.0

e (exit spherical mesh generator)

BUILD MENU

END ELEMENTS

ACCEPT MATL,QVOL

SET BCs

SET ENTIRE LEVEL

VELOCITY

FORTRAN FUNCTION (set bcs to "v")

END LEVEL

ACCEPT B.C.’s

EXIT

The mesh can subsequently be refined with oct- or quad-refine options in GLOBAL refine, upon
reentering prenek.

3.4 Combining Spherical Shell Meshes with Other Meshes

Note that you can combine a cylinder on, say, the interval [-z0,0] with a hemisphere, provided they
have the same planform at z=0. To do so, you would simply build a hemisphere w/ prenek; build
a cylinder + transition w/ genb7; start a new prenek session using either of these two .rea files
and then IMPORT MESH to bring in the other. Prenek will automatically identify the element
interface that exists at z=0 and assign the correct boundary conditions.

In a similar fashion, you can insert a sphere or hemisphere in a tensor-product array of elements by:
using genbox to build a tensor product array of elements; use prenek to build a spherical region with
matching Cartesian interface; using the tensor-product box to start a new session and importing
the spherical region with IMPORT MESH. Prenek will query, “Displace existing elements in box?”
If you reply y then any existing element that is in the bounding box of the incoming mesh will
be deleted. This provides a convenient way of carving out a space for the new mesh within the
originating tensor-product domain.

4 Data Layout

Nek5000 was designed with two principal performance criteria in mind, namely, single-node perfor-
mance and parallel performance.

A key precept in obtaining good single node performance was to use, wherever possible, unit-stride
memory addressing, which is realized by using contiguously declared arrays and then accessing the
data in the correct order. Data locality is thus central to good serial performance. To ensure that
this performance is not compromised in parallel, the parallel message-passing data model is used,
in which each processor has its own local (private) address space. Parallel data, therefore, is laid
out just as in the serial case, save that there are multiple copies of the arrays—one per processor,
each containing different data. Unlike the shared memory model, this distributed memory model
makes data locality transparent and thus simplifies the task of analyzing and optimizing parallel
performance.

Some fundamentals of Nek5000’s internal data layout are given below.

1. Data is laid out as ue
ijk = u(i, j, k, e)

i=1,...,nx1 (nx1 = lx1)

j=1,...,ny1 (ny1 = lx1)

k=1,...,nz1 (nz1 = lx1 or 1, according to ndim=3 or 2)

e=1,...,nelv, where nelv ≤ lelv, and lelv is the upper bound on number of elements, per
processor.

2. Fortran data is stored in column major order (opposite of C).

3. All data arrays are thus contiguous, even when nelv < lelv

4. Data accesses are thus primarily unit-stride (see chap.8 of DFM for importance of this point),
and in particular, all data on a given processor can be accessed as, e.g.,

do i=1,nx1*ny1*nz1*nelv

u(i,1,1,1) = vx(i,1,1,1)

enddo

which is equivalent but superior (WHY?) to:

do e=1,nelv

do k=1,nz1

do j=1,ny1

do i=1,nx1

u(i,j,k,e) = vx(i,j,k,e)

enddo

enddo

enddo

enddo

which is equivalent but vastly superior (WHY?) to:

do i=1,nx1

do j=1,ny1

do k=1,nz1

do e=1,nelv

u(i,j,k,e) = vx(i,j,k,e)

enddo

enddo

enddo

enddo

5. All data arrays are stored according to the SPMD programming model, in which address spaces
that are local to each processor are private — not accessible to other processors except through
interprocessor data-transfer (i.e., message passing). Thus

do i=1,nx1*ny1*nz1*nelv

u(i,1,1,1) = vx(i,1,1,1)

enddo

means different things on different processors and nelv may differ from one processor to the
next. (By at most 1, WHY ?)

6. For the most part, low-level loops such as above are expressed in higher level routines only
through subroutine calls, e.g.,:

call copy(u,vx,n)

where n:=nx1*ny1*nz1*nelv. Notable exceptions are in places where performance is critical,
e.g., in the middle of certain iterative solvers.

5 Free Surface Flows

5.1 Overview of the Formulation

We consider unsteady incompressible flow in a domain with moving boundaries:

∂u

∂t
= −∇p + 1

Re
∇ · (∇ + ∇T)u + NL, ∇ · u = 0, (1)

Here, NL represents the quadratic nonlinearities from the convective term. Our spatial discretiza-
tion of (1) is based on the spectral element method (SEM) [1], which is a high-order weighted
residual technique similar to the finite element method. In the SEM, the solution and data are
represented in terms of Nth-order tensor-product polynomials within each of E deformable hexa-
hedral (brick) elements. Typical discretizations involve E=100–10,000 elements of order N=8–16
(corresponding to 512–4096 points per element). Vectorization and cache efficiency derive from
the local lexicographical ordering within each macro-element and from the fact that the action of
discrete operators, which nominally have O(EN6) nonzeros, can be evaluated in only O(EN4) work
and O(EN3) storage through the use of tensor-product-sum factorization [2]. The SEM exhibits
very little numerical dispersion and dissipation, which can be important, for example, in stability
calculations, for long time integrations, and for high Reynolds number flows. We refer to [3] for
more details.

Our free-surface hydrodynamic formulation is based upon the arbitrary Lagrangian-Eulerian (ALE)
formulation described in [4]. Here, the domain Ω(t) is also an unknown. As with the velocity, the
geometry x is represented by high-order polynomials. For viscous free-surface flows, the rapid
convergence of the high-order surface approximation to the physically smooth solution minimizes
surface-tension-induced stresses arising from non-physical cusps at the element interfaces, where
only C0 continuity is enforced. The geometric deformation is specified by a mesh velocity w := ẋ
that is essentially arbitrary, provided that w satisfies the kinematic condition w · n̂|Γ = u · n̂|Γ,
where n̂ is the unit normal at the free surface Γ(x, y, t). The ALE formulation provides a very
accurate description of the free surface and is appropriate in situations where wave-breaking does
not occur.

To highlight the key aspects of the ALE formulation, we introduce the weighted residual formulation
of (1): Find (u, p) ∈ XN × Y N such that:

d

dt
(v,u) = (∇ · v, p) −

2

Re
(∇v,S) + (v, NL) + c(v,w,u), (∇ · u, q) = 0, (2)

for all test functions (v, q) ∈ XN × Y N . Here (XN , Y N) are the compatible velocity-pressure
approximation spaces introduced in [5], (., .) denotes the inner-product (f ,g) :=

∫
Ω(t) f ·g dV , and S

is the stress tensor Sij := 1
2
(∂ui

∂xj
+ ∂uj

∂xi
). For simplicity, we have neglected the surface tension term.

A new term in (2) is the trilinear form involving the mesh velocity

c(v,w,u) :=
∫

Ω(t)

3∑

i=1

3∑

j=1

vi

∂wjui

∂xj

dV, (3)

which derives from the Reynolds transport theorem when the time derivative is moved outside the
bilinear form (v,ut). The advantage of (2) is that it greatly simplifies the time differencing and
avoids grid-to-grid interpolation as the domain evolves in time. With the time derivative outside of

the integral, each bilinear or trilinear form involves functions at a specific time, tn−q, integrated over
Ω(tn−q). For example, with a second-order backward-difference/extrapolation scheme, the discrete
form of (2) is

1

2∆t

[
3(vn,un)n − 4(vn−1,un−1)n−1 + (vn−2,un−2)n−2

]
= Ln(u) + 2ÑL

n−1
− ÑL

n−2
. (4)

Here, Ln(u) accounts for all linear terms in (2), including the pressure and divergence-free constraint,

which are evaluated implicitly (i.e., at time level tn, on Ω(tn)), and ÑL
n−q

accounts for all nonlinear
terms, including the mesh motion term (3), at time-level tn−q. The superscript on the inner-
products (., .)n−q indicates integration over Ω(tn−q). The overall time advancement is as follows.
The mesh position xn ∈ Ω(tn) is computed explicitly using wn−1 and wn−2; the new mass, stiffness,
and gradient operators involving integrals and derivatives on Ω(tn) are computed; the extrapolated
right-hand-side terms are evaluated; and the implicit linear system is solved for un. Note that it is
only the operators that are updated, not the matrices. Matrices are never formed in Nek5000 and
because of this, the overhead for the moving domain formulation is very low.

5.2 Developing Free Surface Applications

Nek5000 supports several free-surface options that were developed by Lee Ho as part of his Ph.D.
thesis and while he was a principal at Nektonics. Because it is not heavily used by the current
development group, users of the free-surface features in Nek5000 will have to develop their own
experience with the capabilities and limitations of the current formulation. Additions to this write-
up are welcomed and encouraged.

There are three steps to setting up a free-surface calculation in Nek5000:

• In the .rea file: set IFSTRS and IFMVBD to T (true); set MS (or other) conditions on the
free-surface boundaries; and set IFXYO=T to ensure output of the geometry.

• In the SIZEu file, set lx1m=lx1, ly1m=ly1, lz1m=lz1 and recompile all object files to allocate
memory to the free-surface variables.

• In the .usr file, set surface tension (if not done through bcs).

We introduce a couple of examples here.

5.2.1 Flow Down an Plate

We have extracted the following test case from Lee Ho’s thesis [4], which also provides reference to
experimental data.

A viscous coating on a vertical plate is subjected to the force of gravity. After a short distance
(here, time), waves develop with a given shape and wavelength. The relevant parameters are:

• Weber number: We := x

• Reynolds number: Re := x

6 History Points

0 PACKETS OF DATA FOLLOW

***** HISTORY AND INTEGRAL DATA *****

56 POINTS. Hcode, I,J,H,IEL

UVWP H 31 31 1 6

UVWP H 31 31 31 6

UVWP H 31 31 31 54

UVWP H 31 31 31 102

UVWP H 31 31 31 150

" " " " " "

" " " " " "

Above some are some lines that define history points in the .rea file. Some important comments:

1. The ”56 POINTS” line needs to be followed by 56 lines of the type shown. Where the ”56” is
on that line doesn’t matter (as long as it is first in the line, the rest is ignoored...)

2. However, in each of the following lines, which have the UVWP etc., location is CRUCIAL. It
must be layed out exactly as indicated above. (Why? Because those lines contain character
strings, they use formatted reads, which are very particular about where the data is. Lines that
do not have character entries can use free formatted reads, where blanks serve as separators;
thus, no format restrictions.)

3. So, if you want to pick points close to the center of element 1 and are running with lx1=10,
say, you might choose:

UVWP H 5 5 5 1

which I created by copy-paste of a line above and then overwrote while preserving the right-
adjusted integer locations. (In fact, the indicated point would really be at the middle of the
element only if lx1=9 in this case. Why?)

4. The UVWP tells the code to write the 3 velocity components and pressure to the .sch file at
each timestep (or, more precisely, whenever mod(istep,iohis)=0, where iohis=param(52)).

Note that if you have more than one history point then they are written sequentially at each
timestep. Thus 10 steps in the first example with param(52)=2 would write (10/2)*56 = 280
lines to the .sch file, with 4 entries per line.

5. The ”H” indicates that the entry corresponds to a requested history point.

6. If the ijk values (5 5 5 in the preceding example line) exceed lx1,ly1,lz1 of your SIZEu file,
then they are truncated to that value. For example, if lx1=10 for the data at the top (31 31
31) then the code will use ijk of (10 10 10), plus the given element number, in identifying the
history point.

It is often useful to set ijk to large values (i.e., > lx1) because the endpoints of the spectral
element mesh are invariant when lx1 is changed. Thus, because “1” is also invariant, the entry

UVWP H 31 1 1 6

would track the same point in physical space for all values of lx1 up to lx1=31.

7. A difficulty with the current nek history point specification is finding the requisite ijke (e=element
number) values that correlate to the point of interest. There is a way to do this in postx that
is relatively painless, but this is not useful for very large problems. (The approach is:

SET PLOT FORMAT

SCALAR

VALUES

PLOT

Follow the instructions and for each point requested, postx will write to the screen lines that
are similar to the above, ready to be pasted into the .rea file.)

8. When you run nek, it will write the coordinate information to the logfile on the first timestep
so that you can verify the point locations.

7 README FILES

Below are the contents of the README file in the nek5/doc directory. There are several others
there as well, so some answers to questions may be found in one or more of those.

January 20,2002 pff

o drive.f now supports constant volume flow rate in x, y, or z

direction, depending on whether param54 is 1,2,or 3. x=default

for any other value of p54.

o Global fdm method incorporated as solver and preconditioner for

E solve when p116=nelx, p117=nely, p118=nelz. Note that setting

one of these to its negative value determins the "primary" direction

that is wholly contained within each processor. Thus, if, for example,

nelx = -6, nely = 8 and nelz = 5, then the 8x5 array of elements would

be partitioned among P processors, and each processor would receive

(8x5)/P stacks of depth 6. It is thus relatively important that

the product of the number of elements in the remaining secondary

and tertiary directions (those not flagged by a minus sign) should

be a multiple of P.

o Dealiasing is currently enabled, whenever p99=2. There is some memory

savings to be had if dealiasing is not being used by editing DEALIAS

and commenting out the appropriate parameter statements.

o The comm_mpi routine has been cleaned up. All vector reductions are

performed using mpi_all_reduce so, in theory, there should not be a

constraint that P=2**cd, provided one isn’t using the XXt solver (e.g.,

if one is using the gfdm solver).

o The XXt solver is almost in place for the steady conduction case.

--

9/10/01, pff

The routines navier5.f and connect1.f have been modified to allow for multiple

passive scalars.

--

Nekton consists of three principal modules: the pre-processor, the solver,

and the post-processor. The pre- and post-processors, (resp. prenek and

postnek) are based upon an X-windows GUI. Recently, postnek has been

extended to output Visual Toolkit (vtk) files, so that output my be viewed

in the cave. This is still under development.

The solver, nek5000, is written in F77 and C and supports either MPI or

Intel’s NX message passing libraries. It is a time-stepping based code

and does not currently support steady-state solvers, other than steady

Stokes and steady heat conduction.

To get started, you create a directory, say, nek5, and unpack the tarfile:

mkdir nek5

mv tarfile.gz nek5

cd nek5

gunzip tarfile

tar -xvf tarfile

rm tarfile

The tarfile will put the source code in the directory src, and will

create additional subdirectories: nek5/bin, nek5/2d8, nek5/3d6,

and nek5/prep.

nek5/bin contains the shell scripts which I use to start a job.

I usually keep these files in my /bin directory at the top level.

The scripts will be of use so you can see how I manage the files

created by nek5.

nek5/3d6 (2d8) contains an example .rea file, with associated .fld00 file

for restarting. Once you "gunzip *" in all of the directories

you should be able to build the executable by typing "makenek" in

the 3d6 directory.

For each job that you run, you need a corresponding "subuser.f" file in the

nek5/src directory. "subuser.f" provides the user supplied function

definitions (e.g., for boundary conditions, initial conditions, etc). I

usually keep several subuser.f files in the nek5 directory for different

cases under the name of *.user, e.g., channel.user for channel flow, or

cyl.user for flow past a cylinder, etc.

To build the source, simply

cd 3d6

makenek (or, "makebk" to make in the background...)

To run it, type

nekb co1a

This will run the job entitled "co1a" in background. The scripts I have

set up in nek5/bin are:

nek: runs interactively,

nekl: runs interactively, but redirects std. out to job.log (& logfile)

nekb: like nekl, but in the background

nekd: like nek, but with dbx

Each looks for the session name (the prefix of the "*.rea" file) as

an argument.

To build the pre- and post-processors, you will cd to nek5/prep.

Type "make" to make postx, and "make -f mpre" to build prex.

If you then put postx and prex into your top-level bin directory

you’ll be able to invoke the pre and post-processors with the

commands "prex" or "postx", etc. (I assume you’re already somewhat

familiar w/ using pre and post?).

Here’s a brief explanation of the nek5000 input format.

First, an overview of the structure of the file:

Section I: Parameters, logical switches, etc.

This section tells nek5000 whether the input file reflects

a 2D/3D job, what combination of heat transfer/ Stokes /

Navier-Stokes/ steady-unsteady / etc. shall be run.

What are the relevant physical parameters.

What solution algorithm within Nekton to use, what timestep size

or Courant number to use, or whether to run variable DT, etc.

Section II: Mesh Geometry Info

This section gives the number of elements, followed by the

4 (8) vertex pairs (triplets) which specify the corner of

each two- (three-) dimensional element.

A subsection which follows specifies which element surfaces

a curved. The exact parameter definitions vary according to

the type of curved surface. I usually make my own definitions

when I need to generate a new curved surface, e.g., spheres

or ellipsoids. We use the Gordon-Hall mapping to generate

the point distribution within elements, and map according to

arc-length for points along the edges of two-dimensional

elements. For 3D spheres, I take the element surface point

distribution to be the intersection of the great circles

generated by the corresponding edge vertices, and again use

Gordon-Hall to fill the element interior volume.

The next subsection contains all the boundary condition information

for each element. "E" means that the element is connected to

the element specifed by parameter 1, on the side specified by

parameter 2. "T" means a constant temperature along the edge

of the element, "t" means a temperature distribution according

to a fortran function which the user writes and links in with

source code contained in "subuser.f". Similarly, "V" means

a constant velocity along the element edge (three components

specifed in parameters 1, 2, and 3, resp.), and "v" implies a

user specifed fortran function. "O" is for outflow, "SYM" is

for symmetry bc’s., etc.

Section III: Output Info.

This section specifies what data should be output, including

field dumps (i.e., X,Y,Z + U,V,W + P + T, or any combination

thereof) and time history trace info... e.g., u(t), v(t), etc.

at a particular point, for each time step. (Corresponds to a

hot wire probe output in some sense.)

Also, if this run is to restart from a previous field dump (e.g.,

one computed with a lower order, but the same spectral element

configuration), that is specified in this section.

This is very brief, but it should give you a road map to the

general layout of the input files.

--

Using PRENEK

This is a brief description of how to modify an existing mesh.

Typically it’s easiest to modify run parameters just by editing

the file. If you wish to modify the geometry, it’s (generally)

best to do this through prenek. To do this, type "pre"

(to begin executing prenek).

Then, click on "READ PREVIOUS PARAMETERS"

Enter "box" with the keyboard.

Then "ACCEPT PARAMETERS"

Then, "BUILD FROM FILE"

Just hit <cr> to accept the default, box.rea.

Then, ACCEPT... ACCEPT... ACCEPT... EXIT

--

Using PRENEK to set periodic BCs

Currently, genb6 will properly set periodic BCs only for the single

box case, but not for geometries that feature multiple boxes defined

in a single file. (If someone wants to volunteer to fix this, assistance

is always welcomed.) In this case, it’s generally easiest to set the

periodic bcs using the PERIODIC AUTO feature in prenek.

To do this:

you are correct -- multibox + genbox will not generate correct

periodic bcs (in general).

The best bet is to leave the sides that you wish to be periodic

blank, then to run the mesh through prenek as follows.

Start prex.

Click on "READ PREVIOUS PARAMETERS"

Type "box" using the keyboard.

Click "ACCEPT PARAMETERS"

Click, "BUILD FROM FILE"

Hit <cr> to accept the default, box.rea.

Click, ACCEPT... ACCEPT... until you get to the

SET BCs menu and click on that.

Click on SET ENTIRE LEVEL (near the bottom).

Click on PERIODIC AUTO

answer "n" to the question at the bottom of the screen.

Then click ACCEPT ACCEPT etc. as you move to exit.

Run genmap to generate the requisite .map file.

The .rea file can be edited to change

viscosity

number of steps

Courant number (typ.=2)

Torder (order of time stepping - typ. 1 in the beginning,

for more stability, then Torder=2 when you are after

sensitive results...)

IOSTEP (frequency of .fld dumps)

etc.

==

STARTING THE JOB:

If you’ve compiled your code (with LELT=LELV=sufficiently large), you

should now be set to run nek5000. For serial simulations, in nek5/bin

there are several scripts for running. To use them to run, say blah.rea,

type:

../bin/nek blah -- runs interactively,

../bin/nekl blah -- runs interactively, but redirects stdout to blah.log (& logfile)

../bin/nekb blah -- like nekl, but in the background

../bin/nekd blah -- like nek, but starts gdb for debugging

A successful run will produce blah.fld01 ... blah.fldnnn, where nnn

is the number of .fld files determined by your particular combination

of NSTEPS, FINTIME, IOSTEP, IOTIME, or extra calls to outpost() that

might be in blah.usr.

==

ENDING THE JOB:

The job will quit after either FINTIME is reached (I never use this)

or NSTEPS have completed.

Should you wish to terminate sooner, or get an output *right now*, I’ve

implemented a little check for a file called "ioinfo" into the code.

To get an output at the end of the current step, but keep on running,

type: "echo 1 > ioinfo".

To get an output at the end of the current step, and then stop the job,

type: "echo -1 > ioinfo".

To stop the job without dumping the .fld file,

type: "echo -2 > ioinfo".

==

CHANGING BOUNDARY CONDITIONS, INITIAL CONDITIONS, ETC.

I’ve set the genbox2.dat and genbox2.small files to specify fortran boundary

conditions at inflow (denoted by lower-case characters)

These are computed in the user accessible source code

in "../src/subuser.f" (SUBROUTINE USERBC and SUBROUTINE USERIC).

In the subuser.f file which I gave you, I specified

a blasius profile for the initial and boundary conditions.

This is the same code I used for my hemisphere runs

NOTE*

You probably will want to change the boundary layer thickness (delta) in

subuser.f. Just edit subuser.f, search for where delta is specified, change

it, and go back to 3d6 (3d8? 3d10?) and type "makenek". We can very easily

make this a runtime parameter, if you find that you’re making many trials

with different boundary layer thicknesses.

===

RESTARTING

This is really easy...

Just take the .rea file you’re about to start with, go to the bottom

of the file, go up ~33 lines, and change the line:

" 0 PRESOLVE/RESTART OPTIONS *****"

to:

" 1 PRESOLVE/RESTART OPTIONS *****"

"my_old_run"

or:

" 1 PRESOLVE/RESTART OPTIONS *****"

"my_old_run.fld"

or:

" 1 PRESOLVE/RESTART OPTIONS *****"

"my_old_run.fld01 TIME=0.0 "

etc.... (note, drop quotations)

Note that the new run must have the same topology as the old run,

that is, the same number of elements in the same location. However,

you can change polynomial degree by running in a different directory

(e.g., 3d8) with a code which has been compiled with a different

SIZEu file.

--

Files needed to start a particular run called, say, "hemi1":

hemi1.rea

hemi1.sep

hemi1.map

If hemi1 is to use an old field file (say, "hemi_old.fld23") as an

initial condition, you will also need to have:

hemi_old.fld23

If hemi_old.fld23 is in binary format, you will need the associated

header file (which is ascii):

hemi_old.fhd23

Note that hemi_old must have the same number of elements as hemi1.

However, it can be of different polynomial degree, provided it is

of degree less than or equal to NX1+2, where NX1 is the number

of grid points in each direction within each element.

(Note: NX1 := polynomial degree + 1.)

In addition to the above hemi1-specific files, you will also need

a job specific "subuser.f" file to be compiled and linked in with

the source code. Frequently this file is the same over a broad

range of parametric studies. It incorporates the user defined

forcing functions, boundary conditions, and initial conditions (if

not restarting from a previous .fld file). Hence, it’s likely

that you will not need to edit/recompile this routine very often.

Note that if you are simultaneously undertaking two *different*

Nekton studies in two different directories which both point to

the same source, you will need to swap subuser.f files each time

you recompile the source in either directory. I usually do this

by keeping the subuser.f files in the src directory under the names,

e.g., hemi.user, cylinder.user, channel.user, etc. Then when I’m

compiling the source code for the hemisphere problem I would go to

the /src directory and copy hemi.user to subuser.f prior to compiling

in the working directory.

To build nek5000,

cd 3d6

makenek

To run nek5000 in foreground

../bin/nek hemi1

To run nek5000 in background

../bin/nekb hemi1

To terminate a job (other than "kill")

echo 1 > ioinfo --- dumps fld file after current step and continues

echo -1 > ioinfo --- dumps fld file at end of step and quits

echo -2 > ioinfo --- quits at end of step. No fld file dumped.

echo -# > ioinfo (#>2) --- quits at end of step #, after dumping fld file.

To run with multiple passive scalars (e.g., temperature and one or more other

convected fields), you should do the following.

0) Make sure that you have a version of nek5000 and postx that works with

multiple passive scalars. (If you receive these after 9/9/01, you

probably do.)

1) Assuming you already have a .rea file set for Navier-Stokes plus heat

transfer, you can use prex to generate a new .rea/.map/.sep file set

that allows for an additional passive scalar. Simply start prenek in

the director of interest. Read parameters from your existing .rea file,

then select

ALTER PARAMETERS

PASSIVE SCALAR (1)

WITH CONVECTION (Y)

Hit <cr> through all the parameters (edit these in the .rea file later,

with the editor of your choice). Then, read the geometry from your

existing file. When you get to the boundary condition menu, you will be

prompted for BC’s for the new passive scalar. SET ENTIRE LEVEL,

Insulated, is a common choice.

2) Exit prenek. Note that the default conductivity and rhocp for the

new passive scalar is (1.0,1.0). These can be changed by editing the

.rea file (if you’re not making them functions of time or space).

Simply locate the following lines (found right after the parameters)

4 Lines of passive scalar data follows2 CONDUCT; 2RHOCP

0.00100 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000

2.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000

The first 2 lines are the conductivities for the 9 passive scalars.

You only need to set the first of these. In the example above,

we have conduct(PS1) =.001.

The second 2 lines are the rhocp values for the 9 passive scalars.

You only need to set the first of these. In the example above,

we have rhocp(PS1) =2.0.

An example of specifying surface normals in the .usr file

c---

subroutine userbc (ix,iy,iz,iside,eg)

include ’SIZE’

include ’TOTAL’

include ’NEKUSE’

integer e,eg,f

real snx,sny,snz ! surface normals

f = eface1(iside)

e = gllel (eg)

if (f.eq.1.or.f.eq.2) then ! "r face"

snx = unx(iy,iz,iside,e) ! Note: iy,iz

sny = uny(iy,iz,iside,e)

snz = unz(iy,iz,iside,e)

elseif (f.eq.3.or.f.eq.4) then ! "s face"

snx = unx(ix,iz,iside,e) ! ix,iz

sny = uny(ix,iz,iside,e)

snz = unz(ix,iz,iside,e)

elseif (f.eq.5.or.f.eq.6) then ! "t face"

snx = unx(ix,iy,iside,e) ! ix,iy

sny = uny(ix,iy,iside,e)

snz = unz(ix,iy,iside,e)

endif

ux=0.0

uy=0.0

uz=0.0

temp=0.0

return

end

c---

Some comments on Courant number

A bit about COURANT in the .rea file.

It serves different roles, depending on the choice

of timestepping.

For std. timestepping (BDF/EXT), with DT < 0, it does nothing.

For std. timestepping (BDF/EXT), with DT > 0, it determines

the upper bound for dt. So, if you say DT=0.5 and COURANT=0.1,

then it will choose dt to be the min. of (DT,dt_cfl), where

dt_cfl is the value of dt such that CFL=0.1. (There is one

slight variance to this...but essentially this is what happens.)

For std. timestepping (BDF/EXT), with DT = 0, it determines

dt to be dt_cfl.

If IFCHAR=.true. (i.e., OIFS), then COURANT determines how

many substeps you will take to achieve the desired DT value

(which is specified by param(12)). So, if you say COURANT=12,

it would take 12 RK4 substeps (--> 48*k convection evaluations,

where k=torder) to advance each field. Thus, you don’t want

COURANT to be too much larger than the CFL that is reported

on the "Step" line in the logfile.

TO SUMMARIZE, for OIFS:

Set param 12 = -.001 (say, if that’s desired)

Set COURANT = 3 (say, if dt=.001 gives a cfl of ~3)

[One more thing: For std. timestepping, if you set COURANT > 0.5,

then nekton will automatically reset to a lower

value -- 0.25 or 0.4.... something like that...]

Some comments on history points

History points allow one to trace the time history (e.g., u(xi, t)) at selected grid points xi. Below
are some lines that define history points in the .rea file.

0 PACKETS OF DATA FOLLOW

***** HISTORY AND INTEGRAL DATA *****

56 POINTS. Hcode, I,J,H,IEL

UVWP H 31 31 1 6

UVWP H 31 31 31 6

UVWP H 31 31 31 54

UVWP H 31 31 31 102

UVWP H 31 31 31 150

" " " " " "

" " " " " "

Some important comments:

1. The "56 POINTS" line needs to be followed by 56 lines

of the type shown.

2. Where the "56" is on that line doesn’t matter (as long as it

is first in the line, the rest is ignoored...)

3. However, in each of the following lines, which have the

UVWP etc., location is CRUCIAL. It must be layed out

exactly as indicated above. (Why? Because those lines

contain character strings, they use formatted reads, which

are very particular about where the data is. Lines that

do _not_ have character entries can use free formatted reads,

where blanks serve as separators; thus, no format restrictions.)

So, if you want to pick points close to the center of element 1

and are running with lx1=10, say, you might choose:

UVWP H 5 5 5 1

which I created by copy past of a line above and then overwrote

while preserving the right-adjusted integer locations. (In fact,

the indicated point would really be at the middle of the element

only if lx1=9 in this case. Why?)

4. The UVWP tells the code to write the 3 velocity components and

pressure to the .sch file at each timestep (or, more precisely,

whenever mod(istep,iohis)=0, where iohis=param(52)).

Note that if you have more than one history point then they are

write sequentially at each timestep.

5. The "H" indicates that the entry corresponds to a requested

history point.

6. If the ijk values (5 5 5 in the preceding example line) exceed

lx1,ly1,lz1 of your SIZEu file, then they are truncated to that

value. For example, if lx1=10 for the data at the top (31 31 31)

then the code will use ijk of (10 10 10), plus the given element

number, in identifying the history point.

It is often useful to set ijk to large values (i.e., > lx1) because

the endpoints of the spectral element mesh are invariant when lx1

is changed. Thus, the entries

UVWP H 1 31 1 6

UVWP H 31 1 1 6

would track the same points in physical space for all values of

lx1 up to lx1=31.

7. The difficulty with the current nek history point specification is

finding the requisite ijke (e=element number) values that correlate

to the point of interest.

There is a way to do this in postx that is relatively painless, but

this is not useful for very large problems. (The approach is:

SET PLOT FORMAT

SCALAR

VALUES

PLOT

follow the instructions and for each point requested, postx will

write to the screen lines that are similar to the above, ready to

be pasted into the .rea file.)

8. When you run the code, nek will write the coordinate information to

the logfile on the first timestep so that you can verify the point

locations.

8 Recent Updates

01/2002 drive.f now supports constant volume flow rate in x, y, or z direction, depending on
whether param54 is 1,2,or 3. x=default for any other value of p54.

01/2002 Global fdm method incorporated as solver and preconditioner for E solve when p116=nelx,
p117=nely, p118=nelz. Note that setting one of these to its negative value determins the
”primary” direction that is wholly contained within each processor. Thus, if, for example, nelx
= -6, nely = 8 and nelz = 5, then the 8x5 array of elements would be partitioned among P
processors, and each processor would receive (8x5)/P stacks of depth 6. It is thus relatively
important that the product of the number of elements in the remaining secondary and tertiary
directions (those not flagged by a minus sign) should be a multiple of P.

01/2002 Dealiasing is currently enabled, whenever p99=2. There is some memory savings to be
had if dealiasing is not being used by editing DEALIAS and commenting out the appropriate
parameter statements.

01/2002 The comm mpi routine has been cleaned up. All vector reductions are performed using
mpi all reduce so, in theory, there should not be a constraint that P=2**cd, provided one isn’t
using the XXt solver (e.g., if one is using the gfdm solver).

01/2002 The XXt solver is almost in place for the steady conduction case.

01/2002 The routines navier5.f and connect1.f have been modified to allow for multiple passive
scalars. (9/10/01). 9/10/01, pff

9 Ordering Data on Faces

Points in the volume are stored in lexicographical order:

real u(lx1,ly1,lz1)

implies that u(i+1,j,k) follows u(i,j,k) in memory, so the

data layout (in memory) is:

u(1,1,1) u(2,1,1)...u(lx1,1,1) u(1,2,1) u(2,2,1)... u(lx1,ly1,lz1)

For u(i,j,k) the i index is associated with r, j with s, and k with t.

There are two numberings of the faces. The one that you’re

most likely to interact with, and which is used for assigning

bcs, unit normals, surface Jacobians, etc. is what we refer to

as the "preprocessor notation". In 2D, preprocessor notation

uses the counter-clockwise ordering:

^ s

| Face 3

+-----------+

| | |

| | |

Face 4 | +-----|--> r

| |

| | Face 2

+-----------+

Face 1

In 3D, it’s the same, save that you also have Face 5 assocated with

t=-1 and Face 6 associated with t=+1.

When you traverse a face, the indices describing that 2D manifold

advance in positive order and in that case the associated face

objects (e.g., unit normals and area) will have unit stride.

There are two ways to stride across a face f=1,...,6 (and there

are many routines implementing these).

Here is one:

integer e,f

call facind (i0,i1,j0,j1,k0,k1,f)

ia = 0

flux = 0

do k=k0,k1

do j=j0,j1

do i=i0,i1

ia = ia + 1

flux = flux + (vx(i,j,k,e)*unx(ia,1,f,e)

$ vy(i,j,k,e)*uny(ia,1,f,e)

$ vz(i,j,k,e)*unz(ia,1,f,e))*area(ia,1,f,e)

enddo

enddo

enddo

Here is another:

call facind2 (js1,jf1,jskip1,js2,jf2,jskip2,f)

ia = 0

flux = 0

do j2=js2,jf2,jskip2

do j1=js1,jf1,jskip1

ia = ia+1

flux = flux + (vx(j1,j2,1,e)*unx(ia,1,f,e)

$ + vy(j1,j2,1,e)*uny(ia,1,f,e)

$ + vz(j1,j2,1,e)*unz(ia,1,f,e))*area(ia,1,f,e)

enddo

enddo

I like the second approach because it is faster.

Note that unx,uny,unz are _face_ based structures, while vx

vy vz are volumetric.

10 About COURANT in the .rea file

The COURANT parameter serves different roles, depending on the choice

of timestepping.

For std. timestepping (BDF/EXT), with DT < 0, it does nothing.

For std. timestepping (BDF/EXT), with DT > 0, it determines

the upper bound for dt. So, if you say DT=0.5 and COURANT=0.1,

then it will choose dt to be the min. of (DT,dt_cfl), where

dt_cfl is the value of dt such that CFL=0.1. (There is one

slight variance to this...but essentially this is what happens.)

For std. timestepping (BDF/EXT), with DT = 0, it determines

dt to be dt_cfl.

If IFCHAR=.true. (i.e., OIFS), then COURANT determines how

many substeps you will take to achieve the desired DT value

(which is specified by param(12)). So, if you say COURANT=12,

it would take 12 RK4 substeps (--> 48*k convection evaluations,

where k=torder) to advance each field. Thus, you don’t want

COURANT to be too much larger than the CFL that is reported

on the "Step" line in the logfile.

TO SUMMARIZE, for OIFS:

Set param 12 = -.001 (say, if that’s desired)

Set COURANT = 3 (say, if dt=.001 gives a cfl of ~3)

[One more thing: For std. timestepping, if you set COURANT > 0.5,

then nekton will automatically reset to a lower

value -- 0.25 or 0.4.... something like that...]

References

[1] A.T. Patera. A spectral element method for fluid dynamics : laminar flow in a channel expansion.
J. Comput. Phys., 54:468–488, 1984.

[2] S.A. Orszag. Spectral methods for problems in complex geometry. J. Comput. Phys., 37:70–92,
1980.

[3] M.O. Deville, P.F. Fischer, and E.H. Mund. High-order methods for incompressible fluid flow.
Cambridge University Press, Cambridge, 2002.

[4] L.W. Ho. A Legendre spectral element method for simulation of incompressible unsteady viscous
free-surface flows. PhD thesis, Massachusetts Institute of Technology, 1989. Cambridge, MA.

[5] Y. Maday and A.T. Patera. Spectral element methods for the Navier-Stokes equations. In
A.K. Noor and J.T. Oden, editors, State-of-the-Art Surveys in Computational Mechanics, pages
71–143. ASME, New York, 1989.

