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Abstract

We develop a class of filters based upon the numerical solution of high-order elliptic problems
in R? which allow for independent determination of order and cut-off wave number and
which default to classical Fourier-based filters in homogeneous domains. However, because
they are based on the solution of a PDE, the present filters are not restricted to applications
in tensor-product based geometries as is generally the case for Fourier-based filters. The
discrete representation of the filtered output is constructed from a Krylov space generated

in solving a well-conditioned system arising from a low-order PDE.

1 Introduction

The need for low-pass filters arises in the numerical solution of partial differential equations
(PDE’s) in many areas of science and engineering. The ability to control high-frequency
content is an essential ingredient for many applications in computational fluid dynamics
[1, 7, 10]. In particular, recently developed dynamic subgrid scale models for large eddy
simulations (LES) require a two-level filter to extrapolate the leading order effects of unre-
solved scales of motion [5, 8, 12]. For over two decades, the majority of LES calculations
have employed Fourier spectral discretizations in one or more of the spatial directions and
have generally filtered the solution in the Fourier directions only. The literature concerning
filtering in the non-homogeneous direction is almost non-existent. As computing hardware
and algorithms have reached the level of efficiency where we can now consider employing
LES in complex three-dimensional geometries which lack homogeneity in any direction, the
need for more general filtering techniques arises.

In the present work we are considering spectral element discretizations for primitive
variable formulations of the Navier-Stokes equations (e.g., [4, 9]). Spectral elements are
a natural extension of spectral methods in which Nth-order (polynomial) bases are used
to represent the velocity and pressure within each of K subdomains or elements. Inter-
element continuity requirements vary with the particular implementation, but for second-
order PDE’s, C° continuity is generally sufficient to retain spectral accuracy. It is tempting
to filter such approximations in a fashion analogous to global spectral methods, i.e., through
truncation of high-modes within each subdomain. However, the interelement continuity

constraint implies that such a local approach can potentially lead to global contamination
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of low-wave number modes, even in the one-dimensional case, and is therefore unsuitable
as a low-pass filter.
An alternative to the purely local filtering process of truncating modes within each

subdomain is to solve a global Helmholtz problem of the form:

~V?& + o = au in Q (1)

@ = u on 0Q |

where u(x) is the input function and %(x) is the desired filtered output. Note that if we
take G'(x,x’) to be the Green’s function associated with (1) then solving for # corresponds

to the usual notion of filtering via convolution with the kernel G and characteristic length

scale A ~ 1/4/a,

a(x) = F(u(x) = /Q G (x, x') u(x) dx’

The effect of such a filter on the input is clear if we consider the one-dimensional case with

Q =[0,1] and u(0) = u(1) = 0. For sufficiently smooth u(z), we can express u via a sine

expansion, u(z) = >, @ sin(kwz), resulting in:
u(z) = Xk: ﬁ iy sin(krz) . (2)

Defining the cut-off wave number, k., as the point where the transfer function is diminished
by a factor of two (3dB-down point) leads to the choice of @ = 72k%. It is clear that the
filtered modes corresponding to k > k. are largely damped out, while those for & < k. are
less affected.

In higher space dimensions, the above filter can be implemented by discretizing (1) in
R? and solving the resultant linear system using routines readily available in most CFD
codes. For general three-dimensional geometries the resultant (well-conditioned) system is
best solved iteratively, e.g., via conjugate gradient iteration if the discretization leads to a
symmetric positive definite (SPD) matrix.

Unfortunately, as illustrated by the transfer function shown in Fig. 1, the second-order
filter (2) does not have a very sharp decay. While there has been some study of the potential
of second-order filters in LES (e.g., [12]), most LES calculations to date have employed sharp
cut-off filters. These are readily implementable in simple geometries which admit the use
of Fourier bases. For general geometries, one might try to sharpen the transfer function
through m repeated applications of the filter (1), requiring a sequence of m Helmholtz
solves, each with scaling factor o = 7r2kf/(2# — 1) to maintain the 3dB-down point at
k = k. in the final output. The ultimate limit of such a process as m — oo is a Gaussian

filter with transfer function e~ 2 (k/ke)*

. While this filter does provide more rapid decay for
the high wave number components it does little to sharpen the transfer function for k& < k.,
as seen in Fig. 1. Clearly, the family of rational polynomials obtained through repeated
Helmholtz solves of the type (1) is not rich enough to capture the behavior of the sharp

cut-off filter, and the potential of such a straightforward approach is limited.
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Figure 1: Transfer Function vs. Wave Number, commonly used filters (left) and higher-order

filters (right).

A simple class of rational polynomials in & which does converge to the sharp cut-off
—1
filter is given by {1 + (]f—c)Qm} . The corresponding PDE has the form

-V 4 + o = au in Q (3)

and the resultant transfer functions for various m are shown in Fig. 1 (right). It is quite
clear that for higher values of m the filter has diminished impact on the amplitude of the
low modes, k£ < k., as desired.

While (3) is not readily solvable with standard techniques, we demonstrate in the
remaining sections that it is possible to construct a good approximation through numerical

solution of a much simpler problem, namely the Poisson equation
-V = u in Q (4)
v =0 on 02

Consequently, one can generate high-order filters by employing solver technology which

already exists in most three-dimensional general geometry Navier-Stokes codes.

2 Filtering for the discrete problem

As our point of departure, we assume that the discretization of (4) leads to a linear system

of the form:
Av=1u (5)

where underscore denotes vectors of basis coefficients and A € IR™*" is the SPD discrete
Laplacian as would be obtained, e.g., using second-order finite differences. For general-

geometry problems in three space dimensions, A is typically very sparse and in this case



(5) is most effectively solved by iterative methods. The convergence rate of these methods
is largely dependent upon the condition number of system, which for SPD matrices is the
ratio of the maximum to minimum eigenvalues, k4 = A, /1.

The system for the filtered quantities is derived from the discrete analog of (3),
[A™ + alle = au . (6)

The conditioning of (6) is dependent upon the values of @ and m. If we denote by P,, the

polynomial
1 m
P,(A4) = EA +1, (7)

then the corresponding condition number is kp,, = (A + ) /(AT + «). If @ ~ X7 then
kp,, =~ 2. However, it is not clear a priori how A, will relate to a particular choice of o and
m. In fact, it is clear that P, will generally become very ill-conditioned with increasing m.
This follows from the fact that, as m — oo, P! is a projector onto the low wave number
modes and F,, is consequently undefined in this limit. In practice, we have found P,, to be
so ill-conditioned as to defy any attempt to solve (6) via standard iterative procedures that
require matrix-vector products in F,. For even moderate values of m (e.g., m = 6), just
one application of F,, to a vector can lead to unacceptable round-off error.

Fortunately, P, and A share the same set of eigenvectors, and we can use this fact
to generate good approximate solutions to (6). In [11], van der Vorst proposed a method
for approximating the solution to f(A)w = u using a conjugate gradient/Lanczos proce-
dure based upon the solution of Av = u. Consider the following conjugate gradient (CG)
algorithm preconditioned by the SPD matrix M [6]

vo=0;rog=u; Bo=0

fori=1,...,7 ’Yz':QZ»TAQZ»
solve Mz, | =1, 4 oy = piy—_il (8)
pi1 =2zl v =01 + aip,
if (i >1) By = zz:; T =1y — 0 Ap,
end

p,=z 4t ﬁi—1£¢_1

Following van der Vorst, we begin by considering the unpreconditioned case where M = I.

Let R = R; = (fy,7y,...,7;_1) be the matrix containing the residual vectors generated by
the above algorithm, each normalized according to r; = \/1—_32 The 7;s form an orthonor-
Pi

mal basis for the Krylov subspace K;(A;u) = K;(A;ry) = span{rg, Arg, .. AT} and

v, is the projection of v onto this subspace, i.e., the final residual r; = u — Av; is orthogonal



to K;(A;u). The tridiagonal matrix

dy e
€ dy €
T = €9 d3 (9)
€1
i €1 d; ]

1 i i
di = — + ﬁ L y € = \/ﬁ_7
oy ;1 o

is the projection of A onto R given by T = RT AR, and the above CG method produces the

approximate solution, v; ~ v, given by

v, = R(RTAR)T'RTu = RT'RTu.

J

The CG/Lanczos procedure (see, e.g., [6]) employs 7" and R to obtain estimates of the
eigenpairs of A as follows. Let SQST = T be the similarity transformation for 7. The
matrix () = diag(g;) contains the eigenvalues of 7" which are taken as approximations to the
j extremal eigenvalues of A. The matrix S contains the eigenvectors of T, and RS contains
the corresponding approximate eigenvectors of A. In [11], van der Vorst showed that these
approximate eigenpairs could be used to compute an approximate solution, w ~ w, to

problems of the form f(A)w = u by simply computing
& = RS[FQ)STR . (10)

The j x j matrix f(Q) = diag(f(q:)) is trivially inverted. As noted in [11], this approach is
identical to applying CG to f(A) in the case when f(A) = A+l since A and A+ af share
the same Krylov space. However, in general, f(A) does not share the same Krylov space
as A, nor is @ the projection of w onto R. Nonetheless, (10) provides a very inexpensive
means to compute approximations to w, and one which might in fact be better (due to
conditioning considerations) than straightforward application of CG to f(A).

The application of van der Vorst’s method to the filtering problem is straightforward
when the discretization of (3) yields a polynomial P, (A) (7). One simply solves Av = u,
computes S and @ from T, sets f(¢;)~' = 1/P,,(¢;), and computes u = @ using (10).

If a Galerkin procedure is used to discretize the second-order filter (1), one obtains
[A+ aBlu = a«aBu.

This is the case encountered in the finite or spectral element formulation and differs from
the finite difference case by the presence of the SPD mass matrix, B. In this case the
discrete Laplacian is no longer A, but rather B~' A, and the analogous discrete form of the

high-order filter (3) is:

[(B7'A)™ + allz = au . (11)



It is therefore necessary to solve an equation of the form f(B~!A)w = u.

To extend van der Vorst’s procedure to this more general case we retain the precon-
ditioned form of the CG algorithm, setting M = B. (In the spectral element method B
is diagonal so its inversion is trivial. In the finite element method it probably suffices to
employ a (diagonal) lumped mass matrix in place of the standard mass matrix.) If we define
Z = MR, with R containing the normalized residual vectors as defined above, then the
columns of Z are orthonormal with respect to the M inner-product, i.e., ZT MZ = I. The
tridiagonal matrix (9) is now T = ZTAZ, and the eigenpairs of T = SQST yield approxi-
mate eigenvalues (¢;) and eigenvectors (the columns of ZS')for the generalized eigenvalue
problem Az = AMz. The resultant extension of van der Vorst’s method to f(B_lA)y =u

is:
@ = BT'RS[f(Q)]'STR u, (12)

where R, @, and S result from the Lanczos/CG procedure (8) applied to Av = Bu, precon-
ditioned with M = B.

To summarize, the filtering problem in the Galerkin case is solved by setting f = P,
(7) and using (12) to compute the filtered output, & = @. Note that if the approximation
space (given by the range of B~'R) is to contain u then the initial residual in the CG
procedure must be ry; = Bu rather than just u.

At this point, the issue of inhomogeneous boundary conditions has not been addressed.
A standard procedure (e.g., [4]) for implementing inhomogeneous Dirichlet boundary con-
ditions in the numerical solution of PDE’s is to split the solution into v = v, + v;, where
v, satisfies homogeneous boundary conditions and vy is any known function which satisfies
the desired boundary conditions on v, and to then subtract the inhomogeneous boundary

term from both sides of the equation. For example, for Poisson’s equation, we have:
~Viu, = f+V%i, in Q
v, =0 on 0}

The advantage of this approach is that the trial and test spaces in the Galerkin formula-
tion are now coincident and the resultant discrete operator on the left will be symmetric.

Straightforward application of a similar decomposition for the filter problem (3) would yield

Py, = u-P,u, (13)
where P,, is given by (7), appropriately augmented to incorporate the effects of the boundary
conditions upon the interior nodal point values.

Unfortunately, formation of the right-hand side of (13) requires evaluation of (B~*A)™u,
which, unless u, is the solution to Laplace’s equation, is numerically unstable do to the con-
ditioning problems noted earlier. A suitable alternative is to set w, = w and rewrite the

filter in the following equivalent form:
(B74 + a(B7'A)"") &, = -B'Au (14)

u = u, +u.



Once again we have an equation of the form f(B~!A)z = b, which is solved using the
techniques outlined above. Note that this approach actually corresponds to subtracting off

the high wave number components of u to obtain the low pass complement.

3 Results and Discussion

We present initial tests of the PDE/Krylov-based filtering strategy for two- and three-
dimensional problems discretized with spectral elements. Similar results have also been
obtained in the somewhat easier case of finite difference approximations.

We begin with a two-dimensional test on the unit square, Q = [0, 1]? with the asym-

metric input function

2020 9\ 2.0 ;9103
u(z,y) = :ZZ <E> (7) sin(krz) sin(lry) . (15)
(=2 k=2
which is shown in Fig. 2a. The discretization consists of a 5 X 5 array of 9th-order spectral
elements, for a total resolution of 46 x 46. Fig. 2b shows the result of applying the filter (11-
12) to (15), with k. = 12, m = 8, and Krylov subspace dimension j = 100. The difference
between the exact and Krylov-based filter outputs is shown in Fig. 2c. The computed
two-dimensional transfer function, |ug|/|@x, is shown in Fig. 2d. The transfer function
captures the correct modal decay rate down to the the level of the error resulting from the

Krylov subspace approximation, i.e., 1072 in the present case.
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Figure 2: Input function (15) for filter test (a), output of Krylov-based filter (b), filtering

error (c), and transfer function (d).



We demonstrate the versatility of the Krylov-based filter by applying it in the complex
three-dimensional domain shown in Fig. 3. For this test, the input is the velocity field
associated with the horseshoe vortex flow arising from a flat-plate boundary layer interacting
with an end mounted cylinder of height H = D/2 and diameter D. The incoming boundary
layer thickness is dg9 ~ D/21, and the Reynolds number is Rep, = U, D/v = 3000. The
discretization consists of 168 spectral elements of order 9. The flow in the cylinder wake
is severely under-resolved, as witnessed by symmetry-plane contours of z-velocity shown in
Fig. 3c (upper). Application of a 12th-order filter (m = 6) with filter width A = 0.01 D
and Krylov subspace dimension j = 50 effectively dampens the under-resolved oscillatory
components in the wake (Fig. 3c, lower) while allowing the well-resolved horseshoe vortex
structures (a) to pass through the filter with little change (b).

As presented, the Krylov-based filtering scheme requires three input parameters: the
order, m, the filter-width, A, and the Krylov subspace dimension, j. The former are true
parameters of the filter and not dependent upon the method used to implement it. The
Krylov subspace dimension required to obtain an accurate approximation is a function of
m, A, and u. Unfortunately, it is difficult to monitor the residual, ||u — P, ;|| during the
CG iteration because of the ill-conditioning associated with P,,. However, it is possible to
monitor the convergence of ||u—1u,||, as shown, e.g., in Fig. 3d. One can simply estimate the
decay of the oscillatory envelope and stop the CG iteration when the deviation is within a
desired tolerance of the estimated mean. From Fig. 3d we estimated that a Krylov subspace
dimension of j = 50 would be sufficient to filter the field shown in Fig. 3a. Comparisons
reveal that increasing 7 to 150 results in only a half of a percent further change in the
filtered output, i.e., the output is indeed reasonably well converged at j = 50.

It is apparent from the streamlines in (b) that the filtered field is no longer divergence-
free. This is to be expected as a divergence-free constraint was never enforced. However, if
desired, the PDE-based approach employed here could readily be extended to accommodate
such a constraint, yielding a Stokes-like system in which all three velocity components are
computed simultaneously.

We conclude by noting that several techniques might be used to improve the efficiency
of this general filtering approach. One important idea is that a given Krylov space, R,
might be used to filter similar right-hand sides by simply changing the right-most term ()
in either (10) or (12) (see, e.g., [2, 3]). In addition, we note that multi-level solvers might

be used to speed the filtering process, following ideas outlined in [7].
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Figure 3: Example of Krylov-based filter applied in a complex geometry: horse-shoe vortices

in unfiltered (a) and filtered (b) flow field; (c) centerplane contours of unfiltered (upper)

and filtered (lower) streamwise velocity; (d) convergence of Krylov-based filter vs. subspace

dimension j.
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