
Parallel multi-level solvers for spectral element methods

P. F. Fischer ∗

Abstract

Efficient solution of the Navier-Stokes equations in com-
plex domains is dependent upon the availability of fast
solvers for sparse linear systems. For unsteady incompress-
ible flows, the pressure operator is the leading contributor
to stiffness, as the characteristic propagation speed is in-
finite. In the context of operator splitting formulations,
it is the pressure solve which is the most computationally
challenging, despite its elliptic origins. We seek to improve
existing spectral element iterative methods for the pressure
solve in order to overcome the slow convergence frequently
observed in the presence of highly refined grids or high-
aspect ratio elements. The new algorithm incorporates an
enriched coarse-grid operator which admits anisotropic res-
olution within elements, and a new parallel solution tech-
nique which mitigates the additional overhead of the en-
larged coarse-grid system.

Key words: spectral element methods, domain decompo-
sition, sparse matrices, parallel algorithms.

AMS subject classifications: 65M70,65Y05,65M55.

1 Introduction

We consider the problems encountered in large-scale spec-
tral element simulations of unsteady incompressible flows.
Accurate simulation of even two-dimensional flows can
require hundreds of thousands of grid points when the
Reynolds number is on the order of 104. In the spectral el-
ement method, this elevated resolution can be attained by
either increasing K, the number of elements, or increas-
ing N , the order of approximation within each element.

∗Present address: Division of Applied Mathematics, Brown Uni-
versity, Providence, RI 02912, USA. E-mail: pff@cfm.brown.edu

This space left blank for copyright notice.

In practice, it is common to keep the order at a moder-
ate level, i.e., in the range N = 5 to 15, and increase the
number of elements to capture increasing physical and ge-
ometrical complexity.

We have followed this approach in a number of recent
high-Reynolds number simulations of start-up flow past a
cylinder. Fig. 1a shows an example of the mesh used to
compute the early evolution of wake vortices at ReD =
U∞D/ν = 9500. Fig. 1b shows the vortex structure at
a non-dimensional time of τ = tU∞/D = 3.1. The drag
history, shown in (c), agrees well with the results of [7]
which were based upon an adaptive vortex method using
up to 106 elements. The present calculation used a total of
K = 6112 spectral elements, with the order varying from
N = 4 at early times to N = 9 at later times.

At elevated resolutions, the linear system which imposes
the pressure/divergence-free constraint at each time step
can become very ill-conditioned and require hundreds to
thousands of iterations to reach convergence. For un-
steady problems, this computational burden can typically
be halved by the projection techniques described in [3].
However further reductions must come through improve-
ments to the iterative solver. We focus here upon devel-
opment of the two-level deflation based iteration scheme
which was proposed by Rønquist in [16]. For highly refined
or high-aspect ratio meshes, the convergence rate of this
preconditioned/deflated conjugate gradient scheme can be
improved by enriching the coarse-grid space to incorporate
piecewise (discontinuous) linear or higher-order bases, al-
beit at a increase in the cost of the repeated coarse-grid
solves. We show that the coarse-grid solve cost can be mit-
igated by a new parallel algorithm for repeated solution of
sparse linear systems.

The outline of the paper is as follows. In Section 2, we
review the derivation of the system governing the pressure.
In Section 3, we reconsider the deflation-based iterative
scheme used to solve the pressure system, and show the
advantages of an enriched coarse-grid operator. In Section
4, we present a parallel algorithm for the coarse-grid solve
with achieves the minimum possible communication com-
plexity and has a computational complexity comparable to
standard LU factorizations.

1



2 ICOSAHOM 95

(a)

(b)

present

Koumoutsakos & Leonard

CD

time
(c)

Figure 1: (a) close-up of K = 6112 spectral element
mesh for computation of start-up flow past a cylinder at
Re = 9500 (b) vorticity contours at a convective time of
t = 3.10 (c) drag coefficient CD vs. non-dimensional time
(Computation by G.W. Kruse).

2 Navier-Stokes Implementation

We consider spectral-element solution of the incompress-
ible Navier-Stokes equations:

∂u
∂t

+ u · ∇u = −∇p + 1
Re∇2u in Ω,(1)

∇ · u = 0 in Ω,

where u is the velocity vector, p the pressure, and Re = UL
ν

the Reynolds number based on a characteristic velocity,
length scale, and kinematic viscosity.

Spatial discretization is based upon decomposition of the
computational domain into K spectral elements which are
locally mapped to [−1, 1]d in lRd. Within each element,
the geometry, solution, and data are expanded in terms
of high-order tensor-product polynomial bases in each co-
ordinate direction. Variational projection operators are
used to discretize the elliptic equations arising from a semi-
implicit treatment of (1) and a consistent variational for-
mulation is used for the pressure/divergence treatment.
The velocity is represented by Nth-order Lagrange polyno-
mials on the Gauss-Lobatto-Legendre quadrature points,
with C0 continuity enforced at element interfaces. The
pressure is represented by polynomials of degree N − 2
based upon the Gauss-Legendre quadrature points; inter-
element continuity of pressure is not enforced. Tempo-
ral discretization is based upon an operator splitting in
which the nonlinear convective terms are treated explicitly
via a characteristic/sub-cycling scheme, and the viscous
and divergence operators are treated implicitly. The dis-
cretization leads to the following linear Stokes problem to
be solved at each time step:

H ui −DT
i p = B f

i
, i = 1, ..., d ,(2)

Di ui = 0 .

Here, H is the discrete equivalent of the Helmholtz opera-
tor, { − 1

Re∇2 + 1
∆t}; B is the mass matrix associated with

the velocity mesh; D = (D1, ..., Dd) is the discrete gradi-
ent operator; and underscore refers to basis coefficients.
Further details of spectral element discretizations for the
Navier-Stokes equations may be found in [8].

The solution of (2) is simplified by a Stokes oper-
ator splitting which decouples the viscous and pres-
sure/divergence constraint [9]. This splitting leads to the
solution of a standard Helmholtz equation for each velocity
component, while the resulting system for the pressure is
similar to (2) save that H is replaced by 1

∆tB. The result-
ing system can be efficiently treated by formally carrying
out block Gaussian elimination (Uzawa decoupling) for p,
leading to:

Ep = g ,(3)

where

E = −
d∑

i=1

Di B−1DT
i ,(4)



Parallel multi-level solvers 3

and g is the inhomogeneity resulting from the time-split
treatment of (1). E corresponds to a consistent Poisson
operator for the pressure and, though symmetric-positive
definite, is less well conditioned than the Helmholtz prob-
lems for the velocity components. Consequently, solution
of (3) dominates the Navier-Stokes solution time. The ad-
vantage of the Stokes splitting is that no system solves are
required when applying E, as B is diagonal.

3 Deflation

The consistent Poisson problem (3) is solved via a two-
level iteration scheme developed by Rønquist [16] in which
a coarse-grid operator is folded into a global conjugate-
gradient iteration through deflation [11, 12]. The coarse
(subscript c) and fine (subscript f) decomposition is ef-
fected through a subdomain-motivated prolongation oper-
ator J ∈ lRm×n, where m = K(N − 1)d is the number of
pressure degrees-of-freedom, and n is the dimension of the
coarse-grid approximation space. The column space of the
prolongation operator J is intended to approximate the
span of the low eigenmodes of the E system. The pressure
is then expressed as p = Jp

c
+ p

f
, leading to an algebraic

reformulation of the original problem as solvable fine and
coarse subproblems,

Efp
f

= g − J E−1
c JT g ,(5)

Ecpc
= JT g − JT Ep

f
,(6)

respectively. Here Ef = E − E J E−1
c JT E, and Ec =

JT E J . Each application of the fine grid operator requires
the solution of the relatively small (n×n) system, Ec. The
fine system (5) is solved by conjugate-gradient iteration
restricted to the complement of span{J}, where span{}
denotes the column space of the argument. Once p

f
is es-

tablished, the coarse-grid problem is solved (directly) for
p

c
, and the procedure is complete. With appropriate ap-

plication of a local, element-based preconditioner to Ef ,
the condition number of the fine system is significantly re-
duced relative to the originating E matrix.

In [16] J was chosen to map n = K element-piecewise-
constant functions to the m nodes of the underlying spec-
tral element discretization, with p

c
therefore representing

the average pressure within each element. It was shown
that for a one-dimensional spectral element discretization,
the resultant fine system has a condition number of unity
when coupled with a local (block Jacobi) spectral precon-
ditioner, EJ . In addition, it was observed that the it-
eration count to solve (5) is linearly dependent upon N
and independent of K for highly regular two-dimensional

discretizations. However, Couzy [2] observed that there is
some K dependence of the convergence rate, particularly in
conjunction with non-unit aspect ratio elements. We have
also observed convergence rate degradation in the presence
of extreme refinement or high-aspect ratio elements.

It was suggested in [2, 16] that the source of the diffi-
culty lies with the use of block-Jacobi preconditioning. It
is well known (e.g., [17]) that the preconditioner should
have some subdomain overlap in order to obtain order-
independent convergence and block-Jacobi does not pro-
vide this. Unfortunately, the L2 pressure operator (4) does
not readily admit construction of a preconditioner with
overlap in the spectral element case. Couzy [2] suggests to
improve upon the current formulation by imposing Neu-
mann velocity boundary conditions at the element inter-
faces when generating the local preconditioner rather than
zero-Dirichlet as described in [16]. An alternative, which
we pursue here, and which is not exclusive of the Neumann-
derived boundary conditions (or overlapping methods), is
to increase inter-element coupling by increasing the num-
ber of modes which are computed as part of the coarse-
grid solution. This of course increases the coarse-grid solve
costs, but these can be mitigated with appropriate sparse
matrix techniques. We develop a fast parallel direct solver
for the coarse problem in the next section.

The coarse-grid space is enriched by enlarging the col-
umn space of the prolongation operator, J , to include
piecewise linear or higher-order functions within each spec-
tral element. In our variational formulation of the Stokes
problem, inter-element continuity of the pressure is not
strictly enforced. Therefore, it is admissible to use any
element-piecewise discontinuous bases for prolongation, re-
sulting in a block diagonal structure for J :

J =




J1

J2

·
·
·

JK




,

Here, each Jk is an (N − 1)d × l block associated with el-
ement k, and l is the number of modes represented within
each element. Presently, we take the basis to be a tensor
product of the first d

√
l polynomial modes in each spatial

direction. Note that the relaxation of strict continuity im-
plies that we need not have the same coarse-grid approx-
imation within each element. It is also possible to choose
an anisotropic basis, e.g., for elements having high-aspect
ratios. We have built this flexibility into our code and will
investigate its potential the future. Here we only consider
a uniformly enriched coarse-grid space.



4 ICOSAHOM 95

As noted in [10, 12, 16] effective implementation of de-
flation requires suppression of spurious modes in the null
space of Ef during the conjugate gradient iteration. This
is particularly true if the preconditioner does not share the
same null space as Ef [10]. In [4], we demonstrated the
advantages of replacing EJ with a block preconditioner,
EF , based upon finite element solution of a local Poisson
problem within each of the spectral elements. Whereas
it is relatively easy to construct a (spectral based) block-
Jacobi preconditioner, EJ , sharing the same null space as
Ef , the same is not true for EF , as it is based upon a
different discretization. However, the necessary symmetry
and null space conditions can be satisfied by defining a
new preconditioner, E−1

P ≡ PE−1
F PT , where P = PT is

the orthogonal projection matrix given by

P = Im − J(JT J)−1JT ,(7)

and Im is the m×m identity matrix. Null space control in
the preconditioned conjugate gradient algorithm is thereby
assured through the application of E−1

P to the residual vec-
tor in the preconditioning step. Note that the block struc-
ture of J ensures that multiplication of a vector by P is
a strictly local operation. The application of P is further
simplified if the columns of J are orthonormalized such
that JT J = In.

Results for the Enriched Coarse-Grid Space:

We demonstrate the effectiveness of the enriched coarse-
grid for two model problems: unsteady Stokes flow in a
square box, and start-up flow past a cylinder.

The first problem is identical to the unsteady Stokes
flow problem considered in [16], save that the present im-
plementation employs finite element preconditioning as de-
scribed in [4]. The two-dimensional problem is specified on
Ω = [−1, 1]2 with homogeneous velocity boundary condi-
tions, viscosity ν = 0.1, and a body force f = (−0.6y, 0)T .
The discretization consists of K square elements, each of
order N = 7, and a time step ∆t = 0.1.

Table 1 shows the number of preconditioned conjugate
gradient steps required for the first time step for several
values of l and K. The corresponding dimension of the
original system, E, and the coarse-grid system, Ec, are
also given. The heading E indicates the number of itera-
tions required to reduce the initial residual of (3) by 105;
the heading Ef indicates the number of iterations required
to reduce the initial residual of (5) by the same magni-
tude. Note that, while order independent convergence is
obtained when for the Ef system when l = 1, the same is
not true for the original E system. Although the norm of
the initial residual, (gT B−1g)

1
2 , is the same for all cases,

Table 1: Iteration count for unsteady Stokes flow
l K Ef E dim{E} dim{Ec}
1 4 20 20 144 4
1 16 30 32 576 16
1 64 32 37 2304 64
1 256 32 40 9216 256
1 1024 32 42 36864 1024
4 4 18 18 144 16
4 16 26 26 576 64
4 64 28 29 2304 256
4 256 28 30 9216 1024
4 1024 27 29 36864 4096
9 4 15 15 144 36
9 16 22 22 576 144
9 64 25 25 2304 576
9 256 26 24 9216 2304
9 1024 26 22 36864 9216

the norm for the right-hand side of (5) actually increases
with K for the case l = 1.

We next consider solution of the Navier-Stokes equa-
tions for flow past a cylinder in the half-domain Ω =
[−10, 28]×[0, 15]. A cylinder of diameter D = 1 is centered
at the origin. The Reynolds number is Re = DU/ν = 80,
where (U, 0) is the free-stream velocity taken as the ini-
tial condition and inflow boundary condition at x = −10.
Symmetry boundary conditions are imposed at y = 0 and
y = 15 with Neumann-velocity (outflow) boundary condi-
tions at x = 28. The free stream velocity is U = 1 and
the time step is ∆t = .025. The base mesh (K = 93) is
shown in Fig. 2. The K = 372 and K = 1488 meshes are
obtained through successive quarterings of the elements in
the base configuration.

Table 2 shows the number of iterations required to re-
duce the residual of the Ef and E systems by five orders of
magnitude for the first time step. Again, the norm of the
initial residual of the E system (3) is independent of K.
In this case, K-independence convergence rates are not ob-
tained for any choice of l, though the reduction in iteration

Figure 2: Spectral element mesh (K = 93) for Problem 2



Parallel multi-level solvers 5

Table 2: Iteration count for cylinder flow
l K Ef E dim{E} dim{Ec}
1 93 115 107 3348 93
1 372 185 184 13392 372
1 1488 265 279 53568 1488
4 93 82 69 3348 372
4 372 116 102 13392 1488
4 1488 150 138 53568 5952
9 93 63 51 3348 837
9 372 84 73 13392 3348
9 1488 108 89 53568 13392

count for the K = 1488, l = 4, case is clearly significant.

4 Parallel coarse-grid solve

We focus here on fast solvers for the coarse-grid problem.
In practice, the coarse-grid system derived from piecewise
constant prolongation operators is sufficiently small so that
direct inversion of the system leads to an efficient parallel
solution strategy based upon matrix-vector multiplication
(e.g., [4]). However, the enriched coarse-grid space out-
lined above leads to significantly larger system and direct
inversion is no longer viable. To circumvent this, we have
developed a new solution approach which retains the par-
allelism of matrix-vector products, yet avoids the O(n2)
costs of inversion. In the following, our primary emphasis
will be on system solution rather than factorization, as the
latter is amortized over many time steps and iterations.
For notational convenience, we take the coarse grid oper-
ator to be the n × n symmetric positive definite matrix
denoted by A, and consider the problem of solving Ax = b
on a p-processor distributed memory computer using a sin-
gle program, multiple data (SPMD) programming model
with message-passing.

To understand the relevant software design parameters,
it is important to recognize that the coarse-grid problem is
relatively fine-grained, i.e., the dimension of the problem,
n, often scales as a small multiple of p. Interprocessor mes-
sages are therefore typically small, implying that startup
(or latency) costs may dominate the communication times.
Consequently, a potentially important design metric is the
required number of messages, rather than the operation
count or total amount of inter-processor data traffic (band-
width). If the contention-free time to communicate a mes-
sage of length w words is given by tc(w) = α+βw, we can
characterize a message as “short” whenever w ≤ w2, where
w2 ≡ α/β is the message length corresponding to a trans-
mission time of twice the lowest possible value. Typically,
w2 ' 100− 500, for 32-bit words.

It is important to note that the elliptic nature of the
originating problem implies that each component of the
right-hand side will have a non-trivial impact on the solu-
tion. If the right-hand side vector is distributed, a lower
bound on the number of message cycles to invoke each solve
is therefore log2 p. Algorithms achieving this bound can be
considered optimal in the fine-grained, short message limit.

For the development of the parallel solution scheme, we
assume that vectors and matrix columns are distributed in
the same fashion as spectral elements, i.e., for each entry in
a column vector, there is a corresponding spectral element.
We further assume that A is sparse; each non-zero in a
given row is associated with an element adjacent to the
element corresponding to that row. This holds only for the
piecewise constant prolongation operator (l = 1, n = K) of
the previous section. The strategy for higher-order coarse
grid operators (l > 1) is the same – each degree-of-freedom
in the following discussion is simply replaced by a clique
of l fully coupled degrees-of-freedom.

It is well known (e.g., [6]) that parallel solution of the
coarse grid problem is hampered by the inherent sequen-
tiality of the forward and backward substitution phases
of standard LU (or LLT ) factorizations. If n (and conse-
quently, p) is sufficiently small, it is feasible to store, factor,
and solve the system redundantly on each processor. This
often practiced approach has the advantage that it is easy
to implement and requires a per-solve communication time
of only (α log2 p+βn) to gather a copy of b onto each pro-
cessor. If the local direct solution strategy is based upon
standard banded solvers, the computational complexity is
4ns operations per solve, for a matrix of bandwidth s.

For large numbers of processors and relatively small sys-
tems (e.g., p > 128, n < 5000), we have shown that com-
puting the full inverse of A can be far more effective than
solving the system redundantly [4]. By distributing each
column of A−1 in the same manner as x and b, the solution
can be computed as a parallel matrix-vector product,

x = A−1b ,(8)

once b has been gathered onto each processor. The com-
munication complexity is identical to the previous case.
However, the complexity for the computation of the inner-
products of the rows of A−1 with b is now 2n2/p; paral-
lelism has been introduced to this phase of the solution.
Whenever p > n/2s, the full inverse approach will be su-
perior to redundant banded factorization.

Unfortunately, memory limitations restrict the above
techniques to matrices of order n less than a few thou-
sand. Ideally, one would like a solution scheme which re-
tains the low O(log p) communication cost of the previ-
ous approaches, has the full parallelism of matrix-vector



6 ICOSAHOM 95

products, yet has the sparsity of LU factorization. The
following construction attains all of these goals.

Let X = (x1 x2 . . . xn) be a square matrix with columns
satisfying

xT
i Axj = δij ,(9)

where δij is the Kronecker delta. Then XXT Ax = XXT b
is the A-orthogonal projection of x onto lRn, and XXT

constitutes a factorization of A−1. If each xi is distributed
in the same manner as b, the two-step computation of

x = XXT b(10)

has the desired communication complexity. In the first
step, the vector c = XT b is computed by locally form-
ing n partial inner-products on each processor, followed
by a log2 p gather-scatter of an n-vector to sum and redis-
tribute the entries of c. Assuming that X is a full matrix,
the computational complexity for this step is 2n2/p. If
an interleaved sum-and-redistribute operation is used, the
communication complexity is (α log2 p + βn log2 p) to gen-
erate an entire copy of c on each processor. In the second
step, the computation of x = Xc requires 2n2/p operations
and no communication.

The overall complexity can be significantly reduced if we
can choose a (quasi-) sparse basis for the columns of X.
By quasi-sparse, we imply that X will have O(nγ) entries,
with 1 < γ < 2, as opposed to strictly O(n) entries as is
generally associated with the definition of a sparse matrix.
We will nonetheless refer to X as being simply “sparse.”
The following geometric arguments show that it is always
possible to generate a sparse factor X if A is sparse.

Let êi and êj be the ith and jth column of of the identity
matrix, In, and Ni, the neighborhood of i, be the set of
indices corresponding to columns with non-zero entries in
row i of A. Then,

êT
j Aêi = 0 ∀ j /∈ Ni .(11)

Geometrically, this corresponds to the situation shown in
Fig. 3a. It is clear that at least n/ max(#Ni) of the unit
vectors are A-conjugate to one another, where #Ni de-
notes the cardinality of Ni. The generation of a sparse ba-
sis for X starts with finding a maximal (or near-maximal)
set of k1 A-conjugate unit vectors and normalizing them
appropriately. The first k1 columns of X will have only
one non-zero entry.

Additional entries in X are generated by Gram-Schmidt
orthogonalization. Let Xk = (Xk−1 xk) denote the
n × k matrix with columns (x1 x2 . . . xk), and let V =
(v1 v2 . . . vn) be an appropriate permutation of the iden-
tity matrix. Then the procedure:

for i = 1, . . . , n:
w := vi − Xi−1X

T
i−1Avi

xi := w/||w||A
Xi := (Xi−1 xi)

end for

ensures that X is the desired factor of A−1. For i ≤ k1 the
projection Xi−1X

T
i−1Avi will be void and xi will simply be

a multiple of vi. As k increases beyond k1, Xk will begin to
fill in. At the cost of additional communication overhead,
a more stable modified Gram-Schmidt procedure may re-
place the projection step, w := vi − Xi−1X

T
i−1Avi, given

above.
Following, e.g., [5, 15], an efficient procedure for se-

lecting the permutation matrix, V , can be developed by
defining separators which recursively divide the domain (or
graph) associated with A into nearly equal subdomains.
The first such separator is shown in Fig. 3b. Since the
stencil for A does not cross the separator, it is clear that
every unit vector êi associated with the left half of the

6

-
x

y

√
n¾ -

√
n

?

6

êj

Aêi

(a)

6

-
x

y

√
n¾ -

√
n

?

6

(b)

Figure 3: (a) Geometric support (shaded) of orthogonal
vectors êj and Aêi. (b) Support of spectral element sepa-
rator set.



Parallel multi-level solvers 7

√
n

X = n

?

6

0

0

(a)

√
n

√
n
2

X = n

?

6

0

0

0

0

0

0

(b)

Figure 4: (a) zero/fill structure for X resulting from or-
dering suggested by Fig. 3b. (b) zero/fill structure after
second round of recursion.

domain in Fig. 3b is A-conjugate to every unit vector êj

associated with the right half. If V is arranged such that
vectors associated with the left half of the domain are or-
dered first, vectors associated with the right half second,
and vectors associated with separator last, then the above
Gram-Schmidt procedure will generate a matrix X with
worst-case fill depicted by Fig. 4a. (X is shown here with
the rows reordered according to the permutation used for
the columns of V .) The procedure can be repeated to or-
der the vectors within each subdomain, giving rise to the
structure shown in Fig. 4b. Repeating the procedure re-
cursively will lead to a total storage bounded by 3n

√
n for

a
√

n×√n array of spectral elements.
From (10), it is clear that the computational complex-

ity of each solve is proportional to the amount of fill
in the factor X. Depending on the spectral element-
to-processor distribution, we can expect a computational
complexity of O(n

3
2 /p) for the domain shown in Fig. 3b

– a clear gain over the O(n2/p) cost incurred by the ma-
trix inverse approach (8). Moreover, the communication
cost can be shown to be only (α log2 p + O(

√
n)β log2 p).

Similar arguments in three-dimensions lead to computa-
tional and communication complexities of O(n

5
3 /p) and

(α log2 p+O(n
2
3 )β log2 p), respectively. Note that for a typ-

ical value of α/β ' 100, communication bandwidth does
not play a role in the two-dimensional case until n ' 104;
the communication cost in the solution of smaller systems
is dominated by latency.

For more complex two- or three-dimensional meshes,
separator sets can be found with standard graph-splitting
techniques, e.g., recursive coordinate bisection, or one of
the many variants of recursive spectral bisection (RSB).
In this application, the cost of finding a good separator is
amortized over numerous solves and the per-solve cost is a
super-linear function of the size of the separators. Conse-
quently, high-quality bisection algorithms are of interest.

We have implemented a parallel version of RSB [15] to
order the separator sets and, ultimately, the columns of V .
In RSB, the initial partition is derived from the second low-
est eigenmode (the Fiedler vector) of the graph-Laplacian
of A. The graph-Laplacian is defined as the matrix L which
has the same sparsity pattern as A, with each off-diagonal
entry in L having value −1 and each diagonal entry equal
to the number of off-diagonal entries. The domain is par-
titioned according to values above and below the median
entry in the Fiedler vector. Once this partition is estab-
lished, the procedure is repeated on each subdomain.

To effect a tripartite decomposition of the domain into a
separator and two disjoint subdomains, it is useful to base
RSB on the dual of the coarse-grid operator, i.e., the graph-
Laplacian of the spectral element vertices rather than the
element centroids. A spectral element is then deemed to
be in the separator set if the Fiedler vector entries corre-
sponding to the element’s vertices straddle the median.

The graph-Laplacian satisfies a zero row-sum condition
and is symmetric semi-positive definite. Computation of
the low eigenmodes of L is accomplished via standard
Lanczos/conjugate-gradients techniques (e.g., [13]), and
hence requires only sparse matrix-vector product software
(e.g., [14]). After each separator set is found, L can be
updated by zeroing matrix entries which correspond to
deleted entries in the original graph, and adjusting the
diagonal entries accordingly. Consequently, the parallel
gather-scatter index sets required for matrix-vector prod-
ucts need not be changed with each round of recursion.
We typically recur until the minimum number of elements
in a subdomain is equal to four, and then use a greedy
algorithm to color the remaining entries.

The approach outlined above for generation of sparse
factorizations of A−1 is strongly linked to nested-dissection
factorizations of sparse matrices [5] and to the minimal
factor algorithms suggested by [1]. It can readily be



8 ICOSAHOM 95

shown that there exists a row permutation matrix R such
that RX is lower triangular. Then, (RX)(XT RT ) is the
Cholesky factorization of RA−1RT . Strikingly, this implies
that while A−1 is full, there exists a symmetric permuta-
tion of A−1 for which its Cholesky factorization is (quasi-)
sparse, assuming that A was sparse initially. A trivial ex-
ample of this can be seen for a symmetric-positive def-
inite tridiagonal matrix, T . The Cholesky factorization
of T = LLT is sparse, but the inverse of L is full lower-
triangular. However, if one first permutes T with a nested
dissection ordering, the Cholesky factor of the permuted
matrix will have an inverse having only n log2 n non-zeros.

Results for the Sparse Factorization:

We have implemented the RSB routine in parallel and
used it to generate separator sets for several two- and three-
dimensional meshes. A close-up of a separator set gener-
ated after four rounds of RSB is shown in Fig. 5. With
piecewise-constant prolongation (l = 1), the coarse grid di-
mension for this problem is n = K = 1692. The number of
non-zeros in X is 118921, which is of the same order as the
predicted bound of 3n

3
2 = 208796. For larger values of l,

the storage and per-solve operation count scales as l2, while
the communication bandwidth cost scales as l. It is clear
that as l increases, less compute-intensive algorithms such
as Choleski factorizations based on nested-dissection order-
ings (e.g., [1]) will be of interest, since the operation count
will begin to dominate the communication costs. However,
we have found that even the full n2 algorithm, (8), is of
interest for n on the order of a few thousand and p on the
order of a few hundred. We therefore expect the n

3
2 algo-

rithm presented here to provide significant gains for larger
n.

Preliminary results show the merits and potential limi-
tations of the XXT factorization in conjunction with the

Figure 5: Close up of K = 1692 element mesh showing
separators (shaded) generated by the first four rounds of
RSB. Each quadrilateral is a spectral element.

(a)

l = 1

l = 4

l = 9

(b)

l = 1

l = 4

l = 9

Figure 6: Cumulative pressure iteration count (a) and
CPU time in seconds (b) vs. step number for the first 100
time steps of a cylinder start-up calculation on a single pro-
cessor SGI-Onyx. The Reynolds number is ReD = 5000;
the mesh employed is that of Fig. 5, with K = 1692,
N = 7, l = 1, 4, 9.

enriched coarse grid operator. We compute start-up flow
past a cylinder at Re = 5000 using the mesh depicted in
Fig. 5. The cylinder diameter and free-stream velocity
are both unity, and the time step is ∆t = 0.001. Fig. 6a
shows the number of iterations required for the Ef system



Parallel multi-level solvers 9

(5) for piecewise constant, linear, and quadratic coarse grid
spaces. While there is a clear reduction as l increases, the
CPU time on a single-processor SGI Onyx decreases only
up to l = 4 for this problem, as can be seen in Fig. 6b.

5 Conclusions

We have developed a flexible deflation based iterative al-
gorithm to compute the pressure for large two- and three-
dimensional spectral element discretizations of the incom-
pressible Navier-Stokes equations. The method provides
significant reduction in iteration count for certain classes
of problems, and admits the possibility of tailoring the
portion of the solution to be computed directly in order
to improve the overall efficiency of the solver. A critical
component to the solution of this problem, and many other
similar multi-level solvers, is a fast direct method for solv-
ing systems of equations in parallel. The approach devel-
oped here achieves the minimum possible time complexity
in the message-latency dominated limit.

Acknowledgements

This work was supported by the NSF under Grant ASC-
9405403 and by the AFOSR under Grant F49620-95-1-
0074. Computer time was provided on the Intel Delta
by the Center for Research on Parallel Computation at
Caltech and on the Intel Paragon at Wright Patterson Air
Force Base by the AFOSR. The author would like to thank
Gerald Kruse and Henry Tufo for assistance in this work.

References
[1] F. Alvarado, A. Pothen, and R. Schreiber, “Highly

parallel sparse triangular solution” Univ. Waterloo
Research Rep. CS-92-51 Waterloo, Ontario (1992).

[2] W. Couzy, “Spectral element discretization of the un-
steady Navier-Stokes equations and its iterative solu-
tion on parallel computers,” Thèse No. 1380, École
Polytechnique Fédérale de Lausanne (1995).

[3] P.F. Fischer, “Projection techniques for iterative so-
lution of Ax = b with successive right-hand sides.”
ICASE Report No. 93-90, NASA CR-191571.

[4] P.F. Fischer and E.M. Rønquist, “Spectral Element
Methods for Large Scale Parallel Navier-Stokes Cal-
culations” Comp. Meth. Appl. Mech. Engr., 1994.

[5] J.A. George, Nested dissection of a regular finite el-
ement mesh, SIAM J. Numer. Anal., 15 (1978) pp.
1053-1069.

[6] W.D. Gropp, Parallel Computing and Domain De-
composition in Fifth Conference on Domain Decompo-
sition Methods for Partial Differential Equations T.F.
Chan, D.E. Keyes, G.A. Meurant, J.S. Scroggs, and
R.G. Voigt, eds., SIAM, Philadelphia, PA, 1992.

[7] P. Koumoutsakos and A. Leonard “High-resolution
simulations of the flow around an impulsively started
cylinder using vortex methods” J. Fluid Mech. 296
10 (1995) pp. 1-38.

[8] Y. Maday, and A.T. Patera, Spectral element methods
for the Navier-Stokes equations in State of the Art
Surveys in Computational Mechanics, A.K. Noor, ed.,
ASME, New York, 1989.

[9] Y. Maday, A.T. Patera, and E.M. Rønquist, An
operator-integration-factor splitting method for time-
dependent problems: application to incompressible
fluid flow. J. Sci. Comput., 5(4), (1990) pp. 310-37.

[10] Mandel, J “Hierarchical preconditioning and par-
tial orthogonalization for the p-version finite element
method”, in 3rd Int. Symp. on Domain Decomposition
Methods, T.F. Chan, R. Glowinski, J. Periaux and O
.B. Widlund, eds., SIAM, pp. 141-156 (1989).

[11] L. Mansfield, On the use of deflation to improve the
convergence of conjugate gradient iteration Comm. in
Appl. Numer. Meth., 4, (1988) pp. 151-56.

[12] R.A. Nicolaides, Deflation of conjugate gradients with
applications to boundary value problems SIAM J. Nu-
mer. Anal., 24(2), (1987) pp. 355-65.

[13] D.P. O’Leary and O. Widlund, “Capacitance matrix
methods for the Helmholtz equation on general three-
dimensional regions” Math. Comp. 33(147), 849-879
(1979).

[14] S. Pissanetzky, Sparse Matrix Technology Academic
Press, Orlando Florida, 1984.

[15] A. Pothen, H.D. Simon, and K.P. Liou Partitioning
sparse matrices with eigenvectors of graphs SIAM J.
Matrix. Anal. Appl., 11(3), (1990) pp. 430-52.

[16] E.M. Rønquist, A Domain Decomposition Method for
Elliptic Boundary Value Problems: Application to
Unsteady Incompressible Fluid Flow, in Fifth Confer-
ence on Domain Decomposition Methods for Partial
Differential Equations T.F. Chan, D.E. Keyes, G.A.
Meurant, J.S. Scroggs, and R.G. Voigt, eds., SIAM,
Philadelphia, PA, 1992.

[17] M. Dryja and O. Widlund, “Towards a Unified The-
ory of Domain Decomposition Algorithms for Ellip-
tic Problems,” in Proceedings of the Third Interna-
tional Symposium on Domain Decomposition Meth-
ods for Partial Differential Equations, R. Glowinski,
J. Periaux, and O. Widlund, eds. (SIAM, Philadel-
phia, 1990), p. 3.


