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We describe the development and implementation of an efficient spectral
element code for simulating transitional flows in complex three-dimensional
domains. Critical to this effort is the use of geometrically nonconforming
elements that allow localized refinement in regions of interest, coupled with a
stabilized high-order time-split formulation of the semi-discrete Navier—Stokes
equations. Simulations of transition in a model of an arteriovenous graft
illustrate the potential of this approach in biomechanical applications.
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1. INTRODUCTION

Simulation of transitional flow in complex geometries poses significant
numerical challenges. Even in simple geometries, such as plane-Poiseuille
flow, the transition process can be more difficult to simulate than turbulent
flow at the same Reynolds number [34]. Proper identification of the point
of transition (in both physical and parameter space) calls for accurate
representation of the convective operator such that numerical dissipation
and dispersion do not overwhelm physical effects. Because small-scale
structures are transported with minimal physical dissipation, accurate long-
time integration is required. These challenges can be efficiently addressed
though the use of high-order methods in space and time. The presence of
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small-scale structures also implies a need for significant spatial resolution
in supercritical regions, which may be localized in space. Nonconforming
meshes allow for local refinement in these regions without undue spatial
resolution throughout the domain.

We consider a nonconforming spectral element method for solution of
the incompressible Navier—Stokes equations in R,

Ou I _, . .
E+u.Vu——Vp+R—eVu in Q, V-u=0 inQ €))

with prescribed boundary and initial conditions for the velocity, u. Here, p

is the pressure, divided by the density, and Re = Y% the Reynolds number

based on characteristic velocity and length scales. Spatial discretization of
(1) is based on the P, — P, _, spectral element method (SEM) [23], which
uses compatible velocity and pressure spaces that are free of spurious
modes. This is coupled with high-order operator splitting methods to yield
a sequence of symmetric positive definite (SPD) subproblems to be solved
at each timestep. Convection-dominated problems are stabilized by using a
recently developed filtering procedure [ 14]. The method attains exponential
convergence in space and second- or third-order accuracy in time.

The paper is organized as follows. Section 2 provides an overview of
the spectral element method and the time advancement scheme. Section 3
discusses the filter-based stabilization. Section 4 describes the nonconforming
implementation. Simulation results for transitional flow in an arteriove-
nous graft model are presented in Section 5, and a brief conclusion is given
in Section 6.

2. NAVIER-STOKES DISCRETIZATION

The temporal discretization of the Navier—Stokes equations is based
on the high-order operator-splitting methods developed in [24]. The con-
vective term is expressed as a material derivative, which is discretized by
using a stable mth-order backward-difference scheme. For m=2 we have

~n—2 ~n—1 ~
" —4a +3u=S(ﬁ)
2 At
where S(ii) is the linear symmetric Stokes problem to be solved implicitly,
and @""? is a velocity field that is computed as the explicit solution to
a pure convection problem over the interval [¢"7¢, t"]. The subintegration
of the convection term permits values of A¢ corresponding to convective
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Courant numbers of 1-5, thus significantly reducing the number of (expensive)
Stokes solves.

The Stokes discretization is based on the variational form: find(i, p) €
Xy XYy such that

1 3
— (Vii, VW) +—— (i, V). — (p, V-V)g = (£, v
Re( oL 2At( Jor —(p )e = (£, V)or )

(V-i,9)g =0

Y(v, q) € Xy x Yy. The inner products (., .)s. and (., .)g refer to the Gauss—
Lobatto-Legendre (GL) and Gauss-Legendre (G) quadratures associated
with the spaces Xy :=[Zy n H)(2)]¢ and Yy, := Z,_,, respectively. Here,
Zy :={ve L*(Q) | v+ € Py(2%)}, where L? is the space of square integrable
functions on Q; H is the space of functions in L? that vanish on the
boundary and whose first derivative is also in L% and P, (2%) is the space
of functions on element Q¥ whose image is a tensor-product polynomial of
degree < N in the reference domain, Q= [—1,1]% For d=2, a typical
element in X is written

Wx(r, DIt = 3, Y Wik (r) hjf (s) (€)

i=0 j=0

where ii}; is the nodal basis coefficient; ;' € P, is the Lagrange polynomial
based on the GL quadrature points, {&}}1_ (the zeros of (1—¢&?) LYy(¢),
where Ly is the Legendre polynomial of degree N); and x*(r,s) is the
coordinate mapping from @ to Q*. For Yy, a tensor-product form similar to
(3) is used, save that the interpolants are based on the G points since
interelement continuity is not enforced.

We assume that Q = (JX_, Q* and that, for the conforming case, the
interface I'* := Q* n Q' for k # 1 is void, a single vertex, or an entire edge.
For the nonconforming case, I'* may be a subset of either boundary 0Q* or
0Q' but must coincide with an entire edge of one of the elements. Function
continuity (it € H") is enforced by matching the Lagrangian basis functions
on subdomain interfaces. The velocity space is thus conforming, even for
the nonconforming meshes, as described in Section 4.

Insertion of the SEM basis into (2) yields a discrete Stokes system to be
solved at each step:

Hii—D"p" = Bf", Di=0 4
Here, H = 3. A+55; B is the discrete equivalent of the Helmholtz operator,
—z V2 +53); — A is the discrete Laplacian; B is the (diagonal) mass matrix
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associated with the velocity mesh; D is the discrete divergence operator, and
f" accounts for the explicit treatment of the nonlinear terms. A filter is
applied to i to yield the solution u” at time level ¢” := n At. Note that the
Galerkin approach implies that the governing system in (4) is symmetric and
that the matrices H, 4, and B are all symmetric positive definite.

The Stokes system (4) is solved approximately, using the mth-order
operator splitting analyzed in [24, 28]. The splitting is applied to the
discretized system so that ad hoc boundary conditions are avoided. For
m = 2, one first solves

Hi = Bf"+D"p" ®)
which is followed by a pressure correction step
E op = —DA, i=i+4rB'D" op 6)

where E:=%A4t DB7'D” is the Stokes Schur complement governing the
pressure in the absence of the viscous term. For m > 2, higher-order
extrapolation for p must be used in (5).

To close this section, we summarize our Navier—Stokes time advance-
ment scheme. We begin with an explicit convective update involving several
steps small enough to satisfy the CFL condition. This is followed by Jacobi-
preconditioned conjugate gradient (PCG) solution of d Helmholtz problems
(5), which for large Re and small Ar are strongly diagonally dominant
and therefore well conditioned. Next, we solve the Poisson-like system for
the pressure (6) using PCG. The pressure preconditioner is based on the
overlapping Schwarz procedure of Dryja and Widlund [10] and is described
in detail in [12, 13]. The pressure solve is the most computationally inten-
sive step. To accelerate convergence, we generate a high-quality initial guess
for dp by computing its projection onto the space of previous solutions
[11]. Finally, we obtain the solution at time level # by filtering the inter-
mediate velocity field,

u"=F,ii ™)

As described in the next section, the filter provides stability in high-
Reynolds number applications.

3. FILTERING

One of principal attractions of spectral element methods is that, for
smooth solutions, the error decreases exponentially fast with increasing
polynomial degree N (see Table I). However, spectral element methods can
also be highly effective in solving transport problems in which the solution
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Table 1. Spatial (Left) and Temporal (Right) Convergence: Errors in Computed Growth
Rates for the Orr—Sommerfeld Problem

At =0.00325 N=17 2nd-Order 3rd-Order
N a=0.0 a=02 At a=0.0 a=0.2 a=0.0 a=0.2
7 0.2364 0.2745 0.200 0.1262 0.1262 171.37 0.0207
9 0.0017 0.1193 0.100 0.0347 0.0347 0.0027 0.0027
11 0.0046 0.0111 0.050 0.0091 0.0091 161.13 0.0004
13 0.0001 0.0007 0.025 0.0024 0.0024 1.0446 0.0001

is not smooth. This property is illustrated by the convected-cone example of
Fig. 1, which was introduced by Gottlieb and Orszag [16]. A unit-height
cone with a base-radius of 0.1 centered at (x, y) = (0, 0.25) is subjected to
plane rotation in the domain Q = [0, 1]% The solution is evolved according
to u,+c-Vu=0, with periodic boundary conditions and convecting field
c=(y—0.5,0.5—x). Figure 1 shows the results after a single revolution
for three spectral element discretizations, (K, N), where K is the number of
(square) elements, and N is the polynomial degree in each spatial direction.
Each case corresponds to a 32 x 32 grid. Time-stepping is based on third-
order Adams-Bashforth (AB3) with A¢t=7/1000. (Fourth-order Runge-
Kutta results are identical.) The low-order cases (N =2, 4) show evidence of
significant numerical dispersion. By contrast, the dispersion is diminished
for the moderately high-order case (N =8), and the solution produces a
reasonable representation of the original cone. The minima for the three
respective cases are —0.1419, —0.1127, and —0.0371, while the maxima are
0.7693, 0.7413, and 0.8652.

Unfortunately, Galerkin formulations suffer from well-known instabil-
ities in convection-dominated flows when underresolved boundary layers are
encountered. A classic example is the one-dimensional steady convection-
diffusion problem wu,—vu, = f, u(—1)=u(1)=0, f=1. The spectral
Galerkin formulation of this problem is: find u € P such that

(u,—vu,.—f,v) =0  VYoeP$

(c)

Fig. 1. Spectral element results for convected cone problem [16] on 32 x 32 grids: (a) (K, N)
= (256, 2), (b) (64, 4), (c) (16, 8).
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Fig. 2. Spectral Galerkin results for steady advection-diffusion problem: (a) uy(x) for
N =16, v=0.001, 0.01, 0.1, (b) maximum pointwise error with (---) and without (—) filtering
for N=15(0O) and N =16 (+).

where P$, is the space of all polynomials of degree < N vanishing at +1
and (.,.) is the standard L? inner-product on [—1,1]. As shown by
Canuto [7], and illustrated in Fig. 2, the spectral solution is unbounded as
v — 0 when N is even. As shown in Fig. 2b, for large v (smooth solutions),
the error is smaller for N =16 than for N =15. However, as v — 0, the
error grows without bound for N =16 but remains bounded for N =15.

Ideally, one would like to retain the good transport properties illus-
trated in Fig. 1, without the sensitivity to parameters exemplified in Fig. 2.
Several proposed strategies for stabilizing convection-dominated problems
involve a reformulation of the Galerkin procedure, for example, Petrov—
Galerkin schemes [29], shifted grids [15], the addition of bubble functions
[8], or the addition of higher-order derivative terms, such as in the spec-
trally vanishing viscosity method [ 32, 25]. Related to this last approach are
filtering schemes [5, 17]. A significant advantage of filtering is that it can be
applied as a postprocessing step and therefore does not require changing the
underlying discretization or solver. In particular, solvers designed for sym-
metric systems continue to be useful.

As pointed out by Boyd [5], a special basis is required for the SEM in
order to preserve interelement continuity. In [14], we introduced an inter-
polation-based filtering procedure that can be applied on an element-by-
element basis. The local operator is constructed as follows. Let I be the
matrix having entries

([%)ij = hjv(ifu)

The action of I¥ is to interpolate a Lagrange polynomial on [ —1, 1] from
the order-N GL points to the order-M GL points, M. This operator is
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stable both in L? and H' norms (that are natural norms for this problem) as
can be found in [4], Egs. (13), (27) and (28). Similarly, the matrix I7_, :=
IN_IN~' defines a projector from Py to Py_, on [ —1, 1]. The matrix that
implements the one-dimensional filter on [ —1, 1] is defined by

E=adly ,+(1—a)I

In higher space dimensions, one uses the tensor-product form F, :=
F,® --- ® F, within each element. The interpolation-based procedure
ensures that interelement continuity is preserved and, because the inter-
polation error for smooth u is exponentially small as N — oo, that spectral
accuracy is not compromised. Because the nodal basis points ¢V interlace
EN-! F, tends to dampen high-frequency oscillations. One can apply the
filter intermittently rather than at each time step. However, we prefer to
control the filter strength through the single parameter «, which is typically
taken to be 0.05. Note that a =1 corresponds to a full projection onto
Py_:, effectively yielding a sharp cut-off in modal space, whereas 0 <o <1
yields a smoother decay, which is known to be preferable when filtering
[5, 17, 25].

Examples. We illustrate the effect of the filter on several example
problems, starting with the shear layer roll-up problem studied in [6].
Equation (1) is solved on Q := [0, 1]* with doubly periodic boundary con-
ditions and initial condition u = (u, v) given by

v=0.05sin(2zx) ()

{tanh(p(y—O.ZS)) for y<0.5
tanh(p(0.75—y))  for y>0.5’

which corresponds to a pair of nearly parallel shear layers of thickness
O(1/p). For any fixed mesh, the initial shear layers are drawn thinner until
their thickness is below the resolvable scale. The problem is solved by using
the SEM on a 16x 16 array of elements with N=4, 8, 16, and 32, and
timestep size At = 0.002. Without filtering («=0), the solution is unstable for
the four values of N considered and blows up at 7z <1.0. With filtering
(0.05 < a < 1), the simulation can continue well beyond the point where the
shear layers are resolved. Filtered results (x=0.3) at £ =1.5 are shown in
Fig. 3. Further results are presented in [14].

As a second example, we examine the errors in computed growth rates
when the least stable eigenmode for the Orr—Sommerfeld equation is super-
imposed on plane Poiseuille channel flow at Re = 7500, following [12].
The amplitude of the perturbation is 107°, implying that the nonlinear
Navier—Stokes results can be compared with linear theory to about five
significant digits. The errors (see (41) in [12]) at time ¢ = 60 given in Table I
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Fig. 3. Vorticity contours (from —70 to 70 by 140/15) for the shear-layer rollup problem (8)
with p=30, Re = 10°, K = 256: (a) N = 8, (b) N = 16.

reveal exponential convergence in N for both the filtered and unfiltered
cases. It is also clear that O(4¢?) and O(4¢?) convergence is obtained for the
filtered case but that the unfiltered results are unstable for the third-order
scheme. In this case, the stability provided by the filter permits the use of
higher-order temporal schemes, thereby allowing a larger time step for a
given accuracy.

Finally, we revisit the instability encountered in the example of Fig. 2
by considering the effects of the filter when the solution to the unsteady
convection-diffusion equation, u, +u, —vu,, = f, u(—1)=u(1)=0, f=1, is
evolved to steady state. Discretization by the SEM in space and by Crank—
Nicolson and third-order Adams—Bashforth for the respective diffusive and
convective terms in time leads to the system

Hi=Huw'-CHu"—gu ' +5u" ) +Bf, w*'=Fa )
where H=( A+ B) and Hp=(—} A+ B) are discrete Helmholtz
operators and C is the convection operator. The fixed point of (9) satisfies

(vA+C+H(F;' —=I)) u=Bf (10)

The At dependence in (10) can be eliminated by assuming that 1 ~ CFL
i= At/ Ax ~ At N>,

For any Galerkin formulation, C is skew symmetric and therefore sin-
gular if the number of variables is odd (the spurious mode being Ly — L,).
The eigenvalues of (F,'—I) are {0,0,...,0,%} (the nonzero eigenmode
being ¢y (x) :=zv=p5 (1—x?) Ly _;(x) = Ly—Ly_,). By suppressing the
unstable mode, the stabilizing term, H(F,' —1I), prevents (10) from blowing
up as v — 0. The dashed line in Fig. 2b shows the effect of the filter for
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N =15 and 16. For moderate to large v, the error behavior is essentially the
same as for the unfiltered case, while for small v the solution is stable for
each value of N.

We note that ¢, corresponds to a single element in the filter basis
suggested by Boyd [5]. One can easily suppress more elements in this basis
in order to construct smoother filters, as suggested, for example, in [5, 25].
However, our early experiences and asymptotic analysis (v — 0 in (10))
indicate that slight suppression of just the Nth mode is sufficient to
stabilize the P,, — P, _, method at moderate to high Reynolds numbers.

4. NONCONFORMING SPECTRAL ELEMENTS

Element-by-element operator evaluation is central to the efficiency of
the SEM because it allows the use of tensor-product forms, which reduce
the work and storage complexity from O(KN*) to O(KN?*') and O(KN?),
respectively [27]. The extension to nonconforming spaces preserves this
feature and essentially involves redefining the interface operators that
impose the matching conditions across element interfaces. Here, we consider
the development of interpolation-based interface conditions that leave the
approximation spaces X, and Y, unchanged but allow for nonconforming
meshes of the type illustrated in Fig. 4a. On the nonconforming interface I”
we refer to the large element as the parent element, the two (or more)
smaller elements as children, and the interface between them as a parent-
child (PC) interface. We do not restrict the number of child elements per PC
edge. However, we insist that the union of the closure of the child faces
constitutes the closure of the parent face. While this restriction rules out
configurations such as shown in Fig. 4b, it allows us to preserve local
(element-to-element) interactions. For similar reasons, we also exclude con-
figurations in which the endpoint of one PC interface connects to the
interior of another, as shown in Fig. 4c.

(a) (b) (c)

Fig. 4. (a) Valid and (b, c) invalid nonconforming meshes in R
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Much work has been done on nonconforming spectral element methods,
starting with the early work of Mavriplis [26], Anagnostou et al. [1], and
others [3, 18, 9]. Most of these have employed “mortar” elements that
increase flexibility through the use of L’projection operators to enforce
weak continuity at the nonconforming interface. In particular, the ““vertex-
free” mortar spaces of Ben Belgacem and Maday [3] alleviate the restric-
tion of Fig. 4c. The conforming-space /nonconforming-mesh approach used
here was motivated by the results of Renquist [30], who reported spurious
eigenvalues in the convection operator for certain combinations of convec-
tion and nonconforming formulations. For brevity, in this article, conforming
will refer to conforming meshes (no hanging vertices), and nonconforming
will refer to conforming spaces with nonconforming meshes. We further
assume that the polynomial degree NV is the same in each spectral element.

To introduce the interface matching conditions, we begin by consider-
ing enforcement of continuity of a function u(x), xe€ Q< R? for the
conforming case. For isoparametrically mapped elements, the geometry
within each element is represented in a form similar to (3), that is,

XEr, )lor =3, Y, xyhi' (r) by (s) (1D

i=0 j=0

Because the basis functions are Lagrangian, function continuity for u(x) is
enforced by simply equating coincident nodal values, that is,
k

X; =X

I
Pt

= uf; =u (12)
If n is the number of distinct nodes on €, then (12) represents K(N +1)¢
—n constraints on the set of local nodal values {u};}.

It is convenient for notational purposes to cast the constraint (12) in
matrix form. Let u € R” denote the vector of nodal values associated with a
global numbering of the distinct nodes in all of Q, as illustrated in Fig. Sa.

Q

} ~7 A 4 ~7 \’.

Uz Ug Ug Uiq Uis ul s
D o (] [o] [«

Ug Uy Ug U2 U13 ul
l: e o c Ve,

L1 Uz U3 U10 Ug1 ud o

(a) (b)

Fig. 5. (a) Global and (b) local numbering for spectral element mesh.
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Let u*e R¥+Y" denote the vector of local basis coefficients associated
with Q%

k.__ k k k T _
u ‘_(uOO’MIO""a uNN) H k_la"wKa

as illustrated in Fig. 5b, and let u; be the K(N+1)?x 1 collection of these
local vectors. If u is to be continuous, then there exists a Boolean connecti-
vity matrix, Q, that maps the global form u to its local counterpart u; such
that (12) is satisfied. The operation

u; =Qu (13)

is referred to as a scatter from the global (¥) to local (u;) vector. For
example, in Fig. 5 the global value u; is copied to local coefficients u;
and ug,. Note that for every global vector, u, there is a corresponding
local vector, u;, given by (13). The converse is not true because Q is not
invertible. However, we will frequently employ the closely related gather
operation

v=0"u, (14)

and denote the output (v) with a different notation from the input (u,).
Whereas the action of Q is to copy entries of u to u;, the action of Q7 is
to sum entries from corresponding nodes. In practice, the matrix Q is
never constructed. Rather, the actions of Q and QF are implemented via
indirect addressing (and message passing, in parallel implementations). The
combined gather-scatter operation X' := QQ7 is often referred to as direct
stiffness summation in the spectral element literature.

We illustrate the use of the above notation by considering an integral
that arises in the weak formulation of the Poisson equation. Assuming u,
ve H', we have

K
L) Vu-VvdV=kZ::1 Lk Vu-Vodv (15)

Restricting u and v to X, inserting the SEM basis (3), and substituting GL
quadrature for integration, we obtain

fk Vu-VodV ~ (057 A*u* (16)
Q
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where A* is the local elemental stiffness matrix and the approximation (~)
results from substitution of quadrature for integration. An example of A* is
given by the tensor-product form

Lk . . LF . .
Ak=L—;(B®A)+L—,’c(A®B)

for the case where Q* is an L¥x L* rectangle. Here, 4 and B are the
respective stiffness and mass matrices on [ —1, 1], with entries

A N4 A a A A 1
Aij = IZO DliplDlj = (DTBD)ij: Bij =pi 51’]‘ = 51’]’ J—l hfv(r) dr

where p; is the GL quadrature weight, Dij =hy "(&¥) is the one-dimensional
derivative matrix, and J;; is the Kronecker delta. Substituting (16) into (15)
yields

K

f Vu-Vodv =3, 9" A" =viA,u, =v"0"4,Qu 17
Q

k=1

where 4; := block-diag(A*) comprises the unassembled local stiffness matrices.
Note that the final equality is a result of the interface matching conditions,
u,ve H'.

Equation (17) illustrates how the matrix assembly process (Q, QF) is
decoupled from the local spectral element operators contained in A4;. In the
nonconforming case, Q must be modified at the PC interfaces, where global
nodal values are stored along the parent edge. Application of Q involves
interpolation of the associated Lagrange polynomial to nodal points dis-
tributed along the corresponding child faces. To ease parallelism, we
implement this using the two-step process illustrated in Fig. 6a. Data is first
copied from the parent data structure to the corresponding child edges.
This step may involve communication if the parent and child elements are
not on the same processor. After the copy, an interpolation operator, J%, is
locally applied to produce the desired nodal values on the child face. This
two-step procedure can be represented in matrix form as

0=J.0

where Q is a Boolean matrix similar to the Q operator used in the con-
forming case, and J, is block-diagonal and comprises local matrices J
that interpolate from 027 to 0Q2° n 0Q2°. The entries of J are

(Jcp)ij = hfv(Cf”)
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Fig. 6. Schematic of (a) Q and (b) QT implementation.

where {;? represents the mapping of the GL points from the child edge to
its parent. In R?, the local interpolation operators mapping from the parent
to child face have the tensor-product form J¥ ® J. Application of Q
follows in the reverse order, with summation replacing the copy, as
illustrated in Fig. 6b.

For time advancement of the incompressible Navier—Stokes equations,
it is desirable to have a diagonal mass matrix [18]. If y,, ¥; are two ele-
ments of the Lagrangian basis set spanning X, the entries of the mass
matrix for the standard spectral element formulation are B;; := (¥;, ¥;)cr-
Equivalently, we have B= Q”B, Q, where B, := block-diag(B*) comprises
the local mass matrices. For the two-dimensional case, an entry of B* for a
nodal point xj, is simply p,p,#},,, where #}, is the Jacobian associated
with the mapping Q — Q. Diagonality of the mass matrix in the conform-
ing case is assured because of the coincidence of the quadrature points and
the Lagrangian nodal points. In the nonconforming case, this property
does not hold because the nodal basis functions along the parent edge do
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[

" e

Fig. 7. K =93 conforming (left) and K = 77 nonconforming (right) spectral element meshes
for flow past a cylinder.

not coincide with the quadrature points along the child edge. However,
a diagonal (lumped) mass matrix B can be recovered by setting

b:=Bé=Q"B,é, (18)

and then setting Eij = 5,~jb~i- Here, ¢ and &, are the respective global and
local vectors containing all ones. Note that, because B, is diagonal, (18)
amounts to applying Q7 to the local vector b, containing the entries of B; .
In [20] it was shown that this mass lumping procedure is equivalent to
replacing the more accurate quadrature in the child elements by quadrature

at the nodal points along the parent edge.

Conditioning. The nonconforming discretization is particularly effec-
tive for external flow problems. In addition to reducing the number of
gridpoints in the far field, it allows one to avoid the creation of high-aspect
ratio elements that can lead to ill-conditioning [12]. This point is illus-
trated by the two-dimensional meshes in Fig. 7, which are used to solve the
problem of start-up flow past a cylinder at Re = 5000, following [12, 13].
The conforming mesh (left) exhibits a few high-aspect ratio elements in the
far field that have been eliminated in the nonconforming mesh (right).
Table II shows the number of Schwarz PCG iterations taken to reduce the
pressure residual on the first timestep by 10~ for the case N =7 and two
successive quad-refinements of the meshes in Fig. 7. The conforming case
shows a marked increase in iteration count with refinement. In contrast,
the nonconforming case exhibits a nearly bounded iteration count that is
lower in all cases than that achieved by even the coarsest conforming mesh.

Table II. Iteration Count for Cylinder Problem

Conforming Nonconforming

K 93 372 1488 77 308 1232
iter 68 107 161 50 58 60
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We note that the extension of the Schwarz method to the nonconforming
case required the development of a nonconforming coarse-grid operator,
which was done by allowing N to vary in the (Q, QF) routines and calling
them with N =1 during assembly of the linear finite elements that define
the coarse problem.

5. TRANSITIONAL FLOW EXAMPLE

We have used the techniques presented in the preceding sections to
simulate several flows at transitional Reynolds numbers, including hairpin
vortex formation in the wake of a hemispherical roughness element [33],
heat transfer augmentation in grooved-flat channel configurations, and,
most recently, transition in a model of an arteriovenous (AV) graft [21].

An AV graft is constructed of synthetic material from an artery to a
vein to provide an access site for hemodialysis patients. AV grafts are
unique in the vasculature in that their high flow-rates, which are necessary
for efficient hemodialysis, can result in transition to turbulence that is often
identified by an audible or palpable thrill downstream of the graft. This site
is commonly associated with subsequent stenosis (narrowing) of the vein
and, ultimately, graft failure. Understanding the cause of graft failure
requires detailed knowledge of the hemodynamic environment in the vicin-
ity of the AV graft juncture.

For purposes of validation, our initial investigations have focused on
the three-dimensional end-to-side graft geometry illustrated in Fig. 8. Using
the image-to-mesh translation procedure developed in [22], we obtained
the computational mesh from an MRI scan of an upscaled Sylgard model
(7.6 x in vivo scale) used for LDA experiments [21]. The graft axis inter-
sects the host vein axis at an angle of 5°. Poiseuille flow is assumed at the
graft and vein inlets. The ratio of the graft to vein diameter is 1.6:1, and
the ratio of the graft to vein inlet flow-rates is 9:1. The Reynolds number,
Re, is based on the mean flow velocity and diameter at the graft inlet. The
Reynolds number in the downstream venous segment is thus Re, =
(1.6/0.9) Re.

graft
inlet

vein
inlet

Fig. 8. Symmetry-plane slice through nonconformig AV graft mesh.
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N e e

Fig. 9. In-plane instantaneous velocity vectors at vein cross-sections located (left) 4.48 and
(right) 4.64 vein diameters downstream from the toe of the graft.

Computations at Re=1820 were based on the nonconforming mesh of
Fig. 8, with K =6168, N =7, and filter strength o = 0.05. Several features
of the complex flow field are revealed in Fig. 9, which shows instantaneous
in-plane velocity vectors at two axial slices downstream of the toe. First,
there is significant bilateral symmetry because of the symmetric geometry and
inflow conditions. (The impact of nonsymmetric inlet conditions has been
studied by Sherwin et al. [31].) Second, we observe a pair of large persis-
tent vortices cutting across the horizontal midplane. These are Dean vorti-
ces that are set up as the parabolic graft-inlet flow impinges on the graft
hood and is deflected downward. Third, there are many small-scale features
in the upper half, including a pair of strong counter-rotating vortices near
the vein wall, 4.48 diameters downstream of the toe.

The small-scale structures are the result of the break-up of the shear
layer that is formed as the flow enters the vein from the graft and separates
from the vein wall (see Fig. 11). As illustrated in Fig. 10, the break-up leads
to a sequence of periodically shed vortices that have a topology similar to
the hairpin vortices observed in [33]. These vortices are identified by using
the A, criterion of Jeong and Hussain [19]. The greyscale on the A, isosur-
faces represents pressure. For a 6 mm graft, the shedding frequency is
roughly 715 Hz, which is commensurate with both in vivo and in vitro
measurements described in [21].

We present in Fig. 11a comparison with the laser Doppler anemometry
measurements taken by Arslan [2] at several locations (measured in vein
diameters from the toe) in the graft symmetry plane. The time-averaged
velocity vectors (u,,) reveal that both the experimental and numerical
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Fig. 10. Coherent structures downstream of graft toe at Re=1820.

models have roughly the same size recirculation zone. However, the exper-
imental profile recovers more quickly as the flow moves downstream. The
profiles of the rms temporal fluctuations for the axial (u,,,) and vertical
(v.s) components clearly delineate regions of steady and unsteady flow.
The spectral element method correctly predicts the axial and vertical loca-
tion of the transition onset, as indicated by the first nonzero rms profiles
downstream of the toe, as well as the magnitude of the disturbance.

[ Snls

s ) L O P

A4 (K] 1.2 ! 14 18

Fig. 11. Velocity distributions at Re = 1820: LDA (left), SEM (right).
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6. CONCLUSION

We have presented a stabilized nonconforming spectral element for-
mulation capable of accurate simulations of transition in complex domains.
We have shown that the mesh geometry can have a significant impact on
the conditioning of the underlying linear systems and that the noncon-
forming discretization can lead to improved meshes and consequent reduc-
tions in iteration count. Results for flow in an AV graft illustrate the
potential of this approach for simulation of transition in complex geometries.
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