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Abstract

Efficient solution of the Navier-Stokes equations in complex domains is dependent

upon the availability of fast solvers for sparse linear systems. For unsteady incompress-

ible flows, the pressure operator is the leading contributor to stiffness, as the character-

istic propagation speed is infinite. In the context of operator splitting formulations, it is

the pressure solve which is the most computationally challenging, despite its elliptic ori-

gins. We examine several preconditioners for the consistent L2 Poisson operator arising

in the lPN − lPN−2 spectral element formulation of the incompressible Navier-Stokes

equations. We develop a finite element based additive Schwarz preconditioner using

overlapping subdomains plus a coarse grid projection operator which is applied directly

to the pressure on the interior Gauss points. For large two-dimensional problems this

approach can yield as much as a five-fold reduction in simulation time over previously

employed methods based upon deflation.
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1 Introduction

We consider the problems encountered in large-scale spectral element simulations of un-

steady incompressible flows. Accurate simulation of even two-dimensional flows can require

hundreds of thousands of grid points when the Reynolds number is on the order of 104. In

the spectral element method, this elevated resolution can be attained by either increasingK,

the number of elements, or increasing N , the order of approximation within each element.

In practice, it is common to keep the order at a moderate level, i.e., in the range N = 4

to 15, and increase the number of elements to capture increasing physical and geometrical

complexity.

We have followed this approach in a number of recent high-Reynolds number simula-

tions of start-up flow past a cylinder using a time-splitting procedure which decouples the

CFL limited convection steps, the linear viscous step, and the divergence-free projection

into independent subproblems to be solved at each time step. Fig. 1a shows an example

of a mesh used to compute the early evolution of wake vortices at ReD = U∞D/ν = 9500.

Fig. 1b shows the vortex structure at a non-dimensional time of τ = tU∞/D = 3.1. The

drag history, shown in (c), agrees well with the results of [24] which were based upon an

adaptive vortex method using up to 106 elements. The present calculation used a total of

K = 6112 spectral elements, with the order varying from N = 4 at early times to N = 9 at

later times.

At elevated resolutions, the linear system which imposes the pressure/divergence-free

constraint at each time step can become very ill-conditioned and consequently tends to

be the computational bottleneck when iterative solvers are employed. This problem can

be exacerbated by the presence of high-aspect ratio elements and/or widely varying scales

of resolution which are frequently encountered in practice, but often not present in model

problems. Consequently, all of our recent iterative development work has focused upon a

suite of cylinder problems of the type shown in Fig. 1.

In this paper, we present a preconditioner for the pressure problem which is derived

from a low-order finite element Laplacian with appropriate boundary conditions. The low-

order operator defines a system to which additive overlapping Schwarz methods can be

readily applied, as proposed by Dryja and Widlund, e.g., [12]. The combination of spectral

methods and finite element preconditioning was first proposed by Orszag [33] and has been

studied extensively by Deville, Mund, and coworkers, e.g., [9, 10]. The combination of

spectral methods, finite element preconditioning, and additive Schwarz methods has been

investigated by Pahl [34], Pavarino and Widlund [37], and Casarin [5] for the case of the

discrete Laplacian. Rønquist [40] and Casarin [6] have studied iterative substructuring

methods for spectral element solution of the fully-coupled steady Navier-Stokes equations.

Rønquist also proposed a block-Jacobi/deflation based scheme applied to the consistent
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Figure 1: (a) close-up of K = 6112 spectral element mesh for computation of start-up flow

past a cylinder at Re = 9500 (b) vorticity contours at a convective time of t = 3.10 (c) drag

coefficient CD vs. non-dimensional time (Computation by G.W. Kruse).
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Poisson operator governing the pressure for the unsteady case [17, 39]. To our knowledge,

this is the first application of additive Schwarz methods directly to the consistent Poisson

operator which governs the pressure in the lPN − lPN−2 spectral element method. In several

large production runs, we have found this new method to yield a five-fold reduction in

Navier-Stokes solution times over the deflation based scheme used previously [17, 18, 39].

Moreover, in some of these runs, the conditioning is improved to the point where 32-bit

arithmetic suffices in cases previously requiring 64-bit precision, resulting in a two-fold

savings in storage.

The outline of the remainder of the paper is as follows. In Section 2, we review the

spectral element formulation for the unsteady Navier-Stokes equations, derive the system

governing the pressure and demonstrate numerical convergence of the method. In Section

3, we examine the potential of several finite element based Laplacian operators as a basis

for the pressure preconditioner. In Section 4, we couple an additive Schwarz method with

the low-order Laplacian to develop a new preconditioner and demonstrate a technique to

overcome some of the difficulties presented by high-aspect ratio subdomains. We draw some

conclusions about this approach in Section 5, and present arguments favoring the choice of

linear finite element preconditioning in the Appendix.

2 Navier-Stokes Discretization

As the nature of the pressure operator is quite different from discrete Laplacians based

upon standard weighted residual techniques, we carefully review the temporal and spatial

discretization for the spectral element method. We consider solution of the incompressible

Navier-Stokes equations in lRd, d = 2 or 3:

∂u
∂t

+ u · ∇u = −∇p + 1
Re∇2u in Ω, (1)

∇ · u = 0 in Ω,

where u = (u1, . . . , ud) is the velocity vector, p the pressure, and Re = UL
ν the Reynolds

number based on a characteristic velocity, length scale, and kinematic viscosity. We have

associated initial and boundary conditions

u(x, 0) = u0(x) , u = uv on ∂Ωv , ∇ui · n̂ = 0 on ∂Ωo , (2)

where n̂ is the outward pointing normal on the boundary, and subscripts v and o refer to

boundary regions where either “velocity” or “outflow” boundary conditions are specified.

2.1 Temporal discretization

Temporal discretization is based upon an operator splitting approach in which the nonlinear

convective terms are decoupled from the viscous and divergence operators via an operation-
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integration-factor (OIF) technique developed by Maday, Patera, and Rønquist [26] and

studied in detail in the thesis of Couzy [8]. The OIF scheme leads to a Stokes problem of

the form:

H un + ∇pn = β1ũn
1 + β2ũn

2 in Ω , (3)

∇·un = 0 in Ω .

Here H is the Helmholtz operator H =
(
− 1

Re∇2 + β0

∆t

)
, and β0 = 3

2 , β1 = 2, and β2 =

−1
2 are coefficients associated with second-order backwards differentiation (BDF2). The

inhomogeneous terms, ũn
l ≡ ũl(x, tn), are computed as solutions to the pure convection

problem:

∂ũl

∂t
+ u · ∇ũ = 0 , (4)

ũl(x, tn−l) = u(x, tn−l) .

The initial value problem (4) is solved using an explicit fourth-order Runge-Kutta scheme

with step size ∆s ≤ ∆t which satisfies appropriate CFL criteria. The values of u in (4) are

interpolated/extrapolated from the previous velocity fields, (un−1, . . . ,un−l). Note that the

motivation for the OIF/BDF2 formulation is to decouple the CFL-limited convection steps

from the implicit Stokes problem in order to permit a much larger step size, ∆t, between

(expensive) Stokes solves. Typical values of the CFL number, maxΩ
U∆t
∆x , for our spectral

element calculations are on the order of two to five. Numerous numerical tests have verified

that the accuracy of this approach is indeed O(∆t2). In the sequel, we drop the superscript

n in (3) and define the forcing function f = β1ũ1 + β2ũ2.

2.2 Spatial discretization

The Stokes problem (3) can be recast in an equivalent variational form:

Find u ∈ X, p ∈ Y such that:

1
Re

(∇u,∇v) +
β0

∆t
(u,v) − (p,∇ · v) = (f ,v) ∀ v ∈ X0 (5)

− (q,∇ · u) = 0 ∀ q ∈ Y

where

∀ φ, ψ ∈ L2(Ω) , (φ, ψ) ≡
∫

Ω
φ(x)ψ(x) dx . (6)

The proper subspaces for u, v and p, q are [20]:

X = {v : vi ∈ H1(Ω), i = 1, . . . , d , v = uv on ∂Ωv}
X0 = {v : vi ∈ H1(Ω), i = 1, . . . , d , v = 0 on ∂Ωv}
Y = L2(Ω) .
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Here L2(Ω) is the space of all functions which are square integrable over Ω and H1(Ω) is

the space of all functions belonging to L2(Ω) whose first derivatives are also in L2(Ω).

Spatial discretization proceeds by restricting u, v, p and q to compatible finite di-

mensional velocity and pressure subspaces, XN ⊂ X and Y N ⊂ Y , respectively, and using

appropriate quadrature to approximate the inner products in (5):

Find u ∈ XN , p ∈ Y N such that:
1
Re

(∇u,∇v)GL +
β0

∆t
(u,v)GL − (p,∇ · v)G = (f ,v)GL ∀ v ∈ XN

0 (7)

− (q,∇ · u)G = 0 ∀ q ∈ Y N

where the quadrature rules (., .)GL and (., .)G will be related to the spaces XN and Y N . To

simplify subsequent operator definition, we symmetrize the problem (7) by introducing the

splitting u = u0 +ub where u0 = 0 on Ωv and ub is any known function in XN . This yields

the following restatement of the Stokes problem:

Find u0 ∈ XN
0 , p ∈ Y N such that:

1
Re

(∇u0,∇v)GL +
β0

∆t
(u0,v)GL − (p,∇ · v)G = (fv,v)GL ∀ v ∈ XN

0 (8)

− (q,∇ · u0)G = (q,∇ · ub)G ∀ q ∈ Y N ,

where fv is the augmented inhomogeneity which incorporates the boundary terms.

In the spectral element method [36, 25] the bases for XN and Y N are defined by

tessellating the domain into K non-overlapping subdomains, Ω = ∪K
k=1Ω

k, and representing

functions within each subdomain in terms of tensor-product polynomials on a reference

subdomain Ω̂ = [−1,+1]d. (We will refer to the Ωk’s as subdomains to distinguish them

from elements which will be defined in the context of finite element preconditioners in the

next section.) Each Ωk is the image of the reference subdomain under a mapping: xk(r) ∈
Ωk =⇒ r ∈ Ω̂, with well defined inverse: rk(x) ∈ Ω̂ =⇒ x ∈ Ωk. Thus, each subdomain

is a deformed quadrilateral in lR2 or deformed parallelpiped in lR3. The intersection of the

closure of any two subdomains is either void, a vertex, an entire edge, or an entire face.

To avoid spurious pressure modes, Maday, Patera and Rønquist [27] and Bernardi and

Maday [2] suggest the following approximation spaces for the velocity and pressure:

XN = X ∩ lPd
N,K(Ω) (9)

Y N = Y ∩ lPN−2,K(Ω)

where

lPN ,K(Ω) =
{
v(xk(r))

∣∣∣
Ωk
∈ lPN (r1)⊗ . . .⊗ lPN (rd), k = 1, . . . ,K

}
(10)

and lPN (r) is the space of all polynomials of degree less than or equal to N in the argument.

Note that the dimension of Y N is K(N − 1)d since function continuity is not enforced for
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functions in Y N . However, the dimension of XN is less than dK(N + 1)d due to the

restriction that functions in XN must be continuous across subdomain interfaces and must

also satisfy Dirichlet boundary conditions on ∂Ωv.

For the velocity space, we choose as a basis for lPN (r) the set of Lagrangian interpolants

on the Gauss-Lobatto Legendre (GL) quadrature points in the reference domain: ξi ∈
[−1,+1], i = 0, . . . , N , whereas for the pressure space, the basis for lPN−2(r) is the set

of Lagrangian interpolants on the Gauss Legendre (G) quadrature points ηi ∈ ] − 1,+1[,

i = 1, . . . , N − 1. Fig 2 shows the nodal points for both the velocity (GL) and pressure (G)

meshes for a regular subdomain configuration. Note that the basis for velocity is continuous

across subdomain interfaces, while the basis for the pressure is not.

The Lagrangian bases permit convenient implementation of the quadrature rules which

we now define. Let fk(r) ≡ f(xk(r)), r ∈ Ω̂. In lR2 we have:

(f, g)GL ≡
∑

k

N∑

i=0

N∑

j=0

fk(ξi, ξj) · gk(ξi, ξj) · |Jk(ξi, ξj)| · ρiρj (11)

(f, g)G ≡
∑

k

N−1∑

i=1

N−1∑

j=1

fk(ηi, ηj) · gk(ηi, ηj) · |Jk(ηi, ηj)| · σiσj (12)

where Jk(r) is the Jacobian arising from the transformation xk(r), ρi is the GL quadrature

weight associated with ξi, and σi is the G quadrature weight associated with ηi. The

extension to lR3 follows readily from the tensor product forms. It has been shown both

∂Ωv
#
?

∂Ωo

!¾

Figure 2: Spectral element configuration (K = 4, N = 5) showing Lagrange interpolation

points for the pressure (Gauss) mesh on the left, and for the velocity (Gauss-Lobatto) mesh

on the right. Open circles denote true degrees-of-freedom. Solid circles denote Dirichlet

boundary nodes for velocity.
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numerically and theoretically that the spectral element solution to the Stokes problem

converges exponentially as N −→∞ for problems having smooth solutions [25].

2.3 Spectral element operators

The locally-structured/globally-unstructured bases of the spectral element method nat-

urally define a two-level operator and data hierarchy which we now describe. Our no-

tation will be two-dimensional, restricted to the case of affine mappings: xk(r1, r2) =

(xk
0,1 + Lk

1
2 r1, x

k
0,2 + Lk

2
2 r2), where xk

0,i and Lk
i represent local translation and dilation con-

stants.

We first define the bases and operators associated with the velocity space. Every scalar

field in lPN,K(Ω) is represented in the form:

f(x)|Ωk =
N∑

i=0

N∑

j=0

fk
ijhi(r1)hj(r2) r1, r2 ∈ [−1, 1]2 , (13)

where hi(r) ∈ lPN (r) is the Lagrange polynomial satisfying hi(ξj) = δij , and δij is the

Kronecker delta function. For each subdomain, we associate a natural ordering of the nodal

values fk
ij , i, j ∈ {0, . . . , N}2 with the vector fk and, in turn, associate a natural ordering

of the vectors fk, k ∈ {1, . . . ,K} with the K(N + 1)2 × 1 vector f
L
.

We define the unassembled mass matrix to be the block-diagonal matrixBL ≡ diag(Bk),

where each local mass matrix is expressed as a tensor product of one-dimensional operators:

Bk =

(
Lk

1L
k
2

4

)
B̂ ⊗ B̂ . (14)

Here B̂ = diag(ρi), i = 0, . . . , N . The inner-product (11) is then expressed in terms of the

mass matrices as:

∀f, g ∈ lPN,K(Ω) , (f, g)GL =
∑

k

(fk)TBkgk = fT
L
BLgL

. (15)

In a similar fashion, we develop an expression for the bilinear form (∇f,∇g):

∀f, g ∈ lPN,K(Ω) , (∇f,∇g)GL =
∑

k

(fk)TAkgk = f
T

L
ALgL

, (16)

Here, AL = diag(Ak) is the unassembled stiffness matrix and Ak is the local stiffness matrix:

Ak =

(
Lk

2

Lk
1

)
B̂ ⊗ Â +

(
Lk

1

Lk
2

)
Â⊗ B̂ . (17)

The one-dimensional stiffness matrix, Â, is defined in terms of the spectral differentiation

matrix, D̂:

Âij =
N∑

l=0

D̂liρlD̂lj i, j ∈ {0, . . . , N}2 (18)
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with

D̂ij ≡ dhj

dr

∣∣∣∣
r=ξi

. i, j ∈ {0, . . . , N}2 (19)

Deville and Mund [10] noted that, whereas Â is full, the two-dimensional operator, Ak, is

sparse due to the use of the diagonal mass matrix, B̂. In fact, the computational “stencil”

of Ak is a cross, much like a high-order finite difference stencil. For deformed subdomains

Ak is generally full with (N+1)d nonzero entries. Nonetheless, it was pointed out by Orszag

[33] the action of Ak upon a vector can be efficiently computed in O(Nd+1) operations if

one retains its tensor product form in favor of its explicit formation. Implementation details

for fully deformed three-dimensional geometries can be found in [14].

The local subdomain operators are incorporated into global nv×nv system matrices by

defining an index set qijk ∈ {1, . . . , nv} which maps vectors from their local representation,

f
L
, to their global form, f . The index set has repeated entries for any node (i, j, k) which

is physically coincident with another node (i′, j′, k′), i.e.,

qijk = qi′j′k′ iff xk(ri, rj) = xk′(ri′ , rj′) . (20)

The index map can be represented in matrix form as a prolongation operator Q which maps

from the set of global indices to the local index set. Q is a K(N + 1)d× nv Boolean matrix

with a single “1” in each row and zeros elsewhere. If m = (k−1) ·(N+1)2+j ·(N+1)+i+1

is the position of fk
ij in f

L
, and q = qijk is the corresponding global index, then the mth

column of QT is the unit vector êq, i.e., the qth column of the identity matrix. Application

of Q to a vector implies the distribution of information, whereas application of QT to a

vector implies summation, or gathering of information. QT is sometimes referred to as the

“direct-stiffness-summation” operator.

A direct consequence of the unique mapping property (20) and the use of Lagrangian

basis is that:

∀f, g ∈ lPN,K(Ω) ∩H1 , (∇f,∇g)GL = fTQTALQg . (21)

We define QTALQ as the Neumann Laplacian operator – it has a null-space of dimension

unity corresponding to the constant mode. We define the associated Dirichlet operator as

MQTALQM, where M is the diagonal mask matrix having ones on the diagonal at points

qijk : xk
ij ∈ Ω ∪ ∂Ωo, and zeros elsewhere. With the operators Q and M, the following

problems are equivalent: For f ∈ lPN,K(Ω),

Find u ∈ XN
0 , such that:

(∇v,∇u)GL = (v, f)GL ∀ v ∈ XN
0 (22)

Find u ∈ R(M), such that:

vTMQTALQMu = vTMQTBLfL
∀ v ∈ R(M). (23)
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Here, R() is the range of the argument, and f
L

is the vector of nodal values of f(x). The

direct-stiffness-summation operator Q ensures that the solution will lie in H1, while the

mask M enforces the homogeneous Dirichlet boundary condition: u = 0 on ∂Ωv. We define

the discrete Laplacian and mass matrices as:

A ≡ MQTALQM , (24)

B ≡ MQTBLQM , (25)

respectively. We will treat them as being both invertible and symmetric positive definite

(SPD), although this is not strictly true due to the null space associated with the boundaries.

2.4 Stokes operators

To complete the description of the Stokes operator we need to consider the bilinear form:

(q,∇ · u)G =
d∑

l=1

(
q,
∂ul

∂xl

)

G
. (26)

Using the definition (12), the contribution to (26) from a single element in lR2 is given by:

d∑

l=1

N−1∑

i=1

N−1∑

j=1

qk(ηi, ηj) · ∂u
k
l

∂xl
(ηi, ηj) · |Jk(ηi, ηj)| · σiσj . (27)

The contribution from q presents no difficulty, as it is represented by Lagrangian interpolants

on the Gauss points, i.e., qk(ηi, ηj) = qk
ij . The derivative of the velocity must be interpolated,

giving rise to the following matrix form:

(q,∇ · u)G =
K∑

k=1

(qk)T
(
Dk

1u
k
1 + Dk

2u
k
2

)
. (28)

For the case of the affine mappings defined above, the local derivative matrices are defined

as

Dk
1 =

(
Lk

2

2

)
Ĩ ⊗ D̃ , Dk

2 =

(
Lk

1

2

)
D̃ ⊗ Ĩ , (29)

where

Ĩij = σihj(ηi) (30)

is the weighted one-dimensional interpolation matrix mapping from the Gauss-Lobatto

points to the Gauss points, and

D̃ij = σi
dhj

dr

∣∣∣∣
r=ηi

(31)

is the weighted one-dimensional differentiation matrix, interpolated onto the Gauss points.
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The extension from the local operator to the global operator proceeds exactly as in

the previous section. The space of admissible functions in XN
0 is limited by the constraints

that the velocity must be continuous at the subdomain interfaces and must satisfy the

homogeneous boundary conditions, enforced by the action of the operators Q and M,

respectively.

Let Di ≡ DL,iQM, i = 1, . . . , d, with DL,i ≡ diag(Dk
i ). In lR2, the matrix form of the

Stokes problem (8) is then:



H −DT
1

H −DT
2

−D1 −D2 0







u1

u2

p


 =




f
1

f
2

f
p


 , (32)

where H = 1
ReA+ β0

∆tB is the discrete Helmholtz operator.

2.5 Stokes solvers

We now consider solution of the unsteady Stokes problem represented by the linear system

(32). As noted in the previous section, explicit formation of the spectral operators will lead

to O(KN2d) nonzeros in the operators A and Di, whereas their action upon a vector can be

computed in O(KNd+1) operations. This, coupled with the large system bandwidth which

is inevitable in any three-dimensional calculation mandates the use of iterative solvers. The

choice of Legendre based quadrature (vs., say, Chebyshev) results in symmetric positive

definite operators for which preconditioned conjugate gradient iteration is a natural choice.

A common approach to solving the Stokes problem is to decouple the velocity and

pressure by formally carrying out block LU factorization (Uzawa decoupling) on the system

(32). This yields the Schur complement system for the pressure:

Sp = g , (33)

which is solved iteratively. Here, S =
∑

iDiH
−1DT

i and g is the corresponding inhomo-

geneity. Once the pressure is known, d Helmholtz solves serve to compute the velocity and

complete the solution at time level n.

As it stands, the Uzawa approach requires a set of d Helmholtz solves for each iteration,

since H−1 is embedded in S. An effective means to circumvent this difficulty is to decouple

the viscous and pressure terms via an additional time splitting. Such an approach was

suggested by Maday, Patera and Rønquist [26] and clearly analyzed in the articles of Blair

Perot [3] and Couzy [8]. The approach has a common foundation with classical splitting

approaches (e.g., [19, 32]) which lead to a Poisson equation for the pressure save that, in

the present case, the splitting is effected in the discrete form of the equations. The correct

boundary conditions are preserved and no steady-state temporal errors are introduced.
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Following [8], we rewrite the Stokes system (32) by introducing an auxiliary system Q:

 H −HQDT

−D 0





 un

pn − pn−1


 =


 Bf + DT pn−1

f
p


 +


 r

0


 . (34)

Here, boldface indicates the d-dimensional vector form of the previously defined operators,

and the residual term is:

r = (HQ − I)DT (pn−1 − pn) . (35)

Couzy [8] examines several choices for Q. The choice Q = H−1 yields no splitting error

(r = 0), while the more computationally convenient choice Q = ∆t
β0

B−1 leads to

r =
∆t
β0Re

AB−1DT (pn − pn−1) = O(∆t2) . (36)

Since there is a factor of ∆t−1 in front of the velocity in (34) the local truncation error

incurred by neglecting r is O(∆t3), and the method is formally second-order accurate in

time. This is borne out by numerical results at the end of this section.

Dropping the residual in (34) and formally carrying out a single round of block Gaus-

sian elimination leads to the reformulated Stokes problem to be solved at each time step:

 H −∆t

β0
HB−1DT

0 E





 un

pn − pn−1


 =


 Bf + DT pn−1

g


 , (37)

where

E ≡ ∆t
β0

d∑

i=1

DiB
−1DT

i , (38)

and g is the modified inhomogeneity arising from Gaussian elimination. The advantage

of the splitting procedure is that matrix vector products involving E can be computed

without system solves, since B is diagonal. It can be shown that E is SPD, save a possible

one-dimensional null space associated with the hydrostatic pressure mode in cases where

∂Ωo = ∅.
To summarize, time advancement of the Navier-Stokes equations involves: advancing

the convective terms through the solution of (4), solving for the viscous contribution in the

construction of g (37), solving for the pressure (37-38), and finally computing the divergence-

free solution, un (37). The systems involving H and E are solved iteratively. Typically,

∆t/Re is small, implying that H = 1
ReA+ β0

∆tB is strongly diagonally dominant and readily

amenable to solution via Jacobi preconditioned conjugate gradients. E is the more chal-

lenging operator. As shown in [3, 39] it has properties similar to a Poisson operator, and is

often referred to as a “consistent Poisson operator.” Its condition number is independent of

∆t and Re. In the remaining sections of this paper, we address preconditioning strategies

for the E operator.
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Figure 3: Spectral element mesh (K = 15) and perturbation streamfunction for Orr-

Sommerfeld problem.

2.6 Numerical study of the Orr-Sommerfeld problem

To close this section, we demonstrate the accuracy of the numerical method outlined above

by computing the growth rates of small amplitude two-dimensional Tollmien-Schlichting

(TS) waves in plane Poiseuille flow, following [38, 28]. This benchmark is useful for verifying

both temporal and spatial convergence in that it is an unforced time-dependent Navier-

Stokes problem for which accurate solutions are available from linear stability theory.

The geometry consists of two walls separated by a distance 2h with periodic boundary

conditions in the streamwise direction at x = 0 and x = 2πh. The initial condition is

u0(x, y) = 1 − ( y
h

)2 + εû (39)

v0(x, y) = εv̂ ,

where (û, v̂) corresponds to the only unstable eigensolution (wave number unity) of the

Orr-Sommerfeld equation. The Reynolds number is Re = Uch/ν = 7500, based upon the

centerline velocity, Uc = 1. A constant body force is applied to sustain the mean flow.

The perturbation velocity is normalized to |û| = 1 and ε is set to .00001. The spectral

element discretization consists of K = 15 subdomains in the configuration shown in Fig. 3.

The calculations are performed in 64-bit arithmetic with iteration tolerances set to 10−13

in order to observe high-order spatial and second-order temporal convergence rates.

According to linear theory, the energy of the perturbation:

E(t) =
∫ 2π

0

∫ 1

−1

{
(1− y2 − u)2 + v2

}
dy dx (40)

should grow as e2ωit, where ωi = .002234976. Following [28], we take as a measure of error

the quantity: error(t) = e2ωit − E(ti)/E(0), where E(ti) is derived from our computed

Navier-Stokes solution at times t1 = 25.1437 and t2 = 50.2873, corresponding to one and
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Table 1: Temporal Convergence, O-S problem: K = 15, N = 17

∆t E(t1) error1 E(t2) error2 errorg

0.20000 1.13215830 0.013208 1.28480818 0.032758 0.11213

0.10000 1.12278058 0.003830 1.26120270 0.009153 0.03347

0.05000 1.11997704 0.001026 1.25446507 0.002415 0.00896

0.02500 1.11921579 0.000265 1.25266990 0.000620 0.00230

0.01250 1.11901773 0.000067 1.25220678 0.000157 0.00058

0.00625 1.11896723 0.000017 1.25208917 0.000040 0.00015

Table 2: Spatial Convergence, O-S problem: K = 15, ∆t = .003125

N E(t1) error1 E(t2) error2 errorg

7 1.11498657 0.003963 1.21465285 0.037396 0.313602

9 1.11519192 0.003758 1.24838788 0.003661 0.001820

11 1.11910382 0.000153 1.25303597 0.000986 0.004407

13 1.11896714 0.000016 1.25205855 0.000009 0.000097

15 1.11895646 0.000006 1.25206398 0.000014 0.000041

two periods of oscillation for the TS waves, respectively. In addition, we compute the error

in the growth rate at time t = 50 according to:

errorg =
1
ωi

∣∣∣∣ ωi − 1
2∆t

ln
(

E(50)
E(50−∆t)

)∣∣∣∣ (41)

Table 1 shows the computed energies and the error for varying ∆t with N = 17. The

error is clearly O(∆t2). Table 2 shows the results for a spatial convergence study carried out

using a third-order accurate (though less stable) implementation of the above time stepping

algorithms, with ∆t = .003125. The convergence is non-monotonic due to the fact that the

growth rates are oscillating about the analytical value. However, spectral convergence is

clearly attained.

3 Laplacian based preconditioning for the pressure

Since E (38) is symmetric positive definite, it is natural to consider conjugate gradient

iteration as an iterative solver [22]. The development of a fast solver requires finding an

SPD preconditioning matrix, M−1, which can be inexpensively applied and which renders

the condition number of M−1E as close to unity as possible. In this section, we examine

the potential of three discrete Laplace operators as alternatives to working with the more

cumbersome matrix E in the ultimate development of our additive Schwarz preconditioner.

The first two are based upon the Gauss-Lobatto (H1) mesh, for which a natural triangulation
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of the domain exists. The third is based upon the Gauss points and is more difficult to

develop. However, it is surprisingly effective, and has proven to be the key to developing a

fast solver for this problem.

3.1 Preconditioners

One of the fundamental difficulties in developing a preconditioner for E is that the inter-

domain coupling leads to a fully connected graph between adjacent subdomains, i.e., every

degree-of-freedom in a given subdomain is coupled to every degree-of-freedom in its adjacent

subdomains. If formed explicitly, E would correspondingly have approximately 3d(N − 1)d

nonzeros per row for a geometry consisting of a regularly structured array of subdomains.

Thus, E has no natural interface structure, or separator, such as commonly found in op-

erators derived from finite element bases of compact support. Consequently, E cannot be

readily treated by substructuring, or Schur complement, approaches as in [6, 37]. In addi-

tion, there are no boundary conditions associated directly with the pressure, as boundary

conditions for the Stokes problem are applied in the velocity space.

Despite the L2 approximation space used for the pressure it is nonetheless clear that

E is related to a Laplacian on Ω. This can be seen most readily from the continuous analog

by taking the divergence of the momentum equation in (1) to derive a Poisson equation for

the pressure. The article of Blair Perot [3] explores this relationship in detail.

As the starting point, we consider the variational formulation of the Poisson problem:

Find p̃ ∈ Zh
p (Ω), such that:

(∇v,∇p̃)∗ = (v, f)∗ ∀ v ∈ Zh
p (Ω) (42)

where the space Zh
p and quadrature rules (., .)∗ will be defined implicitly in the subsequent

choice of basis for the discrete problem. The boundary conditions for p̃ are:

∇p̃ · n̂ = 0 on ∂Ωv , p̃ = 0 on ∂Ωo , (43)

which are derived from standard pressure-splitting formulations of the Navier-Stokes equa-

tions, e.g. [3, 19, 32]. Once the basis and quadrature formulae are chosen, the preconditioner

is constructed by combining the resultant stiffness matrix, A∗, with a suitable restriction

operator, R, to yield:

M−1
∗ = RTA−1

∗ R . (44)

In all the cases we consider, RT is simply an interpolant from the nodal basis of Zh
p onto the

nodal points for the Lagrangian basis of Y N . In general, exact solution of the system A∗
will be too expensive for problems of practical interest and an appropriate surrogate must

be developed. However, to illustrate the potential of the Laplacian based preconditioning
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strategy, we make a brief preliminary study of three choices for (A∗, RT ) when exact solvers

are used for A−1∗ .

The first choice is:

M−1
s = RT

vpA
−1
s Rvp (45)

where RT
vp is the spectral interpolation operator from the velocity mesh to the pressure mesh,

and As is the spectral element Laplacian on the velocity mesh, with associated boundary

conditions of homogeneous Dirichlet at outflow and and homogeneous Neumann elsewhere.

Other than a change in the mask, As = MpQ
TALQMp is identical to A. In particular,

the inter-domain connectivity effected by Q is preserved and software development costs

are consequently minimal. We note that As is a viable preconditioner as it is roughly a

factor of d less costly to apply than E since E first maps a scalar field to a vector field, then

maps back to a scalar (38), whereas As is simply a scalar-scalar mapping. Moreover, the

Laplacian is readily available in the context of any Navier-Stokes solver as it is an essential

building block of any such code.

As a second choice, we consider

M−1
t = RT

vpA
−1
t Rvp (46)

where At is the discrete Laplacian derived from linear finite elements based upon a trian-

gulation of the Gauss-Lobatto points of the originating spectral element discretization, and

RT
vp is the spectral interpolant described above. The technique of using low-order operators

as preconditioners for spectral methods was first proposed by Orszag [33], and has been

studied by many others, including numerous articles by Deville, Mund and coworkers, e.g.,

[9, 10, 11]. The principal advantage of this approach is that the degradation in convergence

rate is offset by the increased sparsity of At over As. The connectivity of At can be effected

in the same manner as As and one therefore only needs to develop a triangulation of the

Gauss-Lobatto points on the reference subdomain.

Finally, we consider a third choice:

M−1
g = RT

augA
−1
g Raug (47)

where Ag is the discrete Laplacian derived from linear finite elements based upon a trian-

gulation of the Gauss (pressure) points, augmented with additional points to be described

further in the next section. Since the pressure is already represented by nodal values on

the Gauss points, RT
aug is a Boolean operator which is essentially the identity matrix, save

for the addition of some zero rows to account for the additional vertices. Consequently,

the cost of applying RT
aug is nil, in contrast to RT

vp for which the cost scales as O(KNd+1).

Moreover, the dimension of Ag is approximately K(N − 1)d, whereas the dimension of As

and At is approximately KNd (not K(N +1)d, due to the shared interface variables). Note
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that it is not possible to interpolate onto a lower-order grid (e.g., a polynomial of degree

N − 1) in developing Ms as the boundary conditions would reduce the dimension of As to

less than K(N − 1)d, thereby making M−1
s singular.

3.2 Tiling the Gauss points

One of the attractive features of triangulating the velocity (Gauss-Lobatto) mesh is that

the points which reside on ∂Ωk are shared by adjacent subdomains and thus serve to define

the connectivity between those domains. In the case of the Gauss points, there are no

shared points between domains and the triangulation used to interconnect subdomains can

be rather arbitrary, particularly at the corners where an unspecified number of subdomains

must be joined together.

In order to provide a mechanism for imposing Dirichlet boundary conditions and avoid

development of a general purpose triangulation routine, we propose the following tiling

scheme for connecting adjacent sets of Gauss points together. The “tile” is defined in a

self-contained manner that reduces the global triangulation problem to a local one which

is then solved for each subdomain. Within each subdomain, the triangulation proceeds in

three steps. First the (N −2)2 rectangles associated with the nodes (ηi, ηj) are divided into

two triangles each. Then, the edges and boundary regions are triangulated. Finally, the

regions in the vicinity of the vertices are triangulated.

∂Ωv
#
?

∂Ωo

!¾

Figure 4: Spectral element configuration (K = 9, N = 4) showing standard “tiling” of the

Gauss points for a subdomain with four neighboring subdomains (left); a subdomain with

two Neumann boundaries (right, upper left); and a subdomain with one Neumann and one

Dirichlet boundary (right, upper right). Solid circles denote Dirichlet boundary nodes.
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To triangulate the edge regions, we begin by noting that, for the conforming spectral

element discretizations considered here, each domain has either a neighbor or a boundary

condition associated with each of 2d edges (faces). In the case where the edge separates

two subdomains, we connect corresponding nodes on either side of the separating edge to

form N − 2 quadrilaterals. In the case where the edge corresponds to Dirichlet boundary

conditions (for p̃), we add “ghost” points along the edge at locations (−1, ηj) for a left

boundary, (+1, ηj) for a right boundary, (ηi,−1) for a lower boundary, and (ηi,+1) for

an upper boundary, all defined with respect to the reference subdomain. Because these

points coincide with the Dirichlet boundary, no new degrees-of-freedom are introduced by

this procedure. If the boundary is a Neumann boundary, the tile is not extended beyond

the Gauss points; the boundary condition is applied directly to these points even though

they are actually separated from the boundary by a distance of O(N−2). Once the edges

are extended, the resultant quadrilaterals are subdivided into triangles. The dividing line

extends from the highest globally numbered vertex in each quadrilateral to ensure that the

triangulation is consistent from one tile to the next.

The vertex regions are a potential source of difficulty in developing a standardized

subdomain interconnection scheme because an unspecified number of subdomains may be

joined at each vertex. While triangulation of this region presents no particular difficulty

in lR2, finding a tetrahedral decomposition subject to conformity with the surrounding

region in lR3 is not an easy task. This difficulty can be eliminated in either lR2 or lR3 by

augmenting the Gauss points with the set of points comprising the subdomain vertices. In

lR2, a line is then extended from each of the four vertices to the corresponding (closest)

Gauss point interior to Ωk. At each vertex, additional lines are extended to the nearest

point on the extended edges defined in the preceding paragraph. If either of the subdomain

edges corresponds to a Neumann boundary (no extension) then the augmented vertex is

eliminated and the corresponding region is not triangulated.

Examples of the basic tiles are shown in Fig. 4 for a K = 9 subdomain configuration.

The union of all such tilings defines the triangulation for the finite element operator Ag.

Note the addition of four “ghost” vertices coincident with the four vertices of the central

subdomain. These are degrees-of-freedom in the Ag system, but are not enumerated in the

range of the prolongation operator RT
aug, i.e., the values of the residual are allowed to float

at these points, but they make no direct contribution to the output of the preconditioner. A

more expensive alternative would be to have the restriction operator, Raug, take the average

of the surrounding values in computing the right hand side at the ghost points.

After the tile has been defined for each domain, a clean-up routine removes all multiply

defined triangles. The entire procedure can be defined in the context of the (extended)

reference element without having to consider numerous special cases, and is readily extended

to lR3.
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Figure 5: Spectral element mesh (K = 93) for iterative convergence study.

3.3 Numerical results for Laplacian preconditioning

We now test the preconditioners Ms, Mt, and Mg for the problem of start-up flow past a

cylinder in the half-domain Ω = [−10, 28]×[0, 15]. Fig. 5 shows the subdomain configuration

for the baseline case of K = 93. A cylinder of diameter D = 1 is centered at the origin.

The Reynolds number is Re = DU/ν = 5000, where (U, 0) is the free-stream velocity taken

as the initial condition and inflow boundary condition at x = −10. Symmetry boundary

conditions are imposed at y = 0 and y = 15 with Neumann-velocity (outflow) boundary

conditions at x = 28. The free stream velocity is U = 1 and the time step is ∆t = .025.

While this problem is hardly canonical, it is typical of the types of domains encountered

in practice. It contains a spectrum of subdomain shapes and sizes which, combined, have a

pronounced effect on the convergence behavior of many iterative solvers. A comparison of

this particular problem in contrast to a regular tesselation of a square has been carried out

in [18]. It was noted there, and in the thesis of Couzy [8] that irregular domains can lead to

significant degradation of the convergence rate of the deflation based solver we have been

using up to the present [17, 39]. We remark that the first time step is the most difficult

as the full spectrum of the pressure must be computed, rather than just the perturbation

from the previous step. Moreover, the initial condition, u0, is not even divergence free

which makes the projection onto a divergence free space all the more difficult. In practice,

in subsequent time steps, the right hand side will be largely devoid of low-wave number

components as they can be eliminated by projecting onto the space of previous solutions

[15].

Table 3 shows the number of iterations required to reduce the residual of the E system

on the first step by 10−5 for the three Laplacian based preconditioners just described. The

K = 372 and K = 1488 meshes are obtained through successive quarterings of the elements

in the base configuration. The dimension of the E system is K(N − 1)2. Note that the
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Table 3: Laplacian preconditioners for cylinder flow.

N = 7 N = 9

K Ms Mt Mg Ms Mt Mg

93 15 24 16 12 27 16

372 12 26 18 12 28 17

1488 12 26 18 12 29 18

spectral preconditioner exhibits no K dependence in the iteration count for this problem,

while the finite element preconditioners exhibit mild degradation in convergence rate.

Of the two finite element preconditioners, it is clear that Mg is to be preferred over

Mt. Not only does it yield a lower iteration count, it has a much less expensive restric-

tion operator, and a lower dimensional system to be solved with each iteration. The only

drawback of Mg is that it is more complicated to triangulate the Gauss points than the

Gauss-Lobatto points, something which is of particular consequence in lR3.

In the preceding examples, the choice of finite element spaces was not arbitrary. Given

the locally tensor-product spaces of the spectral element method, the natural choice for a

low-order finite element preconditioner would be bilinear (trilinear in lR3) finite elements.

However, linear elements based upon triangles are not only easier to implement in complex

geometries, but also have favorable conditioning properties over their bilinear counterparts.

This point is addressed in the Appendix.

4 Overlapping Schwarz Method

One of the principal aims of employing the Laplacian based preconditioner is to derive a

preconditioner for the E system which leads to a bounded iteration count. As developed in

the previous section, the Laplacian based preconditioner requires the solution of a system in

Ag for each iteration. In practice, this is too expensive from the standpoint of both storage

and operation count, particularly in the three-dimensional case. However, the Laplacian

preconditioning strategy effectively reduces the problem of solving the E system to one

of solving a low-order H1 operator, a problem which is well understood. In this section,

we develop an overlapping additive Schwarz preconditioner, M−1
o , based upon linear finite

element discretizations of Poisson’s equation. M−1
o can either be used as a preconditioner for

solving the system Ag in (47), resulting in a nested iteration, or directly as a preconditioner

for E. We have found the latter approach to significantly outperform the former and

therefore consider it as the only option.

Though a fairly recent development [12, 13, 30], the literature on additive Schwarz

preconditioners is quite vast and the subject is covered in depth in at least four recent books
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[1, 23, 41, 42]. The overlapping methods are based upon a decomposition of the domain

into overlapping subdomains and solving local Poisson problems within each subdomain. In

addition, a coarse grid problem is solved which involves few degrees-of-freedom, but covers

the entire domain. The solutions from the subproblems are then added together to form

the output of the preconditioner.

For finite element solution of Poisson’s equation, Dryja and Widlund [12] have shown

that overlapping Schwarz procedures with a coarse grid space lead to bounded iteration

counts in the case of quasi-uniform subdomains. Cai [4] has derived a uniform bound in

which this restriction is lifted, provided that the coarse grid triangulation is quasi-uniform.

Presently, we are insisting that our coarse grid space coincide with the subdomains which

are predetermined by the original spectral element tesselation of Ω, and hence do not have

control over the uniformity of either the subdomains or the coarse grid space. We investigate

the consequences of this in the numerical results at the end of this section and suggest some

remedies.

The additive Schwarz preconditioner is expressed as (e.g. [1, 42]):

M−1
o = RT

0A
−1
0 R0 +

K∑

k=1

RT
kA

−1
k Rk , (48)

which is the sum of the global coarse grid operator (subscript 0) and local subdomain op-

erators (subscript k). The method has a natural parallel aspect in that the subdomain

problems can be solved independently. While the coarse grid problem is not trivially par-

allelized it is usually of sufficiently modest size to admit fast direct solution methods, even

in parallel (e.g. [16, 18, 21]).

The coarse grid operator, A0, is constructed as the finite element Laplacian derived

from linear elements whose vertices are coincident with the subdomain vertices, i.e., in lR2,

each subdomain is partitioned into two triangles. The boundary conditions are inherited

from the variational problem (42). The prolongation operator, RT
0 , is defined somewhat

differently from standard (purely finite element based) domain decomposition methods.

RT
0 is the operator which interpolates the coarse grid solution onto the tensor product array

of Gauss points in the reference element Ω̂. Thus, even in situations where some points lie

outside of the coarse grid triangulation in physical space, there is a natural interpolation

operator to transfer the coarse grid solution to the fine grid. This approach, coupled with

our treatment of Neumann boundary conditions for the fine grid, ensures that the coarse

grid covers the fine grid, which is required for stability according to Chan, Smith, and Zou

[7]

To define the subdomain operators, let Vk, k = 1, . . . ,K be subsets of the augmented

vertex set defined by the tiling procedure of the previous section, and let R̂k be the Boolean

restriction matrix defined such that R̂ku returns the nodal values of u corresponding to the
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vertex set Vk. The subdomain operators are defined as

Ak ≡ R̂kAgR̂
T
k . (49)

Ak is consequently a principal submatrix of Ag, the linear finite element Laplacian on

the augmented Gauss points. To transfer the solution to the Gauss points, we define the

operator RT
k ≡ RT

augR̂
T
k , which is essentially a map from Vk to the Gauss points with

extension by zero to points not in Vk.

For each subdomain, overlap is generated by starting with the vertex set V 0
k comprising

the Gauss points interior to Ωk. Let No be the desired amount of overlap. Then, for

i = 1, . . . , No, set:

V i
k = V i−1

k ∪ N i−1
k , (50)

and finally, set Vk = V No
k . Here N i

k is the set of vertices neighboring V i
k . A vertex is defined

to be neighboring V i
k if it is connected by at least one edge in the triangulation to any vertex

in V i
k . Note that No = 0 is admissible and corresponds to block-Jacobi preconditioning.

4.1 Numerical results for the additive Schwarz preconditioner

We reconsider the cylinder problem (N = 7, K = 93, 372, and 1488) of the previous section

to illustrate several aspects of the additive Schwarz scheme. As a baseline, we compare

the additive Schwarz procedure with the deflation based solver we have been using to the

present.

Briefly, for the baseline results, the consistent Poisson problem (37) is solved via the

two-level iteration scheme developed by Rønquist [39] in which a coarse-grid operator is

folded into a global conjugate-gradient iteration through deflation [29, 31]. A coarse (sub-

script c) and fine (subscript f) decomposition is effected through a subdomain-motivated

prolongation operator J ∈ lRnp×m, where np = K(N−1)d is the number of pressure degrees-

of-freedom, and m is the dimension of the coarse-grid approximation space. The column

space of the prolongation operator J is intended to approximate the span of the low eigen-

modes of the E system. The pressure is then expressed as p = Jp
c
+ p

f
, leading to an

algebraic reformulation of the original problem as solvable fine and coarse subproblems,

Efpf
= g − J E−1

c JT g , (51)

Ecpc
= JT g − JTEp

f
, (52)

respectively. Here Ef = E − E J E−1
c JTE, and Ec = JTE J . Each application of

the fine grid operator requires two multiplications by E, plus the solution of the relatively

small (m ×m) system, Ec. The fine system (51) is solved by conjugate-gradient iteration

restricted to the complement ofR(J), where R() denotes the column space of the argument.
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Table 4: Iteration count and CPU time for the deflation scheme

constant linear quadratic

K iter CPU iter CPU iter CPU

93 126 17. 80 12. 60 10.

372 216 125. 120 75. 84 67.

1488 327 845. 159 467. 108 437.

Once p
f

is established, the coarse-grid problem is solved (directly) for p
c
, and the procedure

is complete. With appropriate application of a local, element-based preconditioner to Ef ,

the condition number of the fine system is significantly reduced relative to the originating

E matrix.

Since we are comparing CPU times as well as iteration counts, a few remarks regarding

implementation are in order. In spectral element methods, seventy to ninety percent of the

operation count is devoted to matrix-matrix products (mxm’s) invoked in the application of

one-dimensional spectral operators (e.g., (18-19)). We have found that an mxm implemented

with a completely unrolled inner-product loop is roughly three times faster than most

implementations dgemm for the values of N considered. The subdomain and coarse grid

solves are computed using a version of the banded SPD linpack solver, dgesl, modified to

multiply by the inverse of the diagonal elements, rather than divide, for each solve. Each

system is reordered using reverse Cuthill-McKee to minimize bandwidth. All CPU times

(in seconds) are for an SGI Onyx with sufficient RAM to ensure that disk swapping is not

required.

Table 4 shows the number of iterations and CPU time required to reduce the pres-

sure residual for the first time step by five orders of magnitude for the deflation scheme

using piecewise (discontinuous) constant, bilinear, and biquadratic coarse grid spaces. Our

parallel production code [16] has been based upon the piecewise constant prolongation op-

erator. The higher-order coarse grid spaces were studied in [18] in an attempt to improve

this scheme. Although the results of Table 4 show a two-fold reduction in CPU time for

the first time step, these extensions yielded only a thirty percent reduction in subsequent

steps, and would be even less effective in lR3 due to the rapid increase in the dimension of

the coarse grid problem. These two considerations motivated the present study.

Table 5 shows the iteration count and CPU times for the additive Schwarz procedure

with varying amounts of overlap. The No = 0 column corresponds to block-Jacobi pre-

conditioning (no overlap). Introducing a minimal amount of overlap (No = 1) reduces the

iteration count almost two-fold and the CPU time slightly less than two-fold. Increasing the

overlap to No = 3 does not yield much further improvement, and memory considerations

consequently favor the choice No = 1. The importance of the coarse grid is demonstrated
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Table 5: Performance of the additive Schwarz algorithm

No = 0 No = 1 No = 3 A0 = 0 No − var.

K iter CPU iter CPU iter CPU iter CPU iter CPU

93 121 10. 64 5.9 49 5.6 169 19. 45 5.4

372 203 74. 106 43. 73 39. 364 193. 75 32.

1488 303 470. 158 274. 107 242. 802 1798. 102 183.

1744 183 329 97 199. 68 180. 801 2089. 78 163.

in column 4 for the case No = 3; in the absence of a coarse grid the iteration count roughly

doubles for each successive quad-level refinement from K = 93 to 1488.

Although the results of the overlapping Schwarz scheme are impressive, the fact that

the iteration counts in the first three columns are not bounded with K is somewhat dis-

appointing. Fig. 6 shows the residual history for M−1
o E with No = 1 for K = 93, 372,

and 1488. All three curves show the same rapid initial convergence. However, after the

25th iteration, there appears to be a persistent mode which prevents the convergence from

otherwise being order-independent. This mode can be viewed by taking the difference be-

tween the 25th and final iterates, as shown in Fig. 7 for K = 1488. The mode is clearly

centered about the high-aspect ratio (HAR) subdomains and suggests that elimination of

such domains might improve convergence.

An easy way to alleviate the aspect ratio problem is to simply subdivide the HAR

subdomains along the appropriate axis. Since we are presently considering only conforming

discretizations, this implies splitting subdomains along the entire length of the domain. The

iteration – i

1488372K = 93

||ri||

iteration – i

K = 1488
No–variable

K = 1744
No = 1

Figure 6: Residual history showing deterioration of convergence rate for K = 93 −→ 1488

(left). Convergence is improved for regularized geometry and/or variable overlap (right).
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Figure 7: Spectral element mesh (K = 1488) showing resistant pressure mode centered

about high-aspect ratio subdomains.

Figure 8: Regularized spectral element mesh (K = 1744) showing resistant pressure mode

for flow past a cylinder.

resultant configuration is shown in Fig. 8, along with contours of the mode pfinal − p25.

Despite the fact that the K = 1744 problem has more degrees-of-freedom, the convergence

rate is superior to the K = 1488 case, as seen in Fig. 6 and in the last row of Table 5.

A more viable approach to curing the aspect ratio problem is to change the precondi-

tioner. One possibility is to regularize the coarse grid space by adding additional nodes to

the coarse grid triangulation, as suggested by Cai [4]. However, this requires retriangulating

the coarse grid and is inherently nonlocal. A more readily implemented scheme, proposed

by Widlund [43], is to increase the overlap only for subdomains having high aspect ratio.

After a brief inspection of the distribution of aspect ratios for several of our meshes, we

developed the following, quite arbitrary, heuristic for determining the amount of overlap for
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Residual for first step

iteration – i

||ri|| deflation

No = 1

No–var.

Cumulative iteration count

step number – n

deflation

No = 1

No–variable

Figure 9: Residual history for the first step (left) and cumulative pressure iteration count

for 100 steps (right) for K = 6112 cylinder calculation of Fig. 1, restarted from t = 3.0.

each domain, k:

No
k =





3 if AR ≥ 10

2 if 10 > AR ≥ 5

1 otherwise

. (53)

The convergence behavior for K = 1488 using variable overlap is shown on the right in Fig.

6. It can be seen that convergence rates for the variable overlap case and the regularized

geometry (K = 1744) do not exhibit the degradation associated with HAR subdomains.

The last column of Table 5 shows the marked improvement of variable overlap over minimal

overlap (No = 1). The iteration counts are roughly equal to those for No = 3, while the

CPU time is lower due to the reduced work in the subdomain solves. Note that variable

overlap does not provide significant gain (163s vs. 199s) for the regularized mesh.

Finally we remark that, in some cases, the overlapping Schwarz method improves

the conditioning to the point where 32-bit arithmetic suffices where 64-bit arithmetic had

been previously required for convergence of the pressure solve. One such example is the

Re = 9500 cylinder calculation of Fig. 1. The number of pressure degrees-of-freedom for this

(K = 6112, N = 9) problem is 390,000. Fig. 9 (left) shows the first time step convergence

behavior for the overlapping Schwarz preconditioner with No = 1 and No varying according

to (53). Also shown is the convergence behavior for the deflation scheme with piecewise

constant prolongation. On the right is the cumulative number of pressure iterations for

the first one hundred time steps. Note that the initial time steps are the most costly, as
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subsequent solutions are computed from initial guesses based upon previous solutions [15].

Also recall that the deflation based scheme requires two matrix vector products with E for

each iteration.

5 Conclusions

We have developed an additive overlapping Schwarz preconditioner for the computationally

challenging pressure operator which arises when an Uzawa decoupling procedure is applied

to the lPN − lPN−2 spectral element formulation of the incompressible Navier-Stokes equa-

tions. The pressure preconditioner is derived from local finite element Laplacians based

upon a triangulation of the Gauss (pressure) points, coupled with a global coarse grid op-

erator based upon a triangulation of the spectral element vertices. The Schwarz procedure

yielded significantly improved convergence rates over previously employed deflation/block-

Jacobi based schemes. It was also found that the convergence of the Schwarz procedure

deteriorated significantly in the presence of high-aspect ratio subdomains. For the case

where the number of such subdomains is small, it was found that the problem could be

easily remedied by introducing more overlap for high-aspect ratio domains. The overall

Navier-Stokes solution times for several production runs has been reduced by a factor of

five with the development of this preconditioner.

Future research efforts include extending the preconditioner to three dimensions and

implementing it on distributed memory architectures. In addition, the need for more so-

phisticated coarse grid spaces which address the aspect ratio problem should be assessed.
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Appendix: Choice of finite element spaces

In the development of the low-order Laplacian in Section 3, the choice of finite element

spaces was not arbitrary. Given the locally tensor-product spaces of the spectral element

method, the natural choice for a low-order finite element preconditioner would be bilinear

(trilinear in lR3) finite elements. However, linear elements based upon a triangulation of
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the Gauss or Gauss-Lobatto points yield a lower condition number in the mono-domain

case. This is seemingly at odds with the results of Deville and Mund, who in [10] found the

contrary, so a careful study of this issue is pertinent.

As a point of reference, we first consider finite element preconditioning of the spectral

element Poisson operator, A, derived for the mono-domain case on the reference subdomain,

Ω = Ω̂, with homogeneous Dirichlet boundary conditions on ∂Ω. This case was studied in

detail by Deville and Mund in [10] for the spectral collocation method.

In addition to the linear spaces based on triangles, we will consider as preconditioners

the Laplacian based upon bilinear finite elements, Af , and its lumped-mass counterpart, Al.

The easiest way to define these operators is as a tensor product of one-dimensional finite

element operators. Consider the space of piecewise linear functions, φi(ξ), ξ ∈ [−1,+1]:

φi(ξ) =





ξ−ξi−1

ξi−ξi−1
ξi−1 ≤ ξ < ξi

ξ−ξi+1

ξi−ξi+1
ξi ≤ ξ < ξi+1

0 otherwise

, i ∈ {1, . . . , N − 1} , (54)

where the ξi’s are the Gauss-Lobatto points. The bilinear forms for the homogeneous

Dirichlet problem give rise to the tridiagonal stiffness and mass matrices:

Ãij =
(
dφi

dξ
,
dφj

dξ

)
, B̃ij = (φi, φj) , i, j ∈ {1, . . . , N − 1}2 , (55)

where (., .) is the one-dimensional counterpart of (6). In addition, we define the lumped

mass matrix for the one dimensional case:

B̄ij = δij

∫ +1

−1
φj(ξ)dξ i, j ∈ {1, . . . , N − 1}2 , (56)

which corresponds to a diagonal matrix with nonzeros equal to the row sums of B̃.

If the interior grid points on the reference domain are numbered lexicographically, then

the two-dimensional stiffness and mass matrices for the bilinear finite elements are:

Af = B̃ ⊗ Ã + Ã ⊗ B̃ , Bf = B̃ ⊗ B̃ , (57)

respectively. The lumped-mass stiffness and mass matrices in two dimensions are:

Al = B̄ ⊗ Ã + Ã ⊗ B̄ , Bl = B̄ ⊗ B̄ . (58)

The stiffness matrix Al is identical to the Laplacian derived from linear triangles, At, or the

classic five-point finite difference stencil. However, whereas the lumped-mass matrix, Bl, is

diagonal, the linear finite element mass matrix, Bt, has six nonzeros per row for a regular

array of triangles. Since both Af and Bf result from Kronecker products of tridiagonal

matrices, they yield a full nine-point stencil.

Table 6 shows the condition number and extreme eigenvalues for the preconditioned

system A−1∗ A. The values of κ(A−1
t A) and κ(A−1

l A) appear to be approaching the bound
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Table 6: Symmetric preconditioner for A, mono-domain case.

A−1
f A A−1

l A A−1
t A

N κ λmax λmin κ λmax λmin κ λmax λmin

4 3.62 4.63 1.28 1.55 1.84 1.18 1.55 1.84 1.18

6 4.84 5.44 1.12 1.80 1.95 1.08 1.80 1.95 1.08

8 5.47 5.86 1.07 1.95 2.04 1.05 1.95 2.04 1.05

10 5.86 6.12 1.05 2.04 2.10 1.03 2.04 2.10 1.03

20 6.64 6.71 1.01 2.24 2.26 1.01 2.24 2.26 1.01

40 7.02 7.04 1.00 2.35 2.35 1.00 2.35 2.35 1.00

Table 7: Nonsymmetric preconditioner for A, mono-domain case.

A−1
f BfB

−1A A−1
l BlB

−1A A−1
t BtB

−1A

N κ λmax λmin κ λmax λmin κ λmax λmin

4 1.46 0.92 0.63 1.55 1.55 1.00 2.18 0.90 0.41

6 1.41 0.96 0.68 1.80 1.80 1.00 2.49 0.96 0.39

8 1.35 0.98 0.72 1.95 1.95 1.00 2.63 0.98 0.37

10 1.36 0.99 0.72 2.04 2.04 1.00 2.69 0.99 0.37

20 1.37 1.00 0.73 2.24 2.24 1.00 2.73 1.00 0.37

40 1.40 1.00 0.71 2.35 2.34 1.00 2.79 1.00 0.36
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π2/4 which has been found by several authors [10, 35]. Note that preconditioners having a

“star” type of stencil yield a lower condition number than the seemingly natural choice of

bilinear finite elements. It was noted earlier that, for undeformed geometries, the spectral

Laplacian also has a star-shaped stencil due to the diagonal mass matrix, and this appears

to be the reason for the superior conditioning by the linear and lumped mass operators in

this symmetric case.

By contrast, if one preconditions the original differential operator (42) by taking into

account the mass matrices as done by Deville and Mund [10], then bilinear finite elements

are superior to linear finite elements. Table 7 shows the extreme real part of the eigenval-

ues for A−1∗ B∗B−1A and associated “condition number,” κ = maxRe(λ)/minRe(λ). (We

note that the spectrum of several of the operators was complex. However, the maximum

imaginary magnitude was less than ten percent of the minimum real part the spectrum.)

In this case, the asymptotic value of κ = 1.4 for the bilinear element is significantly lower

than found for the symmetric preconditioners, as noted in [10], and suggests that non-

symmetric iteration schemes such as GMRES might be of interest in conjunction with this

preconditioner.

We now consider the same eigenvalue test for the consistent Poisson operator, E,

generated with homogeneous Dirichlet boundary conditions for the velocity. In this case,

the finite element preconditioners are Neumann operators (null space of dimension unity)

corresponding to a triangulation of the Gauss points, (ηi, ηj). Note that the triangulation

does not extend to ∂Ω. The basis for the bilinear finite elements is again a tensor product

of one-dimensional functions:

ψi(η) =





η−ηi−1

ηi−ηi−1
ηi−1 ≤ η < ηi

η−ηi+1

ηi−ηi+1
ηi ≤ η < ηi+1

0 otherwise

, i ∈ {1, . . . , N − 1} , (59)

with the restriction that η ∈ [η1, ηN−1], implying that the basis functions ψ1 and ψN−1 are

non-vanishing at the endpoints. The formation of the two-dimensional operators proceeds

exactly as before, yielding bilinear stiffness and mass matrices, Ef and Bf , and lumped-

mass counterparts El and Bl. The linear triangle based operators are denoted Et and Bt,

respectively. Both E and the preconditioners share a null space containing the constant

function, but otherwise have real positive eigenvalues. The condition numbers for the

generalized eigenvalue problem were computed by premultiplying E by the pseudoinverse

of the preconditioner and then solving the standard eigenvalue problem.

Tables 8 and 9 show the condition numbers for the E operator, analogous to the

previous two tables for A. In this case, the condition numbers are not bounded. However,

from the results of Table 3 of Section 3, it is clear that finite element preconditioning is

effective and apparently only weakly dependent upon N in the multidomain case. We have
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Table 8: Symmetric preconditioner for E, mono-domain case.

E−1
f E E−1

l E E−1
t E

N κ λmax λmin κ λmax λmin κ λmax λmin

4 7.75 10.46 1.35 2.99 3.49 1.17 2.99 3.49 1.17

6 11.23 12.06 1.07 4.08 4.15 1.02 4.08 4.15 1.02

8 13.32 13.76 1.03 5.49 4.74 0.86 5.49 4.74 0.86

10 14.83 15.10 1.02 7.06 5.16 0.73 7.06 5.16 0.73

20 23.98 18.30 0.76 15.94 6.14 0.39 15.94 6.14 0.39

40 50.57 20.14 0.40 35.66 6.72 0.19 35.66 6.72 0.19

Table 9: Nonsymmetric preconditioner for E, mono-domain case.

E−1
f BfB

−1E E−1
l BlB

−1E E−1
t BtB

−1E

N κ λmax λmin κ λmax λmin κ λmax λmin

4 1.84 0.17 .094 3.93 0.56 .142 3.68 0.81 .219

6 3.81 0.30 .079 5.82 0.91 .156 6.54 1.22 .187

8 5.33 0.36 .068 7.78 1.11 .143 9.21 1.48 .161

10 6.91 0.40 .058 9.81 1.24 .126 11.91 1.65 .139

20 15.78 0.50 .032 21.25 1.52 .072 25.90 2.03 .078

40 35.47 0.55 .016 46.78 1.68 .036 56.05 2.24 .040

31



also verified that the growth with N is not due to the boundary conditions, by repeating

the experiments for A−1∗ A using Neumann boundary conditions instead of Dirichlet; the

results were largely unchanged from those in Tables 6 and 7. The key information to draw

from Tables 8 and 9 is that linear triangles are superior to bilinear elements in the case of

the symmetric preconditioner and that, for E, the symmetric linear preconditioner seems

to be as good as the nonsymmetric bilinear preconditioner.

We have also investigated the case of deformed elements and found the results for both

A and E largely unchanged. As a result of this study we have based our preconditioner

upon linear finite elements, which also eases the coding for deformed geometries. Note that

Et is identical to the preconditioner Ag of Sections 3 and 4.
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