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Overview

q High-order motivation:  minimal dispersion/dissipation

q Efficiency – matrix-free factored forms

– solvers:  MG-preconditioned CG or GMRES

q Stability – high-order filters

– dealiasing ( i.e., “proper” integration )

q Scalability – long time integration

– bounded iteration counts

– scalable coarse-grid solvers  (sparse-basis projection or AMG)

– design for P > 106 ( P > 105 already here…)

q Examples – vascular flows

– MHD

– Rod bundle flows
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Navier-Stokes Time Advancement

q Nonlinear term:  explicit  

q k th-order backward difference formula / extrapolation 

q characteristics   (Pironneau ’82, MPR ‘90)

q Stokes problem – pressure/viscous decoupling, PN – PN-2 (Maday & Patera 89)

q 3 Helmholtz solves for velocity – Jacobi-preconditioned CG

q (consistent) Poisson equation for pressure (computationally dominant)
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Spatial Discretization: Spectral Element Method  

(Patera 84, Maday & Patera 89)

q Variational method, similar to FEM, using GL quadrature.

q Domain partitioned into E high-order quadrilateral (or hexahedral) elements 

(decomposition may be nonconforming - localized refinement) 

q Trial and test functions represented as N th-order tensor-product 
polynomials within each element.  (N ~ 4 -- 15, typ.)

q EN 3 gridpoints in 3D,  EN 2 gridpoints in 2D.

q Converges exponentially fast with N for smooth solutions. 

3D nonconforming mesh for 

arteriovenous graft simulations:

E = 6168 elements, N = 7
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Spectral Element Discretization

2D basis function, N=10
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Accuracy

+

Costs
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Spectral Element Convergence: Exponential with N

Exact Navier-Stokes

solution due to

Kovazsnay(1948):
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Excellent transport properties, even for non-smooth solutions

Convection of non-smooth data on a 32x32   

grid   (K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77)
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Relative Phase Error for h vs. p Refinement:  ut + ux = 0

h-refinement p-refinement

q X-axis = k / kmax ,  kmax := n / 2 ( Nyquist )

q Fraction of resolvable modes increased only through p-refinement 

q Diagonal mass matrix  (low N significantly improved w/ full mass matrix)

q Polynomial approaches saturate at k / kmax = 2 / π

� N = 8-16 ~ point of marginal return
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N=10

N=4

Costs

q Cost dominated by iterative solver costs,  proportional to

q iteration count

q matrix-vector product + preconditioner cost

q Locally-structured tensor-product forms:

q minimal indirect addressing

q fast matrix-free operator evaluation 

q fast local operator inversion via fast 

diagonalization method  (FDM)

( Approximate, when element deformed. )
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Matrix-Matrix Based Derivative Evaluation

q Local tensor-product form  (2D),

allows derivatives to be evaluated as matrix-matrix products:

mxm

hi(r)
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q For a deformed spectral element, Ω k, 

q Operation count is only O (N 4) not O (N 6) [Orszag ‘80 ]

q Memory access is 7 x number of points  (Grr ,Grs, etc., are diagonal )

q Work is dominated by matrix-matrix products involving Dr , Ds , etc.

Local “Matrix-Free” Stiffness Matrix in 3D
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Summary:  Computational Efficiency

q Error decays exponentially with N,  typical N ~ 5-15

q For n=EN3 gridpoints, require

q O(n) memory accesses

q O(nN) work in the form of matrix-matrix products

q Standard p-type implementation gives

q O(nN3) memory accesses

q O(nN3) work in the form of matrix-vector products

q Extensions to high-order tets:

q Karniadakis & Sherwin (tensor-product quadrature)

q Hesthaven & Warburton (geometry/canonical factorization: D
r
T G e D

r 
)

q Schoeberl et al. (orthogonal bases for linear operators)
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Stability
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Stabilizing High-Order Methods

In the absence of eddy viscosity, some type of stabilization 

is generally required at high Reynolds numbers.

Some options:

q high-order upwinding (e.g., DG, WENO)

q bubble functions

q spectrally vanishing viscosity

q filtering

q dealiasing
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Filter-Based Stabilization 

q At end of each time step:
q Interpolate u onto GLL points for PN-1

q Interpolate back to GLL points for PN

F1 (u) = IN-1 u

q Results are smoother with linear combination:                   (F. & Mullen 01)

Fα (u) = (1-α) u + α IN-1 u             (α ~ 0.05 - 0.2)

q Post-processing  — no change to existing solvers

q Preserves interelement continuity and spectral accuracy

q Equivalent to multiplying by (1-α) the N th coefficient in the expansion

q u(x) = Σ uk φk (x)      � u*(x) = Σ σk uk φk (x),  σκ= 1, σΝ = (1-α )

q φk (x) := Lk(x) - Lk-2(x)                                                             (Boyd 98)

(Gottlieb et al., Don et al., Vandeven, Boyd, ...)
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Numerical Stability Test: Shear Layer Roll-Up 
(Bell et al. JCP 89, Brown & Minion, JCP 95, F. & Mullen, CRAS 2001)

2562

2562

1282 2562

25621282
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Spatial and Temporal Convergence        (FM, 2001)

Base velocity profile and perturbation streamlines

Error in Predicted Growth Rate for 

Orr-Sommerfeld Problem at Re=7500
(Malik & Zang 84)
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Filtering permits Reδ99 > 700 for transitional boundary layer calculations

blow up

Re = 700

Re = 1000

Re = 3500
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Why Does Filtering Work ?  

( Or, Why Do the Unfiltered Equations Fail? )

Double shear layer example:

Ok
High-strain regions
are troublesome…
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Why Does Filtering Work ?  

( Or, Why Do the Unfiltered Equations Fail? )

Consider the model problem:

Weighted residual formulation:

Discrete problem should never blow up.
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Why Does Filtering Work ?  

( Or, Why Do the Unfiltered Equations Fail? )

Weighted residual formulation vs. spectral element method:

This suggests the use of over-integration (dealiasing) to ensure 

that skew-symmetry is retained  

( Orszag ’72, Kirby & Karniadakis ‘03, Kirby & Sherwin ’06)
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Aliased / Dealiased Eigenvalues:

q Velocity fields model first-order terms in expansion of straining and rotating flows.

q For straining case,

q Rotational case is skew-symmetric. 

q Filtering attacks the leading-order unstable mode.

N=19, M=19           N=19, M=20

c = (-x,y)

c = (-y,x)
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Stabilization Summary

q Filtering acts like well-tuned hyperviscosity

q Attacks only the fine scale modes (that, numerically speaking, 
shouldn’t have energy anyway…)

q Can precisely identify which modes in the SE expansion to suppress 
(unlike differential filters)

q Does not compromise spectral convergence

q Dealiasing of convection operator recommended for high 
Reynolds number applications to avoid spurious eigenvalues

q Can run double shear-layer roll-up problem forever with 

– ν = 0 ,                                                               

– no filtering
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Dealiased Shear Layer Roll-Up Problem, 1282

ν = 0, no filter                              ν = 10-5, no filter                   ν = 0,  filter = (.1,.025)
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Linear Solvers
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Linear Solvers for Incompressible Navier-Stokes

q Navier-Stokes time advancement:

q Nonlinear term:  explicit  

q k th-order backward difference formula / extrapolation 

q characteristics   (Pironneau ’82, MPR ‘90)

q Stokes problem: pressure/viscous decoupling:

q 3 Helmholtz solves for velocity                      (“easy” w/ Jacobi-precond. CG)

q (consistent) Poisson equation for pressure (computationally dominant)
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PN - PN-2 Spectral Element Method for Navier-Stokes (MP 89)

Gauss-Lobatto Legendre points
(velocity)

Gauss Legendre points
(pressure)

Velocity, u in PN ,     continuous

Pressure, p in PN-2 ,  discontinuous
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—

Navier-Stokes Solution Strategy

q Semi-implicit:  explicit treatment of nonlinear term.

q Leads to Stokes saddle problem, which is algebraically split

MPR 90, Blair-Perot 93, Couzy 95

q E - consistent Poisson operator for pressure, SPD

q Stiffest substep in Navier-Stokes time advancement

q Most compute-intensive phase 

q Spectrally equivalent to SEM Laplacian, A
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Pressure Solution Strategy: Epn = gn

1. Projection: compute best approximation from previous time steps

q Compute p* in span{ pn-1, pn-2, … , pn-l } through straightforward projection.

q Typically a 2-fold savings in Navier-Stokes solution time.

q Cost:  1 (or 2) matvecs in E per timestep

2. Preconditioned CG or GMRES to solve

E ∆p = gn - E p*
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Two-Level Overlapping Additive Schwarz Preconditioner 

δ

Local Overlapping Solves: FEM-based

Poisson problems with homogeneous 
Dirichlet boundary conditions, Ae .

Coarse Grid Solve: Poisson problem

using linear finite elements on entire

spectral element mesh, A0 (GLOBAL).

(Dryja & Widlund 87, Pahl 93, PF 97, FMT 00)



Mathematics and Computer Science Division, Argonne National Laboratory

Solvers for Overlapping Schwarz / Multigrid

Coarse Grid Solver:  cast solution as projection onto A0-conjugate basis   (PF ‘96, Tufo & F ’01)

q x0= Xl Xl
Tb0                      

q Matrix-vector products inherently parallel

q Here, choose basis  Xl = (x1 ,  x2, … , xl ) to be sparse .

q Use Gram-Schmidt to fill remainder of Xl as  l � n .

q Properly ordered, XnXn
T = A0

-1 is a quasi-sparse factorization of  A0
-1

q Sublinear in P, minimal number of messages.

Local Solves:  fast diagonalization method (Rice et al. ‘64, Couzy ‘95)

q

q Complexity <  A p

q For deformed case, approximate with nearest rectangular brick

Xn
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Two-Level Schwarz Heuristics

q Local solves eliminate fine-scale error.

q Remaining error, due to Green’s functions from incorrect 

BCs on the local solves, is at scale O(H), which is corrected 
by the coarse-grid solve.

q Additive preconditioning works in CG / GMRES contexts 

because eigenvalues of (preconditioned) fine and coarse 

modes are pushed towards unity.
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Importance of weighting by W: Poisson eqn. example

q Error after a single Schwarz smoothing step

q Error after coarse-grid correction

q Weighting the additive-Schwarz step is essential to ensuring a smooth error 
(Szyld has recent results)

MSchwarz σ MSchwarz W MSchwarz

(2.0)                                   (0.8)                   (0.15)
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E-Based Schwarz vs. SEMG for High-Aspect Ratio Elements

q Base mesh of E=93 elements                         2D Navier-Stokes Model Problem

q Quad refine to generate E=372 and                                                        

E=1488 elements, 

q N=4,…,16

q SEMG reduces E and N dependence

q 2.5 X reduction in Navier-Stokes CPU                                                      

time for N=16

Overlapping                                   Weighted

Schwarz                                        Schwarz/MG

N                                                   N

It
e
ra

ti
o
n
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o
u
n
t
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Iteration Histories for 3D Unsteady Navier-Stokes  (n ~ 106)

q Std. — 2-level additive Schwarz Re
T Ae Re

q Mod. — 2-level additive Schwarz, based on WRe
T Ee Re

q Add. — 3-level additive scheme

q Hyb. — 3-level multiplicative scheme



Mathematics and Computer Science Division, Argonne National Laboratory

SEM Examples
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Transition in Vascular Flows w/ F. Loth, UIC

Comparison of spectral element and 

measured velocity distributions in an 

arteriovenous graft, ReG=1200

A   B

A  B

A—A 

B—B 

Spectral Element In vitro LDA

Method Measurement

Mean Axial Velocity

Coherent structures in arteriovenous graft @ ReG = 1200

(Computations by S.W. Lee, UIC.  Experiments by D. Smith, UIC)
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RMS for Re 1200, 70:30 flow division

Experimental data is low-pass 
(< 250 Hz) filtered to remove 
spurious fluctuations inherent in 
LDA measurements of regions 
of high shear flow.

Fluctuation of Axial Velocity Component (RMS)

1.34 2.34 3.34x/D

LDA

CFD

LDA

Filtered

RMS 

[m/s]

0.00

0.10

0.20

0.15

0.05
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Influence of Reynolds Number and Flow Division on urms
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SEMG Scalability:  Incompressible MHD

q Study of turbulent magneto-rotational instab-

ilities (w/ F. Cattaneo & A. Obabko, UC)

q E=97000, N=9  ( n = 71 M )

q P=32768

q ~ .8 sec/step

q ~ 8 iterations / step for U & B

q Similar behavior for n=112 M

Iteration History, Step 1                                       Iterations / Step

ooo – U

ooo - B
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Numerical Magneto-Rotational Instabilities

w/ Fausto Cattaneo (ANL/UC) and Aleks Obabko (UC)

q SEM discretization of incompressible MHD   ( 112 M gridpoints )

q Hydrodynamically stable Taylor-Couette flow

•Distributions of excess angular  

velocity at inner, mid, and outer 

radii

•Computations using 16K   

processors on BGW

•Simulation Predicts: 

- MRI

- sustained dynamo
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Rod Bundle Flow at Re=30,000 w/ C. Tzanos ‘05

Low-speed streaks and log-law velocity profiles

N = 9 N = 11 N = 15

y+

u+
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Wire Wrapped Rod Bundles

q Uniformity of temperature controls peak power output

q A better understanding of flow distribution (interior, edge, corner)  

can lead to improved subchannel models.

q Wire wrap geometry is relatively complex

H

Fuel Pin

and Wire

Corner

Subchannel

Edge

Subchannel

Interior

Subchannel

Duct 

Wall

Fuel 

Pin
D

P

Wire 

Wrap
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Single Rod in a Periodic Array,  Re=20,000

E=26000, N=7,  8.7 M gridpoints

5 hours on P=2048 of 700 MHz BG/L for flow-through time.

Axial Velocity Isosurface Showing Low Speed Streaks
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7 Pin Mesh:

E=132,000, N = 7

nv ~ 44 M

np ~ 28 M

niter ~ 30 / step
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7 Pin Configuration

Time-averaged axial (top) and 
transverse (bottom) velocity 
distributions.

Snapshot of axial velocity
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Summary / Future Effort

q High-order SEM formulation

q Stable formulation – dealiasing / filtering

– Investigating relationship to SGS modeling                     
(e.g., RT model, Schlatter ’04, comparisons with D-Smagorinsky)

q Scalable solvers

q Low iteration counts for typical “spectral-type” domains

q Iteration counts higher for very complex geometries 

(e.g., multi-rod bundles) – work in progress

q We will need to switch to AMG for coarse-grid solve soon

E  > 100,000;  P > 10,000

q Future

q Significant need for scalable, conservative, design codes

� Developing conservative DG variant 


