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Abstract— We consider the design of optimal structured
feedback gains for vehicular platoons. We revisit the mistuning
design problem proposed by Barooah et al., where the platoon
is modeled as a diffusion on a spatial lattice, and a search is per-
formed for structured perturbations of the nominal dynamics
that improve the stability properties in a favorable way. We pose
the mistuning problem in the structured H2 optimal control
framework, where the size of the mistuning feedback gain is
kept small by considering an expensive control regime. The
coupled matrix equations that result from optimality conditions
are conveniently decoupled via the application of perturbation
analysis, which yields the unique structured optimal mistuning
gain. We then consider less expensive control regimes and
employ Newton’s method to solve the optimal control problem,
while using the solution obtained from mistuning to initialize
the iterative homotopy-based scheme. We also consider the issue
of scaling, with respect to platoon size, of global and local
performance measures in the optimally-controlled platoon.

Index Terms— Large-scale platoons, mistuning design, op-
timal control, perturbation analysis, homotopy, Newton’s
method.

I. INTRODUCTION

The control of vehicular platoons has attracted consider-
able attention since the mid sixties [1]–[8]. This problem
is emblematic of a wide range of technologically relevant
applications including the control of UAVs, swarms of au-
tonomous robotic agents, and satellite constellations. The
vehicular platoon consists of a number of vehicles moving
along a straight path. The simplest control objective for
vehicles modeled as double integrators is to maintain a
desired cruising velocity and to keep a pre-specified constant
distance between neighboring vehicles.

Recent work in this area has focused on fundamental
performance limitations in the design of large-scale pla-
toons [5]–[8]. In [5], it was shown that stabilizability and
detectability of LQR formulations based on penalizing rela-
tive position errors deteriorate as functions of a finite platoon
size. In [6], it was shown that convergence of merge and split
maneuvers can have poor scaling properties (with system
size) even upon inclusion of absolute position errors in cost
functionals.

The motivation for the current study comes from two
recent papers [7] and [8]. In [7], fundamental performance
limits of spatially invariant consensus and vehicular forma-
tion control problems in the presence of localized feedback
were addressed. In particular, it was shown that spatially
uniform local feedback is not capable of maintaining co-
herence in large-scale platoons. This was done by exhibiting
linear scaling, with the number of vehicles, of the normalized
H2 norm from disturbances to an appropriately defined
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macroscopic performance measure, where normalization is
done with respect to the platoon size. For platoons on a
regular one-dimensional lattice, it was shown in [8] that the
trends in the rate of decay of the least stable closed-loop
eigenvalue (with the number of vehicles) can be improved
in a favorable way by introducing a small amount of ‘mistun-
ing’ in spatially uniform feedback gains. This method was
based on first modeling a large platoon as a diffusive system,
and then designing a small-in-norm perturbation profile that
destroys the spatial symmetry and renders the system more
stable. Numerical simulations were also used to show that
the spatially-varying mistuned feedback gains have beneficial
influence on the closed-loop H∞ norm.

In this paper, we pose the mistuning problem in the
structured H2 optimal control framework [9], where the size
of the mistuning feedback gain is kept small by considering
an expensive control regime. Our approach differs from the
original work of [8] in that the mistuning profile is found
by optimizing a performance index rather than performing
spectral analysis. The coupled matrix equations that result
from optimality conditions are conveniently decoupled via
the application of perturbation analysis, which yields an
explicit analytical expression for the structured optimal mis-
tuning gain. We then consider less expensive control regimes
and employ Newton’s method to solve the optimal control
problem, while using the solution obtained from mistuning
to initialize the iterative homotopy-based scheme.

Finally, we examine how the performance of the
optimally-controlled platoon scales with the number of vehi-
cles. We consider both macroscopic and microscopic perfor-
mance measures based, respectively, on whether the objective
is to minimize the absolute position error of every vehicle
or the relative position error between neighboring vehicles.
In particular, using a macroscopic performance measure
we demonstrate that an optimally designed mistuning can
substantially improve coherence of the large-scale formation.

II. PROBLEM FORMULATION

We consider a system of N identical unit mass vehicles
moving in a line. As illustrated in Fig. 1, fictitious lead and
follow vehicles, respectively indexed by 0 and N + 1, are
added to the formation. These two vehicles are assumed to
move along their absolute desired trajectories at all time
and they are not considered to belong to the platoon. The
control objective is to keep neighboring vehicles at a pre-
specified constant distance from each other. For simplicity,
each vehicle is represented by its kinematic model,

ẋn = dn + un, n = {1, . . . , N},
where xn denotes the difference between the position of the
nth vehicle and its desired absolute position in a regular
grid, un is the control applied on the nth vehicle, and
dn is the disturbance acting on the nth vehicle. Our goal
is to quantify the influence of disturbances on both local
and global performance measures for formations with static
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feedback controllers and nearest neighbor interactions. In
all of our developments, we assume that all vehicles are
equipped with ranging devices that allow them to measure
relative distances with their immediate neighbors. Addition-
ally, vehicles indexed by 1 and N are equipped with a GPS
device which gives them access to their global positions at
every time instant.

Fig. 1. A platoon of vehicles.

A. Spatially uniform controller

We first consider a spatially uniform static controller with
nearest neighbor interactions,

un = −(xn − xn−1) − (xn − xn+1), n = 1, . . . , N.

Clearly, the control action for each vehicle is computed using
relative position errors with respect to the neighboring vehi-
cles; since lead and follow fictitious vehicles are constrained
to move along their absolute desired trajectories, this means
that the vehicles indexed by 1 and N also have access to
their absolute positions. In matrix form, we have

u = −Kx = −Tx,

where x and u denote the state and control vectors, e.g.
x = [x1 · · · xN ]T , and T is an N×N symmetric Toeplitz
matrix with the first row given by [ 2 − 1 0 · · · 0 ] ∈ RN .
Thus, the closed-loop system is determined by

ẋ = −T x + d,

z =
[

z1

z2

]
=

[
Q1/2

−R1/2 T

]
x,

(SU)

where d is a vector of disturbances, and z is a vector of
performance variables that encompass both the penalty Q on
the state, and the penalty R on the control. In what follows,
the control weight is given by a scaled identity, R = rI
with r > 0. On the other hand, we will consider two state
performance measures
• Macroscopic (global), Qg = I;
• Microscopic (local), Ql = T .

These state weights induce two performance measures of in-
terest determined by the H2 norm of the closed-loop system
(from d to z1) normalized with the number of vehicles,

Πs(N) = (1/N)‖H‖2
2, s = g or s = l. (Π)

B. Mistuning

With the choice of spatially uniform static feedback gain
in Section II-A we have effectively closed the loop with the
nominal ‘diffusive’ dynamics; this form of control compares
the position of each vehicle with the average of positions
of its immediate neighbors and it is commonly encountered

in standard consensus algorithms. Following [8], we next
augment the ‘diffusive’ feedback with another control input

u = −Tx + v.

The role of v is to mistune the spatially uniform feedback
gains and our objective is to examine how mistuning in-
fluences the scaling of the functions Πg and Πl with the
number of vehicles. We will determine the mistuning profile
that leads to minimization of the H2 norm with respect
to the previously defined performance measures under the
constraint that vn only utilizes relative position information.
In particular,

vn = −fn (xn − xn−1)−bn (xn − xn+1) , n = {1, . . . , N},
where fn and bn, respectively, denote the forward and back-
ward ‘mistuned’ feedback gains which are to be determined
using structured H2 optimal control framework [9].

We consider the following control problem

ẋ = A x + B1 d + B2 v,

z = C1 x + D v,

y = C2 x, u = −F y,

where d denotes a mutually uncorrelated white stochastic
process,

A = −T, B1 = B2 = I,

C1 =
[

Q1/2 0
]T

, D =
[

0 r1/2I
]T

,

C2 =
[

Cf

CT
f

]
, F = [ Ff Fb ] ,

(VP)

and

Cf ∼

 1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1

 .

The sign ∼ means that the matrix on the right only exempli-
fies the structure and gives the element values of the actual
matrix; in general the actual matrix can have much larger
dimension. The interpretation of the output matrices is that
Cf x gives the vector of relative position errors between
every vehicle and the one in front of it, and CT

f x gives
the vector of relative position errors between every vehicle
and the one behind it. Finally,

Ff ∼

 f1 0 0 0
0 f2 0 0
0 0 f3 0
0 0 0 f4

 , Fb ∼

 b1 0 0 0
0 b2 0 0
0 0 b3 0
0 0 0 b4

 ,

and the elements of the real vectors f = [ f1 · · · fN ]T ,
b = [ b1 · · · bN ]T can be interpreted as the ‘weight’ that
each vehicle puts on the relative position error between itself
and the vehicles in front it and behind it, respectively.

Upon closing the loop, the above problem can equivalently
be written as

ẋ = (A− FC2) x + d,

z =

[
Q1/2

−r1/2FC2

]
x,

(H2)

and thus the amplitude of z encapsulates both the amplitude
of the state and that of the control input v.

The motivation for considering structured control prob-
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lem (H2) comes from a recent study [8] where a continuum
model that approximates a large platoon by a partial differ-
ential equation (PDE) was introduced. A ‘mistuning profile’
ε F was then selected to maximally increase the temporal
decay rate of the PDE, subject to a norm bound on F . The
authors achieve this by performing a perturbation analysis
on the spectrum of the operator Am(F, ε) = A− εFC2 for
small ε and by choosing F such that the rightmost part of the
spectrum of Am is pushed as far left into the complex plane
as possible. Our approach to this problem is to minimize the
H2 norm of the closed-loop system (H2). This contrasts with
the work of [8] in that the feedback gain F will be found
by optimizing a performance index rather than performing a
spectral analysis.

It can be shown that necessary conditions for F to be the
optimal structured gain are given by [9]

(A− FC2)T P + P (A− FC2) = −
(
Q + rCT

2 FT FC2

)
(A− FC2) L + L (A− FC2)T = −I (NC)

r
(
FC2LCT

2

)
◦ IS =

(
PLCT

2

)
◦ IS ,

where ◦ denotes the element-wise multiplication of matrices
and IS = [ I I ]. For example, X ◦ IS is a matrix whose
blocks are diagonal matrices determined by X ◦ IS =
[X1 ◦ I X2 ◦ I ], where X is partitioned conformably with
the static feedback gain F = [Ff Fb ].

The conditions (NC) consist of two Lyapunov equations
in P and L that are coupled together by the final equation.
These equations can have multiple solutions, each of which
is a stationary point of the objective function. In general, it is
not known how many local minima exist or how to find them.
This difficulty persists even in the unstructured problems,
as pointed out by [10]. Recent work of the authors [9] has
demonstrated how these issues can be circumvented in the
framework of structured expensive control with r = 1/ε,
0 < ε � 1.

The rest of the paper is organized as follows. In Sec-
tion III, we utilize perturbation analysis to determine a small-
amplitude mistuning correction to the nominal diffusive
dynamics. In Section IV, we use a homotopy-based Newton’s
method to determine the solution to equations (NC) for
smaller values of r; the Newton’s iterations are initialized by
a mistuning profile determined in Section III. This illustrates
how the mistuning profile changes as one departs from the
expensive control regime. In Section V we discuss how
optimal localized control design influences microscopic and
macroscopic performance measures, Πl(N) and Πg(N).

III. OPTIMAL MISTUNING: EXPENSIVE CONTROL

In this section, we consider a simpler problem in which
R = (1/ε) I , with 0 < ε � 1; we will henceforth refer to
this as expensive optimal control. Then, by representing P ,
L, and F as

P =
∞∑

n=0

εnP (n), L =
∞∑

n=0

εnL(n), F =
∞∑

n=1

εnF (n),

substituting in (NC), and employing perturbation analysis,
we obtain the set of conveniently coupled equations given
by (EXP). Note that these equations are only coupled in one
direction, in the sense that for any n ≥ 1 the O(εn) equations
depend only on the solutions of the O(εn−1) equations and
are not coupled among themselves. Thus the perturbation
expansion terms can be readily computed up to any order.

The matrix F found by this procedure is the unique
optimal (in the sense of perturbations) solution of the control
problem (H2) with r = 1/ε. This is due to the fact that the
equations (EXP), under the assumption of convergence, give
a unique matrix F =

∑∞
n=1 εnF (n). To compute the optimal

mistuning profiles for larger values of ε, we use F from
perturbation analysis to initialize homotopy-based Newton’s
method, as discussed in Section IV.

We next determine the optimal mistuning profile up to
first order in ε for both macroscopic and microscopic per-
formance measures.

A. Optimal mistuning profile for Qg = I

Proposition 1: Up to first order in ε, the optimal H2

feedback gains F
(1)
f = diag {f (1)

n } and F
(1)
b = diag {b(1)

n }
in the control problem (H2)-(VP) with Q = I , r = 1/ε,
0 < ε � 1, are given by

f
(1)
n =

n(n−N − 1)(4n(N + 1)−N(2N + 7) + 1)
12 (N2 − 1)

,

b
(1)
n = −n(n−N − 1)(4n(N + 1)−N(2N + 1)− 5)

12 (N2 − 1)
.

Furthermore,

f
(1)
n + b

(1)
n = 0.5 n(N + 1− n)/(N + 1),

f
(1)
n = b

(1)
N + 1−n, n = 1, . . . , N.

Proof: From O(ε) equations of (EXP) and (VP) we
have

−TT P (0) − P (0)T = −I,

−T L(0) − L(0)TT = −I.

Using the symmetry of T , we obtain

P (0) = L(0) = 0.5 Γ,

where Γ = T−1 is a symmetric matrix with entries deter-
mined by

γij = i(N + 1− j)/(N + 1), j ≥ i. (1)

Substitution of P (0) and L(0) in the last O(ε) equation
of (EXP) yields

0.5(F (1)C2ΓCT
2 ) ◦ IS = 0.25(Γ2CT

2 ) ◦ IS . (2)

The left hand side of (2) can be simplified to obtain

(F (1)C2L
(0)CT

2 ) ◦ IS

= 0.5
[
F

(1)
f CfΓCT

f + F
(1)
b CT

f ΓCT
f ,

F
(1)
f CfΓCf + F

(1)
b CT

f ΓCf

]
◦ [ I I ]

= 0.5
[
F

(1)
f (CfΓCT

f ) ◦ I + F
(1)
b (CT

f ΓCT
f ) ◦ I,

F
(1)
f (CfΓCf ) ◦ I + F

(1)
b (CT

f ΓCf ) ◦ I
]
,

(LHS)

where in the first equality we use (VP) to substitute for C2

and F (1), and in the second equality we use the fact that for
two matrices X and Y , with X diagonal,

(XY ) ◦ I = X (Y ◦ I).
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O(1) : F (0) = 0

O(ε) :


AT P (0) + P (0)A = −Q

AL(0) + L(0)AT = −B1B
T
1

(F (1)C2L
(0)CT

2 ) ◦ IS = (BT
2 P (0)L(0)CT

2 ) ◦ IS

O(ε2) :


AT P (1) + P (1)A = (B2F

(1)C2)T P (0) + P (0) (B2F
(1)C2) − CT

2 F (1)T F (1)C2

AL(1) + L(1)AT = (B2F
(1)C2) L(0) + L(0) (B2F

(1)C2)T

(F (2)C2L
(0)CT

2 ) ◦ IS = (BT
2 P (0)L(1)CT

2 + BT
2 P (1)L(0)CT

2 − F (1)C2L
(1)CT

2 ) ◦ IS
... ...

(EXP)

Simplifying the right hand side of (2) we have

(P (0)L(0)CT
2 ) ◦ IS

= 0.25
[
Γ2CT

f Γ2Cf

]
◦ [ I I ]

= 0.25
[
(Γ2CT

f ) ◦ I (Γ2Cf ) ◦ I
]

(RHS)

We now equate (LHS) and (RHS) and solve for the unknown
elements f

(1)
n and b

(1)
n of the diagonal matrices F

(1)
f and

F
(1)
b ,

F (1) =
[

F
(1)
f F

(1)
b

]
=

[
diag{f (1)

n } diag{b(1)
n }

]
.

Exploiting the diagonal structure of F
(1)
f , F

(1)
b , and ( · ) ◦ I ,

the matrix equation collapses to the set of scalar equations

[CfΓCT
f ]nn f (1)

n + [CT
f ΓCT

f ]nn b(1)
n = 0.5 [Γ2CT

f ]nn

[CfΓCf ]nn f (1)
n + [CT

f ΓCf ]nn b(1)
n = 0.5 [Γ2Cf ]nn

for n = 1, . . . , N.

Solving this 2-by-2 system of equations for f
(1)
n and b

(1)
n

yields the expressions for f
(1)
n and b

(1)
n in Proposition 1.

B. Optimal mistuning profile for Ql = T

Proposition 2: Up to first order in ε, the optimal H2

feedback gains F
(1)
f = diag {f (1)

n } and F
(1)
b = diag {b(1)

n }
in control problem (H2)-(VP) with Q = T , r = 1/ε,
0 < ε � 1, are given by

f (1)
n = 0.5(N − n)/(N − 1), b(1)

n = 0.5(n− 1)/(N − 1).

Furthermore,

f
(1)
n + b

(1)
n = 0.5, f

(1)
n = b

(1)
N + 1−n, n = 1, . . . , N.

Proof: From O(ε) equations of (EXP) and (VP) we
have

−TT P (0) − P (0)T = −T,

−T L(0) − L(0)TT = −I.

Using the symmetry of T , we obtain

P (0) = 0.5 I, L(0) = 0.5 Γ.

Following a procedure similar to that explained above for
the case with Ql = I and performing some algebra yields

the expressions for f
(1)
n and b

(1)
n in Proposition 2.

C. Optimal mistuning profile for Q = αI + βT

From the O(ε) equations in (EXP) we conclude that the
mapping from Q to F (1) is linear. Specifically, F (1) is a
linear function of P (0), and P (0) is a linear function of Q.
Thus, the mistuning profiles for Q = αI + βT are given by

f (1)
n = α f (1)

g,n + β f
(1)
l,n , b(1)

n = α b(1)
g,n + β b

(1)
l,n

where f
(1)
g,n and b

(1)
g,n are the mistuning profiles obtained with

Qg = I , whereas f
(1)
l,n and b

(1)
l,n are the mistuning profiles

obtained with Ql = T .

D. Optimal mistuning profile with assumptions made in [8]
We next compare the mistuning profiles described above

with the optimal H2 mistuning profile arising from the
assumptions made in [8]. To this end, we introduce the
following change of variables

S = 0.5 (Ff + Fb), M = 0.5 (Ff − Fb),

or equivalently,

Ff = S + M, Fb = S −M.

In the mistuning framework of [8], the matrix S is set to
zero, and the diagonal elements {µn} of M determine the
mistuning profile. Taking S = 0 implies that

Ff = M, Fb = −M = Ff .

Clearly, this provides fewer degrees of freedom in design,
since Ff and Fb cannot be selected independently of each
other. Furthermore, the results summarized in Propositions 1
and 2 imply that optimal feedback gains Fb and Ff fail to
satisfy Fb = −Ff .

Perturbation analysis of expensive control can now be used
to obtain the optimal mistuning profile, M (1) = diag {µ(1)

n },
arising from the assumptions made in [8]. The result sum-
marized in Proposition 3 can be proved in a similar manner
to Propositions 1 and 2.

Proposition 3: Up to a first order in ε, the optimal H2

feedback gains M (1) = F
(1)
f = diag {µ(1)

n }, F
(1)
b = −F

(1)
f ,

in control problem (H2)-(VP) with r = 1/ε, 0 < ε � 1, are
given by

µ
(1)
n =


n(N + 1− 2n)(N + 1− n)

6(N − 1)
Q = I

N + 1− 2n

4(N − 1)
Q = T.
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Comparison of the µ
(1)
n obtained above with f

(1)
n found in

Propositions 1 and 2 reveals that µ
(1)
n ≈ f

(1)
n when Q = I .

However, when Q = T then µ
(1)
n and f

(1)
n differ significantly.

IV. OPTIMAL MISTUNING: NON-EXPENSIVE CONTROL

In this section, we consider the optimal mistuning profile
when the level of control expensiveness is reduced. To
this end, we use recently developed Newton’s method for
the optimal design of static structured feedback gains [9].
Newton’s method is an iterative descent algorithm to solve
the optimization problem. Specifically, given an initial struc-
tured feedback gain F 0 ∈ S, Newton’s method generates a
minimizing sequence {F i ∈ S}

F i+1 = F i + siF̃ i
nt,

where F̃ i
nt is the Newton direction, si is the step-size, and S

specifies the desired structure of the feedback gain. For very
small values of ε, we initialize Newton’s method using the
optimal mistuning profile determined in Section III. We then
increase ε and use the optimal F from Newton’s method at
previous ε to initialize the next round of Newton iterations.
We continue increasing the value of ε until the control
penalty R = rI of the desired control objective is recovered.

Figure 2 illustrates the changes in the normalized optimal
mistuning forward gains, {ff/‖ff‖; ff = diag {Ff}},
obtained using macroscopic (Qg = I) and microscopic
(Ql = T ) performance measures with R = (1/ε)I and
N = 30. The values of ε in homotopy-based method are
determined by 20 logarithmically spaced points between
10−4 and 1. The mistuning profile changes continuously as
the level of expensiveness of the control problem is reduced.
Note that the feedback gains change gradually from an
almost sinusoidal shape at ε = 10−4 into a piecewise linear
shape at ε = 1. The optimal forward and backward feedback
gains in both cases also satisfy central symmetry property
stated in Propositions 1 and 2, that is, fn = bN+1−n, n =
{1, . . . , N}. It is noteworthy that optimal forward gains at
ε = 1 monotonically decrease as one moves from the first
vehicle to the last vehicle. Furthermore, the forward feedback
gain at the first vehicle assumes much larger values compared
to feedback gains of other vehicles.

V. PERFORMANCE VS. PLATOON SIZE

In this section, we study how optimal mistuning profiles
with R = I influence the scaling of macroscopic and
microscopic performance measures as a function of the
platoon size. For a given mistuning controller, we examine
the improvement (or degradation) of the performances in
both the local and global measures relative to the spatially
uniform controller of Section II-A. In what follows, the
optimal feedback gains of Section IV obtained with Qg = I
and Ql = T are denoted by Fg and Fl, respectively.

A. Performance of spatially uniform controller

We next examine influence of platoon size on the perfor-
mance of spatially uniform controller described in Section II-
A. The H2 norm of system (SU) from d to z is determined
by the solution to the following Lyapunov equation,

(−T )T P + P (−T ) = −(Q + rTT T ),

(a) ε ranging from 10−4 to 1. (b) ε = 10−4 (circles) and ε =
1 (crosses).

(c) ε ranging from 10−4 to 1. (d) ε = 10−4 (circles) and ε =
1 (crosses).

Fig. 2. Normalized optimal forward mistuning, ff /‖ff‖, for a platoon
with N = 30 vehicles and (a,b) Qg = I; (c,d) Ql = T .

where P denotes the closed-loop observability Gramian.
Using the fact that T = TT and [11, Lemma 1] we have

Πs = (0.5/N) trace
(
T−1Qs

)
.

Now, the fact that Γ = T−1 is a symmetric matrix with
entries determined by (1) can be used to show affine scaling
with N of the macroscopic performance measure Πg

Πg(N) = (0.5/N) trace (Γ)

=
1

2N

N∑
n = 1

n − 1
2N(N + 1)

N∑
n = 1

n2

= (N + 2)/12.

On the other hand, for the microscopic performance measure,
Ql = T , we have the following platoon-size independent
value of Πl

Πl = (0.5/N) trace (I) = 0.5.

We also consider the control effort determined by the H2

norm from d to z2 given by

Πctr = (0.5/N) trace
(
T−1(rTT T )

)
= 2r.

Thus, the control effort of spatially uniform feedback gain
scales uniformly with the number of vehicles. Furthermore,
the variance per vehicle for this type of actuation remains
bounded when attention is paid to a microscopic performance
measure (i.e., relative position errors). On the other hand, the
variance per vehicle scales affinely with N when attention
is paid to a macroscopic performance measure (i.e., absolute
position errors). This phenomenon can lead to ‘meandering’
of the entire formation which can have undesirable conse-
quences on throughput in automated highways [7].

B. Performance of optimal mistuning controllers
In this section, we examine the influence of platoon size

on the performance of optimal mistuning controllers obtained
in Section IV with R = I . This problem amounts to deter-
mining the scaling with N of macroscopic and microscopic
performance measures Πg and Πl (cf. (Π)); and the control
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(a) (b)

Fig. 3. (a) Affine scaling of Πg(Fl) (stars), 0.0327N+0.8315 (solid line);
(b) quadratic logarithmic scaling of Πg(Fg) (stars), 0.0488(log N)2 −
0.0858 log N + 0.4084 (solid curve).

(a) (b)

Fig. 4. (a) Quadratic logarithmic scaling of Πl(Fl) (circles),
−0.0005(log N)2 + 0.0069 log N + 0.3827 (solid curve); (b) scaling of
Πl(Fg) (circles).

effort in platoons using controller Fg and Fl, respectively

ẋ = (A− FmC2) x + d,

z =
[

z1

z2

]
=

[
Q

1/2
s

−FmC2

]
x, m, s = g, l.

For example, Πg(Fl) denotes influence of optimal mistun-
ing feedback gain obtained with Ql = T on microscopic
performance measure, Qg , and similarly for the other three
cases.

Figure 3(a) shows affine scaling with N of the macro-
scopic performance measure, Πg(Fl), with optimal micro-
scopic mistuning profile, Fl. On the other hand, Πg(Fg)
appears to be scaling quadratically with log N (cf. Fig. 3(b));
this illustrates the capability of an optimally designed mis-
tuning gain to dramatically improve the scaling of the
macroscopic performance measure with the platoon size.
Furthermore, the microscopic performance Πl(Fg) decreases
relative to Πl(Fl) increasing with platoon size (see Fig. 4).
However, the control effort for controller Fg increases
quadratically with log N (cf. Fig. 5(b)) as opposed to control
effort decreasing with platoon size for controller Fl (cf.
Fig. 5(a)). This increase in control effort with N can be
attributed to a gradual loss of controllability of strategies
that use only relative position exchange in large-scale for-
mations [5]. From a practical point of view, however, the
optimal macroscopic mistuning controller Fg may represent
a reasonable middle ground for achieving both satisfactory
tightness and throughput requirements.

VI. CONCLUDING REMARKS

We consider the design of H2 optimal localized feedback
gains for vehicular platoons. Motivated by the recent work
of [8] on ‘mistuning’, we begin by considering stable pla-
toons with nominal diffusion dynamics and searching for

(a) (b)

Fig. 5. (a) Scaling of control (squares) for Fl; (b) quadratic logarithmic
scaling of control (squares) for Fg , 0.0376(log N)2 − 0.1540 log N +
0.3297 (solid curve).

feedback gains that are small in norm. We do this by posing
an expensive optimal control regime, and using perturbation
analysis to decouple the necessary conditions for optimality.
We derive analytical expressions for the structured gain for
different objective functions, namely objectives that focus on
the global performance of the platoon and those that focus on
the local performance. We then remove the norm constraint
from the feedback gain, and use the solution obtained from
expensive control to initialize Newton’s method.

One of the major conclusions of this work is that optimally
designed spatially varying feedback gains can dramatically
improve the scaling of macroscopic performance measures
with platoon size. We have shown that our design converts
an affine dependence on N of the macroscopic performance
measure to a quadratic dependence on log N . This may
be paramount in applications involving large-scale vehicular
formations.
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