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Abstract— We consider the design of distributed controller
architectures for undirected networks of single-integrators. In
the presence of stochastic disturbances, we identify commu-
nication topologies that balance the variance amplification of
the network with the number of communication links. This
is achieved by solving a parameterized family of sparsity-
promoting optimal control problems whose solution traces the
optimal tradeoff curve that starts at the centralized controller
and ends at the controller with sparse communication links. We
show that the optimal control problem can be formulated as a
semidefinite program whose global solution can be computed
efficiently. An example is provided to illustrate the utility of the
developed approach.

Index Terms— Communication graphs, consensus, controller
architectures, convex optimization, `1 minimization, network
design, semidefinite program.

I. INTRODUCTION

An important question in the design of networks of dy-
namical systems is the selection of distributed controller ar-
chitectures. It is of interest to identify controller architectures
that strike a balance between the performance of the inter-
connected system and the number of communication links.
The interconnection patterns in the corresponding optimal
control problem are typically described by a graph, with
applications ranging from coordinated control of multi-agent
systems, to average consensus in sensor networks [1]–[10].
For fixed topologies, several research efforts have focused on
characterizing performance limitations in large networks [2],
[3], [5]–[8], [11], [12]. Recently, a number of authors have
considered the problem of network topology modification to
improve performance of networked systems [13]–[18].

In this paper, we consider the design of undirected consen-
sus networks in the presence of stochastic disturbances. We
identify sparse communication graphs that strike a balance
between the variance amplification of the network and the
number of communication links. We solve a parameter-
ized family of sparsity-promoting optimal control problems
whose solution provides the optimal tradeoff curve that starts
at the centralized controller and ends at the controller with
a sparse communication graph. We show that the optimal
control problem can be formulated as a semidefinite pro-
gram (SDP) and thus, can be solved efficiently for small and
medium problems.
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The paper is organized as follows. We formulate the
sparsity-promoting optimal control problem for the design
of single-integrator consensus networks in Section II. We
obtain an SDP formulation for the optimal control problem
and provide an illustrative example in Sections III and IV,
respectively. We conclude the paper with a summary of our
contributions in Section V.

II. DESIGN OF UNDIRECTED NETWORKS OF
SINGLE-INTEGRATORS

We consider a network with N single-integrators,

ẋi = ui + di, i = 1, . . . , N

where ui is the control input acting on node i, and di is
the white stochastic disturbance with zero-mean and unit
variance. Each node forms its control action using a weighted
sum of the differences between itself and other nodes,

ui = −
∑
j 6= i

Fij (xi − xj). (1)

We focus on connected undirected networks; thus,

Fij = Fji, i 6= j.

A nonzero element Fij corresponds to an edge between
node i and node j. Thus, the communication architecture
of the network is determined by the sparsity pattern of the
matrix F ; in particular, the number of communication links
is determined by the number of nonzero elements of F .

We are interested in identifying sparsity patterns of F that
strike a balance between the number of communication links
and a performance measure that quantifies the consensus of
the stochastically forced network. As shown in [19], this
optimal control problem can be formulated as

minimize
F

J(F ) + γ card (F )

where J is the objective function defined in Section II-
A and card (·) is the cardinality function that counts the
number of nonzero elements of a matrix. Larger values of
the nonnegative scalar γ encourage sparser feedback gains.

A. Performance measure J

We next define the performance measure J for the consen-
sus of the network in the presence of stochastic disturbances.
Putting states of nodes, control inputs, and disturbances into
vectors, e.g., u = [u1 · · · uN ]T ∈ RN , yields

ẋ = −Fx + d. (2)

For undirected networks, F is a symmetric matrix, F = FT .
Thus, the stability of the closed-loop system (2) amounts to



the positive definiteness of the feedback gain matrix, F � 0.
However, using only relative information exchange (1), the
control input u does not stabilize the average mode [4]

x̄(t) :=
1

N

N∑
i=1

xi(t) =
1

N
1Tx(t).

This can be verified by noting that the matrix F has a zero
eigenvalue associated with the vector of all ones 1

F1 = 0.

For connected networks, all other eigenvalues of F are
positive; hence

F + 11T /N � 0.

In the absence of stochastic disturbances, the states of all
nodes in a connected network converge to the average of the
initial condition [1]

lim
t→∞

x(t) = 1 x̄(0) =
1

N
11T x(0).

In the presence of disturbances, however, the average mode
x̄ undergoes a random walk and its variance becomes un-
bounded asymptotically [2].

Several performance outputs that render the average mode
x̄ unobservable can be employed to quantify the performance
of consensus [6]. Let such a performance output be given by

y = Qx

where the positive semidefinite matrix Q = QT � 0 satisfies

Q1 = 0

(i.e., it has a zero eigenvalue associated with 1) and all
other eigenvalues of Q are positive. Then the average mode
associated with the eigenvector 1 is unobservable from y.

The control objective is to keep the performance output

z =

[
z1
u

]
=

[
Q1/2

−F

]
x

small in the presence of stochastic disturbances d. We
consider the H2 norm of the transfer function from d to
z. Thus, the objective function J is determined by

J(F ) = trace (P ) (3)

where the observability Gramian P is the solution to the
Lyapunov equation

(−F )P + P (−F ) = − (Q + FF ).

B. Convex relaxation of the cardinality function

Since the cardinality function is a nonconvex function of
its argument, we employ the weighted `1 norm proposed
in [20] as a convex relaxation

g(F ) =
∑
i, j

Wij |Fij |.

Thus, the sparsity-promoting optimal control problem for the
undirected network of single-integrators is given by

minimize
F

J(F ) + γ g(F ). (4)

We follow [20] and set the weights Wij to be inversely
proportional to the magnitude of the solution F ? of (4) at
the previous value of γ1,

Wij =
1

|F ?
ij | + ε

.

This scheme places larger weights on smaller feedback gains
and consequently, these feedback gains are more likely to
be dropped in the next round of iterations that are used to
solve the sparsity-promoting problem (4). Here, ε = 10−3 is
introduced to have well-defined weights when F ?

ij = 0.

III. SEMIDEFINITE PROGRAMMING FORMULATION

In this section, we show that the sparsity-promoting opti-
mal control problem (4) for the network of single-integrators
can be formulated as an SDP. To this end, note that both
Q and F are positive semidefinite matrices with Q1 = 0
and F1 = 0. Furthermore, for connected networks, F is a
positive definite matrix when restricted to the subspace 1⊥

(i.e., the subspace orthogonal to 1). Thus, using [10, Lemma
1], the H2 norm J in (3) can be written as

J(F ) =
1

2
trace

(
F †(Q + FF )

)
where F † denotes the Moore-Penrose pseudoinverse of F .
Using the identity FF †F = F and the identity [10, Lemma
1]

trace
(
F †Q

)
= trace

(
(F + 11T /N)−1Q

)
we obtain

J(F ) =
1

2
trace

(
(F + 11T /N)−1Q + F

)
. (5)

Proposition 1: Suppose that Q1 = 0 and Q+ 11T /N �
0. Then the optimization problem

minimize
F

1

2
trace

(
(F + 11T /N)−1Q+ F

)
subject to F 1 = 0, F + 11T /N � 0

(6)

can be formulated as an SDP

minimize
X,F

1

2
trace (X + F )

subject to
[

X Q1/2

Q1/2 F + 11T /N

]
� 0

F 1 = 0.

(7)

Proof: See Appendix A.
We now state the main result of this section.
Proposition 2: For the objective function J in (5), the

sparsity-promoting optimal control problem

minimize
F

J(F ) + γ
∑
i, j

Wij |Fij | (8)

1For γ = 0, the solution to (4) does not depend on the weighted `1 norm.



can be formulated as an SDP

minimize
X,Y, F

1

2
trace (X + F ) + γ 1TY 1

subject to
[

X Q1/2

Q1/2 F + 11T /N

]
� 0

F 1 = 0
−Y ≤ W ◦ F ≤ Y.

(9)

Proof: Transforming the weighted `1 norm in (8) to a
linear function with linear inequality constraints yields

minimize
Y, F

J(F ) + γ 1TY 1

subject to −Y ≤W ◦ F ≤ Y

where Y is a matrix with nonnegative elements, Y ≥ 0, and
◦ is the elementwise multiplication of matrices. The result
then follows from Proposition 1.

A. Solving the structured H2 problem: Polishing step

After identifying the sparsity pattern S from the solution
to (9), we next turn to the H2 problem subject to structural
constraints on the feedback matrix,

minimize
F

J(F )

subject to F 1 = 0, F + 11T /N � 0, F ∈ S.
(10)

Here, we fix the sparsity pattern F ∈ S and then solve (10)
to obtain the optimal feedback gain that belongs to S.
This polishing step can improve the performance of sparse
feedback gains resulting from the SDP (9).

Let IS be the structural identity of S with its ijth entry
defined as

[IS ]ij =

{
1, if Fij is a free variable
0, if Fij = 0 is required.

Then problem (10) can be formulated as the following SDP

minimize
X,F

1

2
trace (X + F )

subject to
[

X Q1/2

Q1/2 F + 11T /N

]
� 0

F 1 = 0
F ◦ IS = F.

IV. AN EXAMPLE

For N = 30 randomly distributed nodes in a region of
10× 10 units, let two nodes be neighbors if their Euclidean
distance is not greater than 2.5 units; see Fig. 1a. We consider
the following global and local performance errors [6]:
• The global error quantifies the deviation of each node’s

state from the average mode

(zg)i = xi − x̄, i = 1, . . . , N.

• The local error quantifies the difference between the
states of neighboring nodes

(zl)ij = xi − xj for (i, j) ∈ E

where E is the edge set with (i, j) denoting an edge
between two neighboring nodes.

Thus, the performance output is given by

z =

 zg
zl
u

 =

 (I − 11T /N)x
ETx
−Fx

 .
where E denotes the incidence matrix of the edge set E .
Each column of E is a vector of N elements representing
an edge in E ; for an edge (i, j), the corresponding column
of E has 1 and −1 at the ith and jth elements, and zero
everywhere else. With the above choice of z, the matrix Q
in (5) is determined by

Q = EET + I − 11T /N.

We solve the sparsity-promoting optimal control prob-
lem (4), followed by the polishing step described in Sec-
tion III-A, with 100 logarithmically-spaced points for γ ∈
[10−3, 1]. As shown in Fig. 2, the number of nonzero
elements of F decreases and the H2 norm J increases with
γ. For γ = 1, the identified communication graph establishes
long-range links between selected pairs of remote nodes, in
addition to the interactions between neighbors; see Fig. 1b.
Relative to the centralized gain Fc, the identified sparse gain
F uses 12.4% nonzero elements, i.e.,

card (F )/card (Fc) = 12.4%

and achieves a performance loss of only 13.1%, i.e.,

(J − Jc)/Jc = 13.1%.

Here, Fc is the solution to (9) with γ = 0 and F is the
solution to (9) with γ = 1, followed by the polishing step in
Section III-A.

V. CONCLUDING REMARKS

In this paper, we consider the design of undirected consen-
sus networks of single-integrators. We show that the sparsity-
promoting optimal control problem can be formulated as
an SDP. By solving a parameterized family of SDPs, we
obtain a tradeoff curve between the variance amplification
of the consensus network and the number of communication
links in the distributed controllers. An illustrative example
is provided to demonstrate the utility of the developed
approach.

APPENDIX

A. Proof of Proposition 1

From the LMI in (7), it follows that F̄ := F+11T /N � 0.
We next show that F̄ is positive definite, F̄ � 0. Using
the generalized Schur complement [21, Appendix A.5.5], we
have

(I − F̄ F̄ †)Q1/2 = 0 (11)

where F̄ † is the Moore-Penrose pseudoinverse of F̄ . Con-
sider the spectral decomposition Q = UΛUT where U =
[ 1√

N
1 V ] is the orthonormal matrix and Λ = diag (λ)

with λ = [ 0 λ2 · · · λN ] and λi > 0 for i = 2, . . . , N . Then
multiplying UT from the left and U from the right to (11)



(a)

(b) γ = 1

Fig. 1: (a) Local performance graph where edges connect
every pair of nodes with a distance not greater than 2.5
units. (b) Identified communication graph for γ = 1, where
the long-range communication links are highlighted in black
color.

yields
UT (I − F̄ F̄ †)UΛ1/2 = 0.

It follows that the symmetric matrix UT (I − F̄ F̄ †)U is a
diagonal matrix with its diagonal equal to 0 from the 2nd to
the N th entry,

UT (I − F̄ F̄ †)U = diag ([ a 0 · · · 0 ])

and thus,
F̄ F̄ † = I − (a/N)11T

where the scalar a is to be determined. We note that a 6= 1,
because otherwise F̄ F̄ † = I−11T /N implies that the range
space of F̄ is orthogonal to 1 (i.e., F̄1 = 0), which leads to
the contradiction

0 = F̄1 = (F + 11T /N)1 = 1.

(a) The cardinality of F

(b) The H2 norm J

(c) card (F ) vs. J

Fig. 2: The solution to (4) as a function of γ, followed by
the polishing step in Section III-A, for the network shown
in Fig. 1a.

Since I − (a/N)11T is not invertible for any a 6= 1, we
conclude that F̄ is of full rank. Therefore, F̄ � 0 and F̄ F̄ † =
I; thus, a = 0. Then the equivalence between (6) and (7) can
be established by noting that[

X Q1/2

Q1/2 F̄

]
� 0 ⇐⇒ X � Q1/2F̄−1Q1/2

whenever F̄ � 0. To minimize the objective function J in (5)
for F̄ � 0, we simply take X = Q1/2F̄−1Q1/2, which yields
the objective function in (7).
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