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On the Dual Decomposition of Linear Quadratic
Optimal Control Problems for Vehicular Formations

Makan Fardad, Fu Lin, and Mihailo R. Jovanovié¢

Abstract— We use the dual decomposition method along with
the dual subgradient algorithm to decouple the linear quadratic
optimal control problem for a system of single-integrator
vehicles. This produces the optimal control law in a localized
manner, in the sense that vehicles can iteratively compute their
primal and dual variables by only communicating with their
immediate neighbors. In particular, we demonstrate that each
vehicle only needs to receive the primal variable of the vehicle
ahead and the dual variable of the vehicle behind. We then
assume a structured feedback gain relationship between the
state and actuation signals, and reformulate the optimization
problem to find the optimal feedback gains. We develop an
algorithm whereby vehicles can compute structured feedback
gains in a localized manner. Convergence properties of the latter
algorithm are improved by employing a relaxed version of the
augmented Lagrangian method, and numerical examples are
provided to demonstrate the utility of our results.

Index Terms— Distributed optimization, dual decomposition,
subgradient algorithm, localized cooperative control, multi-
vehicle systems.

I. INTRODUCTION

It is well-known that the feedback gain obtained from
solving an LQR problem for a system with banded state-
space matrices is, in general, a full matrix. This means
that even if the subsystems interact locally, the optimal
controller will need global information in order to produce
the feedback signal. This is an undesirable scenario for
large networks of dynamical systems, owing to its excessive
communication requirements. A preferred alternative
is to have control signals computed using only local
communication among neighboring subsystems. A strong
motivation for use of such inherently local controllers comes
from [1], where it was demonstrated that the dependence of
a controller on information coming from other parts of the
system decays exponentially as one moves away from that
controller.

Over the years a body of literature has been developed
that addresses the problem of distributed control of
interconnected systems [1]-[13]. The present work is
motivated by [14], [15]. In [14] an iterative algorithm is
proposed by which distributed controllers determine the
optimal localized feedback gains using gradient methods.
In [15] the dual decomposition method is used to decouple
and analyze large-scale optimal control problems. Other
related works that employ dual decomposition techniques
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for distributed control are [16], [17].

In this paper we consider the linear quadratic control
of a single-integrator system of vehicles. Via a change of
variables we convert this problem to the so-called separable
form, in which independent optimization problems are
coupled only through their constraint equations. Using
Lagrange multipliers, the problem fully decouples into
individual optimization subproblems for each of the
vehicles. Primal and dual variables are then updated locally
and iteratively at every vehicle through a dual subgradient
algorithm. This procedure is localized in the sense that at
every iteration vehicles need to pass their primal and dual
variables only to their immediate neighbors in order to
compute their actuation signals. Furthermore, we employ the
dual subgradient algorithm to compute localized structured
feedback gains for the system of vehicles.

The rest of the paper is organized as follows. In Section II
we formulate the control problem over a finite time horizon
for a system of single-integrator vehicles. In Section III
we introduce a change of variables which transforms the
problem to separable form. In Section IV we apply the
dual decomposition method and show that the solution of
the optimal control problem (i.e., the profiles of the state
and actuation signals over the entire time horizon) can be
determined in a localized fashion. In Section V we assume
a structured feedback gain relationship between state and
actuation signals, and reformulate the optimization problem
to find the optimal feedback gains. We show that the nec-
essary conditions for optimality of this nonconvex problem
come in the form of fifth-order polynomial equations (in the
unknown feedback gains) whose solutions identify all the
extremum points of the Lagrangian. In Section VI we use a
relaxed version of the augmented Lagrangian method to con-
vexify the structured feedback gain design problem, and in
Section VII we provide numerical examples to demonstrate
the utility of our results.

II. PROBLEM FORMULATION

We consider the discrete-time optimal control problem for
a first-order model of a system of N vehicles,

K
minimize % 234+ (ro—x1 )2+ -+ (rny—2N_1)?
k=0 K1
+ %Zu%—l—u%—&-—&-u?\,
k=0
subject to  x,(k+1) = ax, (k) + un(k),
n=1,...,N,
k=0,... K—1.

3

(LQR)
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This is an LQR problem with A = al, B= R =1, and

1-1 1 2 -1
1-1 -1 1 -1 21

Q~ 1-1 -1 1 |~ -1 2-1

1 11 1 1

Since @ is not a diagonal matrix, it can be shown that
the solution of the algebraic Riccati equation (and thus
the optimal feedback gain) will be a full matrix. Such a
solution requires communication between all vehicles. In
what follows, we will reformulate the problem with the aim
of finding an algorithm through which the control signal
can be obtained in a ‘localized’ fashion.

We next demonstrate a method based on dual decomposi-
tion in which only neighboring vehicles need to communicate
to each other in order to iteratively reach the optimal control
signal. We observe that every vehicle transmits its primal
variables to the vehicle immediately behind, and transmits
its dual variable to the vehicle immediately ahead. In this
method, once the iterations are complete, each vehicle will
have computed its entire optimal actuation profile from k£ = 0
tok=K—-1

III. REFORMULATION IN SEPARABLE FORM

There are multiple ways of reformulating problem (LQR)
so that it can be decoupled using dual methods. One way of
achieving this is to obtain an unconstrained version of (LQR)
by eliminating the state-trajectory variables using the state
equation constraints. The resulting unconstrained problem
can then be split into subproblems by introducing auxiliary
variables and applying the standard dual decomposition
technique [18]. The minimization of the Lagrangian for
each subproblem in this approach, however, requires the
inversion of a matrix whose size depends on the length of
the time-horizon [16].

To elaborate, (LQR) can be rewritten as

minimize X{ X, + U{'Uy
N
+ (X =Xn) (X —Xn1) + UTU,
subjectto X, =GU, + Fz,(0), n=1,...,N,
where
X, = [2n(1) - 20 (K], Up = [un(0) - un(K—1)],

and the K x K system-matrix G is Toeplitz lower triangular
with 1 on its main diagonal and @’ on its jth lower subdiag-
onal, and the K x 1 input-matrix F' has its jth element equal
to a’. Substituting the equations for X,, into the objective
function and rearranging terms gives

minimize Jy (Vi) + Jo(Vo, Vi) + -+ + IN(Viv, Viv—1)

where V,, is a vector composed of U,, and z,,(0), and J,, is
an appropriately defined quadratic form. Decoupling at the
level of the objective function can be achieved by rewriting

the problem as
Ji(Vi) + Ja(Va, Wa) + -+ + IN(V, Wn)
s WN =VN_1.

minimize

subject to Wo = V7,

Reference [18] describes how the dual decomposition
algorithm can now be applied to this problem. In particular,
the problem of Lagrangian minimization decouples into the
minimization of smaller subproblems corresponding to each
of the vehicles [18].

We note that in this formulation .J,, is a quadratic function
and hence the resulting Lagrangian is also quadratic. This
means that minimizing each of the resulting subproblems
amounts to solving a linear equation whose size grows
with K. We next formulate (LQR) differently, such that
Lagrangian minimizations can be obtained without the need
for solving linear systems of equations. Furthermore, it
turns out that this new formulation is more appropriate for
the design of structured feedback gains in Section V.

We now present a different reformulation of (LQR).
Reference [19, Sec. 14.4] describes the class of ‘separable
problems’ that are amenable to the application of dual
methods. These are problems of the form

minimize Y ¢ _ J,(Z,)

subject to - Y1, H,(Z,) =0.
where Z = [Z] --- ZI" is the vector of optimization
variables.

To put problem (LQR) in separable form, we perform the
following change of variables

¢1(k) = (El(k),

UV (k) == zp(k) —xp_1(k), n=2,...,N.
The optimal control problem now becomes
K—1
minimize 22 P+ uf) A+ (E +u)
[1/)2( )+ Ui (K]
subject to (k—|—1) = a1(k) + ui(k),
Un(k+1) = a%( ) + un (k) — un—1(k),
n= 2 N,
k= ,K-1.
(H2)

To simplify further, for the nth vehicle we define the vector
of unknowns Z,, as the vector that contains both the entire
state trajectory ¥,, and the entire control profile U,

}v v, = : :
U (K) un (K —1)
The optimization problem can be written as

minimize 1 tr(Z¥Z) + -+ L (25 Zw)

H2’
subjectto C1Z1+---+CnZn+c¢c=0 (H2)
where

AT 0 0 0 0
0 I 0 0 0 0

Cl - ’ ) CN*] = ) CN - )
0 0 AT 0 0
0 0 0 I A T
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a0 1 40 (0)
av) —a 1 0

c=— . , A= , \1'2 = .
a\II[J)V —a 1 0

Since the optimization problem (H2’) has a quadratic objec-
tive and a linear constraint, it is convex. More importantly,
problem (H2’) is now in separable form. We exploit this
special structure with the use of dual methods in the next
section.

IV. DUAL DECOMPOSITION AND OPTIMAL CONTROL
We form the Lagrangian
L= %tr(ZlTZl) +- %tr(ZJTVZN)
+ tr(AT[C1Zy + -+ CNZn + C]).

The KKT conditions for optimality are'

oL =0 = Z, = -CTA, n=1,...,N, (KKTI)
0Z,
oL
ﬁ:O = C1Z1+---4+CnZn+c =0. (KKT2)

Remark 1: In what follows, we will not attempt to solve
directly the system of equations above. The reason is that
the solver would have to have access to the states of all
vehicles. To see this, note that from substituting (KKT1)
into (KKT2) we obtain A = (C1CT + --- + CnyCL) e
and thus Z,, = —CL(C1C +-- -+ CnCE)~c. Therefore,
for systems with a large number of vehicles (i) the solver
would have to invert a large matrix, the inverse of which
is a full matrix; and (ii) the solver would have to have
access to the original states of all vehicles in order to form
the vector c. Therefore Z,, can only be computed in a
centralized manner, which is an undesired scenario. [

Instead of directly solving the KKT conditions, we use the
following iterative dual decomposition algorithm [17], [20]
to solve the above necessary conditions for optimality.

Dual subgradient algorithm.
repeat

1. For given A, minimize Lagrangian in Z,, to obtain
Zp = —-CIA,n=1,....N.
2. Update dual variables AT = A +s(C1 2y + -+ +
CnZn + c) for given step size s.
until stopping criterion ||C1Z1 +---+CnZn +c¢|| < ¢
is satisfied.

We now demonstrate that the above dual decomposition
algorithm works in a localized fashion, which makes it
desirable from a distributed control point of view. Let us
partition A as

Aq
Ao

A

ISince the problem is convex, the KKT conditions are both necessary
and sufficient for optimality.

Then, in Step 1 of the algorithm we compute for n =
ooy N,

—_

vl . | —ATA,
|:Un:|_Z”__0nA_|:An_An+1:|) (Zn)

with Ay41 = 0. It is clear that every vehicle can carry out
Step 1 of the algorithm locally, by communicating its dual
variable with its immediate neighbor; vehicle 1 only needs
to know A, vehicle 2 only needs to know Ags, and so on.
Furthermore, Step 2 of the algorithm gives

AIL A1 A\Ifl — U1 — a\:[/?

A; Ao AUy — Uy + Uy — a\IJ(Q)
=0 | TS .

Aﬁ AN AUy —Un +Upng —a\I!(J)V

(A)
This demonstrates that every vehicle can also carry out Step
2 of the algorithm locally; vehicle 2 only needs to know
U1, vehicle 3 only needs to know Us, and so on.

We observe that the dual subgradient algorithm facilitates
local computation of the control signal at the expense of
carrying out the computation iteratively. It is important to
note that the solution thus obtained is in fact the global
minimizer of the original optimal control problem.

The weakness of this method is that, once the iterations are
complete, each vehicle will have computed its entire actua-
tion profile and state trajectory from k = 0 to k = K —1. The
advantage is that each vehicle computes its actuation profile
by communicating only with its immediate neighbors. This
potentially makes the proposed method suitable for MPC
implementation, where the time horizon K can be taken to be
relatively small (to minimize memory requirements at every
vehicle), and the optimization procedure is repeated every K
time steps.

V. COMPUTATION OF OPTIMAL STRUCTURED
FEEDBACK GAINS

In the previous section, we introduced a local algorithm
in which each vehicle computed its optimal actuation profile
and state trajectory. In what follows, however, we take
a different approach by considering an a priori specified
control structure that relates the state and actuation. This
transforms the optimal control problem to a search for the
optimal values of a set of structured control gains, rather
than the search for the optimal values of actuation profiles.

We now revisit problem (LQR) of Section II, but with the
additional requirement that for every time instant k£ we have

ui(k) = fiwi(k),

un(k) = fo(@n(k) — 2n-1(k)),
where f1, ..., fn are constant scalars. In other words, for all
vehicles behind the lead vehicle, the control action of vehicle
n is proportional to its distance from vehicle n — 1. Our
objective is to find the optimal values of f,, n=1,...,N.
We substitute this choice of wu, into (LQR), and apply the
change of variables

1/}1(]45) = Il(k)7
n (k) == zp(k) — xpn_1(k),

n=2--- N,

n=2...,N.
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The optimal control problem now becomes

K—1
minimize 1Y (fZ+1)¢? +- + (fE+1)0%
T %( ) R ()]
subject 0 1 (+1) = (a-+ 1)y (),
( 1) = (a+fn)wn( ) fn—lwn—l(k)v
n=2,...,N,
k=0, . K—1.

(SH2)
Using the vector representation ¥,,, the optimization problem
can be written as

minimize 1 tr(U7 Q1) + 1(fZ+1)v3(0) +
+ 5 tr(PRQNYN) + 5 (fF+1)93(0)
subject to D1V +di 4+ -+ DYy +dy =0
(SH2")
where
fi+1
Qn(f’ﬂ): . bl TL—]., 7N7
fi+1
1
0 A—fiS
10 fs
S = l(fl) ’ ’
0
1 0 0
0 0
0 0
Dna(fna) = : » Dn(fn) = )
A—fnaS 0
fnaS A—fnS
(a+f1)09
— 10}
dl(fl) - - ) )
0
0
0 0
0 0
dn-1(fna) = — : , dv(fN) = — :
(a"'_fN—l)\IJ(I)\Ll 0
— NP (a+fn) TR

Forming the Lagrangian
1
(W7 Q1) + §(f12+1)1/)%(0) +

ltr(\p QNTN) + %(fJQ\H'lW?V(O)

2
+ tr(AT[D1\IJ1 +di+--+DnyUy + dN])a

1
L=<t
21‘

the necessary conditions for optimality take the following
form

oL
Ofn
1S, + W32 fn

—tr([Ay — Apia]T[ST, + WO]) = 0,

n=1,...,N,
(NEC1)

OL

_ _ -1 pT _
soo =0 = W= -Qi'DIA n=1...N.
(NEC2)
oL
87/\:0:>D1\I/1+d1+~-~+DN\I/N+dN:0,

(NEC3)

with Ay =0 in (NEC1).
Motivated by the development in the previous section, we
propose the following algorithm.

Dual subgradient algorithm for structured problem.
repeat

1. For given A, minimize Lagrangian in f, and ¥,
by simultaneously solving (NEC1) and (NEC2).
2. Update dual variables AT = A + s (D19 +dy +
-+ + DUy 4 dy) for given step size s.

until stopping criterion ||[D1¥; +dy 4+ -+ Dy¥py +
dn|| < e is satisfied.

It is easy to show that every vehicle can carry out the
steps of this algorithm locally. To carry out Step 1, we have
to simultaneously solve equations (NEC1) and (NEC2). By
substituting the latter into the former, we obtain

0 = VO + 1AM Pl ©
2
T T T
_2tr([A An+1} SS SA An)w
IS8T M~ At P 2 — 18T (A~ At P L
n = Aendll R 7y S RN
+tr([Ay — A ]TSATA,,) leﬂ tr([Ap —Apa]T0Y)

forn=1,...,N, with Ay, = 0. If we multiply through
by (f2+1)2, we arrive at fifth-order polynomial equations
(in the unknown f,’s) whose solutions identify all the
extremum points of L. In the case of multiple solutions, we
choose the value of f;, that minimizes the Lagrangian. It is
noteworthy that the order of these equations is independent
of the number of vehicles.

Remark 2: Vehicle n chooses f, so as to minimize

Ln= %tr(\IfZQn\Im + %<f3+1)w3(0)
+ tr(AT[Dn U, + dy)),

where L,, is the part of the Lagrangian that corresponds to
the nth vehicle, and L = L + - - -+ L. Note that vehicle n
can choose its feedback gain f,, independently of the other
vehicles. In particular, given A, if the fifth-order equation at
vehicle n has multiple solutions then f,, is chosen so as to
minimize L,,. [

Once each f,, is found then @, and D, are known
and thus ¥, is obtained from (NEC2). Furthermore, from
(NEC2) it follows that forn =1,..., N,

U, = -Q,'DIA
= —Q (AT= fuST) Ay — Q7 ST Angr, (W)
with Ax1 = 0, and thus ¥,, can be obtained locally. Finally,
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Step 2 of the algorithm gives

AT Ay
AT As
AL AN

(A= f18)¥1 —(a+ f1) 0]
N (A—f28)Ua+ f1S¥1 —(a+ f2) ¥+ fr U7
S .

(A—fNS)U N+ fane1 SUN—1 — (a+ fn)OX + Frva Ty

It is important to note here that the above update expression
shows not only that the dual variables can be updated locally,
but also that each vehicle can independently determine
whether it has reached convergence; each vehicle can decide
to terminate its iterations if its respective term inside the last
vector of the equation above is small enough.

VI. RELAXATION OF STRUCTURED PROBLEM

Problem (SH2) is a nonconvex optimization problem with
possibly many local minima, which manifests itself in equa-
tions (5) possibly having multiple solutions for f;,,. This may
prevent convergence of the dual subgradient algorithm of the
previous section. The augmented Lagrangian method [19],
[21] provides a way of locally convexifying an optimiza-
tion problem around its constraint set. This is achieved by
adding a quadratic form of the constraints to the Lagrangian.
For example, the (standard) augmented Lagrangian for the
problem

minimize

J(Z)
subject to H(Z) =0
is given by
Lo=J + te(ATH) + gtr(HTH),
where A is the dual variable and o is a positive scalar. We
will refer to § tr(HT H) as the penalty term.

The augmented Lagrangian method is most effective
when H is a convex function of the optimization variable
Z. However, this is not the case in problem (SH2), since
¥, and f,, are both optimization variables and each D,
is a function of f,. Moreover, it can be shown that the
addition of tr(HT H) to the Lagrangian of problem (SH2)
will destroy the possibility of localized computations. We
therefore propose a relaxed augmented Lagrangian for
problem (SH2).

Let

Hi(f1) == Di(f1)U1 +di(f1) + Da(fo) T2 + da(f)
++ Dn(fn) Uy +dn(fn),

Hy(fn) = Di(f)¥1+ di(f1) + Da(f2) V2 + da(f2)
+ -+ DN(fN)¥N +dNn(fN),
where tilded parameters are assumed known and are not
optimization variables. We later choose the value of the

tilded parameters to be equal to the value of their untilded
counterparts from the previous iteration; we will justify

the rationale for such a choice after we present the main
algorithm. We also emphasize that each H,, is affine in the
variable f,.

The relaxed augmented Lagrangian is now defined as
1 1
Lo = Str(UT Q%) + S (fE+1)02(0) + -+

1 1
+ 5 tr(PRQNIN) + 5 (FR+1)YR (0)
+ tl"(AT[Dl\Ifl + d1 + -+ DN\I/N + dN])

o
+ 3 [tr(H{ Hy) + - +tr(HyHy)].  (AL)
Setting oL oL
o0, =0 and ah 0

leads to the same equations as in (NEC2)-(NEC3). Setting

dL,

=0 CVX
a7, ( )

again leads to fifth-order equations as in (5). However, this
time the coefficients are functions of o. Furthermore, it is
observed that if f,, and ¥, are chosen appropriately then
for large enough values of o these polynomial equations
always have a unique solution for f,,. For brevity, we omit
the exact expressions for these coefficients; they will be
reported elsewhere.

We thus propose the following algorithm, which also
describes the procedure for choosing the tilded parameters.
Dual subgradient algorithm for relaxed problem.
given ¥,, =0, f, =0, and 0 > 0.
repeat
1. For given A, U,,, f,, and o, solve the polynomial
equations in f,, resulting from (CVX).
2. Compute ¥,, from (NEC2).
3. Update dual variables AT = A + s (D1 + dy +
<+ DnUy +£iN) for given step size s.
4. Set W, = VU, f, = fn, and ot = 70 for some
T>1.
until stopping criterion ||D;Wy +dy +---+ Dy +
dn|| < e is satisfied.

Again, all steps of this algorithm can be carried out
locally. This is particularly true for the polynomial
equations that follow from (CVX); it can be shown
that the coefficients of the fifth-order polynomial in f,
depend only on A, Apy1, Vo1, Wy, Wpyg, fro1, and
fn+1- When convergence is achieved, the values of W,
and f,, stay constant over different iterations. Thus we
have HI'Hy = --- = H5Hy = HTH, and the relaxed
augmented Lagrangian (AL) converges to the standard
augmented Lagrangian (modulo a rescaling of the penalty
coefficient o).

Finally, we note that when the algorithm in Section V con-
verges, its solution agrees with the solution of the convexfied
problem in this section. However, the algorithm in Section V
does not always converge whereas the algorithm in this
section always does. These observations are expected, as the
augmented Lagrangian method does not alter the solution of
problems whose Lagrangian already has a unique minimum.
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VII. NUMERICAL EXAMPLES

We consider an optimal control problem over a time
horizon of K = 10 for a system with N = 4 vehicles.
A step size of s = 0.001 is used throughout. The first set of
plots shown in Fig. 1 correspond to a system with a = —0.8,
and the second set of plots shown in Fig.2 correspond to a
system with a = 1.

50 - 100
— ¢ ®
9,‘ 0 $®@@m$am 9:\‘ 0 p®e o080
Y — -100
0 5 10 0 5 10
k k
50s 200
E‘m 0 ®Ceveveones Bfr 0@®$$ma:e®&
8
S50 ——————— -200
0 5 10 0 5 10
k k
Fig. 1. The trajectory of every vehicle in a system with 4 vehicles and
a = —0.8. Blue circles correspond to (H2) and red stars correspond to

(SH2). The difference between the performance of the (H2) and (SH2)
problems is 0.17%.

PR ]

—
=

5 10

k k

0 TR
< -20 °
=
-40

0 5 10 0 5 10

k k

Fig. 2. The trajectory of every vehicle in a system with 4 vehicles and
a = +1.0. Blue circles correspond to (H2) and red stars correspond to
(SH2). The difference between the performance of the (H2) and (SH2)
problems is 0.76%.

VIII. CONCLUSIONS

We use the dual decomposition method to decouple the
optimal control problem for vehicular formations. This
produces optimal control laws in a localized manner, in
the sense that vehicles iteratively compute their primal
and dual variables by only communicating with their
immediate neighbors. We then develop an algorithm by
which vehicles can compute structured feedback gains in a
localized manner. This is in the same spirit as [22] where,
for the LQR problem, feedback gains are sought with an a
priori specified localized structure. To improve numerical
properties of the dual subgradient method we use a relaxed
version of the augmented Lagrangian method, which renders

a locally convex problem and behaves like the standard
augmented Lagrangian when convergence is achieved.

Future work in this direction would include reformulating
the structured control problem in a stochastic programming
[18] setting, so as to obtain feedback gains that do not depend
on the initial conditions of the vehicles.
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