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Abstract— We consider the design of localized feedback
gains using relative information exchange between vehicles.
The optimal controller is obtained by minimizing the global
performance measure that quantifies the coherence of the
large-scale network. For undirected connected graphs we show
convexity of this optimal control problem, implying that its
global solution can be computed efficiently. Moreover, we
determine analytically the optimal localized gains for several
graphs. This allows us to quantify scaling of the performance
measure with the network size and to identify graphs that are
favorable for maintaining coherence of the network. Another
contribution of the paper lies in the characterization of all
stabilizing localized feedback gains. This characterization can
be utilized to examine the interplay between the underlying
communication topology and the dynamics of the closed-loop
system.

Index Terms— Convex optimization, large-scale networks,
local feedback design, multi-vehicle systems, undirected graphs.

I. INTRODUCTION

There is a broad interest in coordination of multi-vehicle
systems. Applications of such systems include formations of
unmanned aerial vehicles, automated highway systems, and
deployment of mobile robotic agents. Although each of these
problems has its own specific challenges, several common
features can be observed. In most cases, dynamically de-
coupled vehicles become coupled through the joint objective
they are trying to achieve. The control decision for each
vehicle must be made using only limited information from a
subset of vehicles. This constraint on flow of information im-
poses fundamental limitations in the control of these systems.
Recent research effort has focused on understanding the
interplay between the underlying network topology and key
system-theoretic properties that these networks exhibit [1]–
[4].

In many applications, it is desired to have control strategies
that rely only on local information exchange. For example,
in automated highways, all vehicles can be equipped with
ranging devices, allowing them to measure relative distances
with respect to their immediate neighbors. It is this type of
information exchange that we consider in this paper. The
notion of coherence of large-scale networks with relative
information exchange was introduced in [3]. For vehicular
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formations, this notion quantifies closeness of formation to a
rigid frame by examining how deviation from average scales
with the number of vehicles. It was shown in [3] that local
feedback cannot maintain large-scale coherent formations in
one and two spatial dimensions.

While the authors of [3] focused on regular lattices and
tori, by making use of graph-theoretic tools [4], [5], we study
coherence for undirected connected graphs. In particular, we
formulate the problem of designing localized feedback gains
as an optimal control problem with both microscopic and
macroscopic performance measures as the objective func-
tion [3]. We demonstrate convexity of this problem, implying
that the global optimizer can be computed efficiently [6].
Moreover, for path, star, circle, and complete graphs, we
determine analytically the optimal feedback gains. These are
used to obtain the asymptotic scaling of the performance
measures with the network size and to identify graphs that are
favorable for maintaining coherent networks. Furthermore,
we characterize all stabilizing feedback gains for undirected
graphs with relative information exchange. This characteriza-
tion can enhance the understanding of the interplay between
the underlying communication topology and the dynamics of
the closed-loop system.

Our presentation is organized as follows. We borrow tools
from graph theory and formulate the optimal control problem
in Section II. The main results on the stability of the closed-
loop system and the convexity of the design problem are
derived in Section III. We then determine optimal feedback
gains analytically for several aforementioned graphs in Sec-
tion IV. Finally, we summarize our results and offer outlook
for future research directions in Section V.

II. PROBLEM FORMULATION

Let G be an undirected connected graph with the vertex
set V = {1, . . . , N} and the edge set E , where each edge
(i, j) ∈ E is an unordered pair of distinct vertices. Each node
is modeled by the single-integrator dynamics

ẋi = di + ui, i ∈ V

where di is a zero-mean, unit-variance white stochastic
disturbance and ui is the control input. Each node has access
to the relative information between itself and its neighbors

yij = xi − xj , j ∈ Ni

with Ni := {j|(i, j) ∈ E}. The control input at the ith node
is then given by

ui = −
∑

j ∈Ni

kij(xi − xj),
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where the local feedback gains {kij} are the design param-
eters. For undirected graphs, we have

kij = kji, for all i ∈ V, j ∈ Ni.

The control input in vector form is u = −Lx, where the
weighted graph Laplacian L is a symmetric matrix of a
particular structure determined by the graph.

The weighted Laplacian can be represented using the
incidence matrix of the graph [7], [8]. We associate with
edge (i, j) a vector eij ∈ RN that has 1 and −1 as the ith
and jth entries, respectively, and 0 otherwise. Enumerating
the edges (i, j) ∈ E by n ∈ {1, . . . , |E|}, where |E| is the
number of edges, we have [7], [8]

L =

|E|∑
n=1

knene
T
n = EKET

where

E =
[
e1 e2 · · · e|E|

]
∈ RN×|E|

is the incidence matrix of the graph, and K ∈ R|E|×|E|
is a diagonal matrix with its main diagonal determined by
{kn}|E|n=1. The closed-loop system is thus given by

ẋ = −EKETx + d
z = Hs x,

(1)

where z is the performance output penalizing the microscopic
(local) and macroscopic (global) errors [3].

• Local error: zij = xi − xj for all i ∈ V and j ∈ Ni.
This is a measure of the difference between neighboring
nodes, with z in (1) given by

z = Hl x = ETx.

• Global error (deviation from average): zi = xi − x̄,
where

x̄ :=
1

N

N∑
i=1

xi

is the average-mode [3]. In matrix form,

z = Hg x =
(
I − (1/N)11T

)
x,

where 1 is the vector with all entries 1.

It is well-known [3], [4], [7] that the average-mode x̄ of
the closed-loop system (1) is not asymptotically stable. In
particular, since ET1 = 0, the weighted Laplacian L has a
zero eigenvalue associated with the eigenvector 1. However,
1 is also in the null-space of the performance output matrix
Hs (with s = l or s = g), implying that the average-mode is
unobservable from z. We consider the design of the diagonal
feedback gain K that minimizes the H2 norm of the transfer
function from disturbance d to

η =
[
q1/2 zT r1/2 uT

]T
.

This generalized performance output introduces penalty on
both states and control as is commonly done in quadratic
optimal control problems, where q and r are positive scalars.

 1 0 −1
−1 1 0

0 −1 1

  1 0
−1 1

0 −1

  −1
0
1


Fig. 1: Decomposition into the tree subgraph and remaining
edge, with the corresponding partition of the incidence
matrix.

A. Similarity transformation

Following [4], we next introduce a similarity transforma-
tion to separate the unobservable average-mode. We note that
the incidence matrix E can be represented as

E =
[
Et Ec

]
,

where Et and Ec are the incidence matrices of a tree
subgraph T and the remaining edges C (if any); see Fig. 1
for an illustration. Adding any edge in C to T forms a cycle.
As a result, each column of Ec is a linear combination of
the columns of Et [4]. Therefore, Ec is in the range of the
projection matrix

Π = Et(E
T
t Et)

−1ET
t ,

that is, Ec = ΠEc. Furthermore, we can write Ec = EtΓ
where

Γ = (ET
t Et)

−1ET
t Ec.

Thus, E = EtR with R :=
[
I Γ

]
.

Following [4], we consider the similarity transformation
x = S φ, with S =

[
Et (ET

t Et)
−1 1

]
and

S−1 =

[
ET

t

(1/N)1T

]
, φ =

[
ψ
x̄

]
.

This coordinate transformation yields

φ̇ = S−1(−EKET )Sφ + S−1d

or, equivalently,[
ψ̇
˙̄x

]
=

[
−ET

t EtRKR
T 0

0 0

] [
ψ
x̄

]
+

[
ET

t

(1/N)1T

]
d.

The generalized performance output in new coordinates is
given by

η=

[
q1/2Hs

−r1/2L

]
Sφ=

[
q1/2HsEt(E

T
t Et)

−1 0
−r1/2EtRKR

T 0

] [
ψ
x̄

]
.

By removing the average-mode x̄, we obtain a minimal
realization of the closed-loop system containing only the
state ψ,

ψ̇ = −ET
t EtPKψ + ET

t d

η =

[
q1/2HsΣ
−r1/2EtPK

]
ψ,

(2)
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where

PK := RK RT , Σ := Et

(
ET

t Et

)−1
.

The H2 norm of system (2) from d to η is determined by

J(K) = trace
(
(qΣTHT

s HsΣ + rPKE
T
t EtPK)Ψ

)
where Ψ is the solution of the Lyapunov equation

−ET
t EtPKΨ − ΨPKE

T
t Et + ET

t Et = 0.

As shown in Proposition 1, −ET
t EtPK is a Hurwitz matrix

if and only if PK > 0. In this case, the unique solution of
the Lyapunov equation is given by Ψ = 0.5P−1K , thereby
simplifying the expression for the H2 norm

J(K) = 0.5 trace
(
qΣTHT

s HsΣP
−1
K + r PKE

T
t Et

)
.

Therefore, the design of the optimal diagonal feedback gain
K amounts to solving the following optimization problem

minimize 0.5 trace
(
qΣTHT

s HsΣP
−1
K + r PKE

T
t Et

)
subject to K is a diagonal matrix.

(P)

III. MAIN RESULTS: STABILITY AND CONVEXITY

This section contains the main results of the paper, given
by Propositions 1 and 4. We show that (P) is a convex
problem on the set of stabilizing feedback gains. Therefore,
any minimizer of (P) is a global minimizer [6], and it is also
guaranteed to achieve closed-loop stability.

Proposition 1: The closed-loop system (2) is stable if and
only if PK = RKRT is a positive definite matrix. In this
case, the eigenvalues of −ET

t EtPK are all negative real
numbers.

Proof: Since ET
t Et is positive definite and PK is Her-

mitian, the result follows immediately from Proposition 2.

Proposition 2: [9, Theorem 7.6.3] The product W1W2, of
a positive definite matrix W1 and a Hermitian matrix W2, has
the same number of positive, negative, and zero eigenvalues
as W2.

A sufficient condition for closed-loop stability is K > 0.
This condition is also necessary for tree graphs since in that
case R = I and PK = K. Noting that K is a diagonal
matrix, we have the following result.

Proposition 3: For tree graphs, the closed-loop system (2)
is stable if and only if K > 0, i.e., {kn}|E|n=1 > 0.

We next establish the convexity of the optimization prob-
lem (P).

Proposition 4: J(K) in (P) is a convex function of the
stabilizing feedback gain K.

Proof: We first observe that the stabilizing feedback
gains form a convex set. For two arbitrary stabilizing gains
K1 and K2, we have

R(θK1 + (1− θ)K2)RT > 0, θ ∈ (0, 1),

that is, the convex combination θK1 + (1 − θ)K2 is also
stabilizing. Since trace (PKE

T
t Et) is linear (and thus con-

vex) in K, it suffices to show convexity of the function

trace (QP−1K ), where we denote

Q = qΣTHT
s HsΣ.

To this end, we use the fact [6, Problem 3.18(a)] that
trace (W−1) is a convex function of the positive definite
matrix W . Thus, trace (P−1K ) is convex for PK > 0. Since
Q > 0 and the positive weighted sum preserves convexity [6,
Section 3.2.1], it follows that trace (QP−1K ) is a convex
function of the stabilizing feedback gain K.

Since we are minimizing a convex objective function on
a convex set, (P) is a convex optimization problem [6].

It is also instructive to show the positive semi-definiteness
of the Hessian matrix to conclude the convexity of J(K) [6].
Here, we give the formulas for gradient and Hessian of
J(K), with detailed derivations provided in Appendix A

∇J(K) = 0.5 diag(RT (r ET
t Et − P−1K QP−1K )R),

∇2J(K) = 0.5 (RTP−1K QP−1K R) ◦ (RTP−1K R),

where diag(W ) is the main diagonal of the matrix W ,
and ◦ is the entry-wise multiplication of two matrices. We
can utilize descent methods [6], e.g., Newton’s method, to
compute the global solution of (P).

IV. ANALYTICAL SOLUTIONS

In this section, by exploiting structure of path, star, cir-
cle, and complete graph we provide analytical solutions to
problem (P). The local and global performance measures are
determined by Js(K) with respect to Hs for s = l or s = g.
Recall that Hl = ET and consequently

Ql = qΣTEET Σ = q RRT ,

implying that the local performance measure is given by

Jl(K) = 0.5 trace
(
q RRTP−1K + r PKE

T
t Et

)
. (LP)

On the other hand, Hg = I−(1/N)11T in combination with
ET

t 1 = 0 yields

Qg = qΣT (I − (1/N)11T )2Σ = q (ET
t Et)

−1,

implying that the global performance measure is given by

Jg(K) = 0.5 trace
(
q (PKE

T
t Et)

−1 + r PKE
T
t Et

)
.

(GP)

A. Tree

A tree is a connected graph with no cycles. In this case,
R = I and (LP) simplifies to

Jl(K) = 0.5 trace (q K−1 + rKET
t Et).

By the definition of the incidence matrix, the diagonal entries
of ET

t Et are all equal to 2 yielding

Jl(K) = 0.5

N−1∑
i=1

(qk−1i + 2rki).

The unique optimal feedback gain is thus obtained when

qk−1i = 2rki, i ∈ {1, . . . , N − 1},
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which yields a constant gain for all the N − 1 edges

(k∗l )i =
√
q/(2r) =: Ck.

The optimal local performance measure is given by

J∗l =
∑N−1

i=1 2r(k∗l )i = Cp(N − 1),

where Cp := 2rCk =
√

2qr.
For (GP), we have

Jg(K) = 0.5 trace (q(KET
t Et)

−1 + rKET
t Et)

= 0.5
∑N−1

i=1 (qk−1i

(
(ET

t Et)
−1)

ii
+ 2rki).

The optimal feedback gain is thus obtained when

qk−1i ((EtE
T
t )−1)ii = 2rki

which yields

(k∗g)i = Ck

√(
(ET

t Et)−1
)
ii
, i ∈ {1, . . . , N − 1}.

The optimal global performance is

J∗g = Cp

∑N−1
i=1

√(
(ET

t Et)−1
)
ii
.

Thus, in contrast to (LP), the optimal feedback gain and the
optimal global performance measure depend on the structure
of the tree. We next consider two special cases where we can
determine (ET

t Et)
−1 explicitly.

Path: In this case, the nth column of Et has 1 and −1
as the nth and (n+ 1)th entries, respectively. For example,
N = 4

Et =
[
e1 e2 e3

]
=


1 0 0
−1 1 0

0 −1 1
0 0 −1

 .
Therefore

ET
t Et = T

where T is a symmetric Toeplitz matrix with the first row
given by [ 2 − 1 0 · · · 0 ] ∈ RN−1. It can be shown [10]
that the ijth entry of the symmetric matrix T−1 is given by

(T−1)ij = i(N − j)/N for j ≥ i. (3)

It follows that

(k∗g)i = Ck

√
i(N − i)/N,

J∗g = Cp

∑N−1
i=1

√
i(N − i)/N.

For large N ,
J∗g ≈ (πCp/8)N

√
N,

which follows from the calculation

lim
N→∞

J∗g /(N
√
N) = Cp lim

N→∞

N−1∑
i=1

√
i

N
− i2

N2

1

N

= Cp

∫ 1

0

√
θ − θ2 dθ = πCp/8.

Star: In this case,

ET
t =

[
1 −I

]

and therefore

ET
t Et = I + 11T =: M ∈ R(N−1)×(N−1).

It is readily verified that

M−1 = I − (1/N)11T . (4)

Thus the diagonal entries of (ET
t Et)

−1 are all equal to
(N − 1)/N . The optimal feedback gain and the global
performance measure are thus given by

(k∗g)i = Ck

√
(N − 1)/N,

J∗g = Cp(N − 1)
√

(N − 1)/N.

B. Circle

Circle is an edge-transitive graph [5] and we use the
result that the optimal solution for convex problems on edge-
transitive graphs are constant [7], [8], that is, k∗i = k for all
i ∈ V . The (LP) measure thus simplifies to

Jl(k) = 0.5 trace
(
qRRT (kRRT )−1 + rkRRTET

t Et

)
= 0.5 qk−1(N − 1) + rkN,

where we used

trace
(
RRTET

t Et

)
= trace

(
ETE

)
= 2N.

Thus,

k∗l = Ck

√
(N − 1)/N,

J∗l = Cp(N − 1)
√

(N − 1)/N.

The incidence matrix for circle graph is a circulant matrix
with the first column given by [ 1 − 1 0 · · · 0 ]T ∈ RN−1;
for example, N = 4,

E =


1 0 0 −1
−1 1 0 0

0 −1 1 0
0 0 −1 1

 .
It follows that R =

[
I −1

]
and thus

RRT = I + 11T = M.

Since the tree subgraph of the circle is the path, we have
ET

t Et = T . Multiplying T−1 in (3) and M−1 in (4), we
obtain the ith diagonal entry of T−1M−1

(T−1M−1)ii = i(N − i)/(2N).

Thus, we have

Jg(k) = 0.5 trace
(
qk−1T−1M−1 + rkRRTET

t Et

)
= 0.5((q/k)

∑N−1
i=1 (i(N − i))/(2N) + 2rkN)

= q(N2 − 1)/(24k) + rkN.

It follows that

k∗g = Ck

√
(N2 − 1)/(12N),

J∗g = CpN
√

(N2 − 1)/(12N).
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C. Complete graph

A complete graph has an edge between every pair of
vertices and thus it has N(N−1)/2 edges. A complete graph
is also edge-transitive [5] and with an identical procedure as
done for the case of circle, for (LP) we have

k∗l = Ck

√
2/N, J∗l = Cp(N(N − 1)/2)

√
2/N.

On the other hand, for (GP) we have

Jg(k) = 0.5 trace
(
q(kRRTET

t Et)
−1 + rkRRTET

t Et

)
= 0.5 (N − 1)(q/(kN) + rkN).

where we used the fact that the eigenvalues of RRTET
t Et are

the nonzero eigenvalues of ETE, which all equal to N [5].
Thus, we have

k∗g = Ck

√
2/N, J∗g = Cp(N(N − 1)/2)(

√
2/N).

We summarize the formulas for the optimal feedback gains
and the optimal performance measures (LP) and (GP) in
Table I.

D. Asymptotic scaling with network size

We next consider how the optimal performance mea-
sures scale with the network size N . We also consider the
asymptotic scaling of the optimal feedback gain {k∗i }

|E|
i=1,

which serves as an indication of the control effort of the
optimal design. The results for the graphs considered are
summarized in Table II, where the optimal local and global
performance measures are normalized by N . The normalized
global performance measures are illustrated in Fig. 2.

Clearly, the star graph is the most favorable structure with
respect to both the performance measures and the control
effort. The path and circle have the same asymptotic scaling.
It is also noteworthy that the optimal feedback gain for
complete graph decays as the size of network increases.

In [3], it was established that using constant feedback gain
for all edges of the circle, the global performance measure
normalized by the formation size scales linearly with N .
This result was derived under the assumption that the amount
of control effort is formation-size-independent. Note that the
scaling of J∗g /N can be reduced to a square-root dependence
of N at the expense of k∗g also increasing as a square-root
function of N . To obtain k∗g that does not increase with N ,
we select r = N which results into

Jg(k) = q(N2 − 1)/(24k) + kN2.

Therefore, the optimal feedback gain in this case is given by

k∗g =
√
q(N2 − 1)/(24N2),

which becomes N -independent as the number of vehicles
goes to infinity. On the other hand,

J∗g = N2
√
q(N2 − 1)/(24N2),

which means that J∗g /N scales as a linear function of N , the
result in agreement with [3].

It is also noteworthy that the optimal feedback gains
for local performance measure are constant for tree, circle

Fig. 2: Normalized global performance measure J∗g /N with
Cp = 1 for path (−), circle (◦), star (∗) and complete
graph (♦).

TABLE II: Comparison of the asymptotic scaling of optimal
performance measures normalized by N , and the maximum
value of feedback gains, for path, circle, star and complete
graph.

J∗l /N J∗g /N k∗l max(k∗g)i

Path O(1) O(
√
N) O(1) O(

√
N)

Circle O(1) O(
√
N) O(1) O(

√
N)

Star O(1) O(1) O(1) O(1)

Complete O(
√
N) O(1) O(

√
1/N) O(1/N)

and complete graph. If we restrict gains to be constant
for a general graph G, then the optimal localized gain and
the corresponding optimal local performance measure are
determined by

k∗l = Ck

√
(N − 1)/|E|, J∗l = Cp

√
(N − 1)|E|,

where |E| denotes the number of edges. Therefore, the
favorable graphs for local performance measure should have
the minimum number of edges for a fixed number of nodes,
that is, the tree graph. In that case, |E| = N − 1, and thus
we recover the result

k∗l = Ck, J∗l = Cp(N − 1),

obtained in Section IV-A.

V. CONCLUDING REMARKS

In this paper, we consider the design of optimal local-
ized feedback gains for undirected connected graphs. We
characterize the stabilizing feedback gains and demonstrate
the convexity of the corresponding optimal control problem.
Furthermore, we obtain explicit formulas for the optimal
localized gains and determine analytically the asymptotic
scaling of the performance measures with the network size
for several graphs.

In this work, we focus on undirected graphs for which the
relative feedback gains on the edges are symmetric, that is,
kij = kji. One direction of future research is to consider
the directed graphs with nonsymmetric feedback gains. In
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TABLE I: Optimal gains and performances for the path, star, circle, and complete graph.

J∗l /Cp k∗l /Ck J∗g /Cp (k∗g)i/Ck

Path N − 1 1 (π/8)N
√
N

√
(i(N − i))/N

Star N − 1 1 (N − 1)
√

(N − 1)/N
√

(N − 1)/N

Circle (N − 1)
√

(N − 1)/N
√

(N − 1)/N N
√

(N2 − 1)/(12N)
√

(N2 − 1)/(12N)

Complete (N(N − 1)/2)
√

2/N
√

2/N (N(N − 1)/2)(
√

2/N)
√

2/N

this case, the optimal control problem may become non-
convex. However, using the numerical schemes developed
in [11], [12], it is possible to obtain at least a local minimizer.
We intend to examine this nonsymmetric case and compare
the performances for both the symmetric and nonsymmetric
designs in our future work.

APPENDIX

A. Gradient and Hessian of J(K)

Proposition 5: The Hessian

∇2J(K) = 0.5 (RTP−1K QP−1K R) ◦ (RTP−1K R).

is a positive semi-definite matrix.
Proof: Since trace (rPKE

T
t Et) is linear in K, we have

∇2JQ(K) = ∇2J(K),

where
JQ(K) := 0.5 trace

(
QP−1K

)
.

We calculate

JQ(K + K̃) = 0.5 trace (Q(PK +RK̃RT )−1)

= 0.5 trace (Q(I + P−1K RK̃RT )−1P−1K )

where diagonal matrix K̃ is the variation around K. For
small K̃ such that

‖P−1K RK̃RT ‖ < 1,

we expand the inverse

(I + P−1K RK̃RT )−1 ≈ I − P−1K RK̃RT + (P−1K RK̃RT )2,

where we drop higher order terms in K̃. Therefore, the
quadratic term of K̃ in JQ(K + K̃) is given by

q(K̃) = 0.5 trace (Q(P−1K RK̃RT )2P−1K )

= 0.5 trace (K̃RTP−1K QP−1K RK̃RTP−1K R).

Using Proposition 6, we have

q(K̃) = 0.5 k̃T ((RTP−1K QP−1K R) ◦ (RTP−1K R))k̃,

where k̃ = diag(K̃) is the main diagonal of K̃. Since
the entry-wise multiplication of two positive semi-definite
matrices is also positive semi-definite [13, Theorem 5.2.1],
we have

∇2J(K) ≥ 0

and thus J(K) is a convex function [6]. The gradient of

J(K) is readily obtained

∇J(K) = 0.5 diag(RT (rET
t Et − P−1K QP−1K )R),

by noting that the linear term of K̃ in JQ(K + K̃) is given
by

l(K̃) = −0.5 trace (RTP−1K QP−1K RK̃).

Proposition 6: [13, Lemma 5.1.5] For W1, W2 ∈ Rm×n,
and v1 ∈ Rm and v2 ∈ Rn, we have

vT1 (W1 ◦W2)v2 = trace (V1W1V2W2) ,

where ◦ denotes the entry-wise multiplication of two matri-
ces; and Vi = diag(vi) for i = 1, 2 is a diagonal matrix with
the main diagonal determined by vi.
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