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Abstract— We consider a control design problem aimed
at balancing quadratic performance of linear systems with
additional requirements on the control signal. These are
introduced in order to obtain controls that are either
sparse or infrequently changing in time. To achieve this
objective, we augment a standard quadratic performance
index with an additional term that penalizes either the `1
norm or the total variation of the control signal. We show
that the minimizer of this convex optimization problem
can be found by solving a two point boundary value
problem (TPBVP) with non-differentiable nonlinearities.
Furthermore, we employ alternating direction method of
multipliers to determine the optimal controller iteratively
from a sequence of linear TPBVPs. Examples are provided
to illustrate the developed method.

Index Terms— Alternating direction method of multi-
pliers, convex optimization, linear time-invariant systems,
quadratic performance, sparsity, total variation.

I. INTRODUCTION

Linear quadratic regulator (LQR) theory has a rich
history and it represents a corner stone of modern
systems theory. In addition to finding use in a number
of applications, its popularity stems from elegant theo-
retical framework that provides performance guarantees
and computationally efficient means for forming control
action from available measurements.

In applications, it is often desired to have control
inputs that are either sparse or infrequently changing
in time. In multi-period investments [1], for example,
there is a transaction cost associated with trades, i.e.,
buying or selling assets. Thus, limiting the number of
trades to reduce the transaction cost imposes sparsity
constraint on the control input. In temperature control
of energy-efficient buildings [2], it is of interest to shut
down the air-conditioners over a period of time to reduce
energy consumption and to increase the longevity of the
compressors. In this case, a sparse control signal implies
that the compressors are turned off for most of the time.

This paper combines standard control theory with
tools from cardinality minimization and compressive
sensing to design sparse and infrequently changing
control inputs that minimize quadratic performance of
linear-time invariant systems. Desired properties are en-
forced by augmenting a standard quadratic performance
index with additional terms that penalize either the `1
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M. R. Jovanović and F. Lin are with the Department of Electrical
and Computer Engineering, University of Minnesota, Minneapolis,
MN 55455. E-mails: mihailo@umn.edu, fu@umn.edu.

norm or the total variation of the control signal. We
show that the minimizer of this convex optimization
problem can be found by solving a TPBVP with non-
differentiable nonlinearities. Furthermore, we utilize the
alternating direction method of multipliers to determine
the optimal controller iteratively from a sequence of
linear TPBVPs. Examples are provided to illustrate the
developed method.

Developing efficient algorithms for a closely related
problem, namely model predictive control (MPC), has
been an active research topic [3]–[11]. It was shown
in [3], [4], [8] that customized interior point meth-
ods that exploit sparsity structures are very efficient
for MPC. Recently, the alternating direction method
of multipliers (ADMM) [12] has been employed by
several authors to develop distributed implementation
for MPC [9]–[11]. For continuous-time systems, we
employ the ADMM algorithm and the soft thresholding
operator to handle the non-differentiable nonlinearities.
This approach allows us to convert nonlinear TPBVPs
into a sequence of linear TPBVPs.

In controls community, ADMM has recently been
used to design sparse feedback gains that strike a bal-
ance between the performance of distributed systems
and the sparsity of the controller [13], [14], to select
leaders in stochastically forced dynamic networks [15],
[16], to identify sparse representation of consensus net-
works [17], to counteract spread of misinformation in
social networks [18], and to design sparse wide-area
controllers in power networks [19]. In addition, ADMM
has been found useful in distributed implementation of
MPC [11] and total variation regularized MPC [20].

Our presentation is organized as follows. In Section II,
we formulate the quadratic regulator problem with `1
and total variation regularization terms for continuous-
time linear time-invariant systems. In Section III, we
show that the necessary conditions for optimality take
the form of nonlinear TPBVPs. In Section IV, we
employ the ADMM algorithm to convert the nonlinear
TPBVPs into a sequence of linear TPBVPs. We provide
two illustrative examples in Section V and conclude the
paper with a summary of our contributions in Section VI.

II. PROBLEM FORMULATION

We consider linear time-invariant systems

ẋ = Ax + B u, t ∈ [0, T ], x(0) = x0

with n states and m control inputs. The objective is to
design a control input u on the time interval [0, T ] to
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minimize

J(x, u, u̇) = Jlqr(x, u) + γ

∫ T

0

g (u(t), u̇(t)) dt. (1)

Here, γ is a positive parameter and g is a function that
penalizes the `1 norm of the vector u(t),

g (u(t)) = ‖u(t)‖`1 =

m∑
i=1

|ui(t)| (SP)

or the `1 norm of the vector u̇(t),

g (u̇(t)) = ‖u̇(t)‖`1 =

m∑
i=1

|u̇i(t)|. (TV)

The `1 norms of u(t) and u̇(t) are introduced in order
to induce a sparse control input and a control input
with small total variation, respectively. Recently, the `1
norm has been used as a proxy for promoting sparsity
in optimization variables [21, Chapter 6]; also see [22]
for alternative sparsity-promoting penalty functions.

The quadratic performance index Jlqr in (1) is given
by

Jlqr(x, u) =
1

2

(
〈x,Qx〉+ 〈u,Ru〉+ xT (T )Qf x(T )

)
with

〈x,Qx〉 :=

∫ T

0

xT (t)Qx(t) dt

and the standard assumptions on the state, terminal, and
control cost matrices

Q = QT ≥ 0, Qf = QTf ≥ 0, R = RT > 0.

By introducing an additional optimization variable
v, optimal control problem (1) can be equivalently
formulated as

minimize
x, u, v

Jlqr(x, u) + γ

∫ T

0

‖v(t)‖`1dt

subject to Ax(t) + B u(t) − ẋ(t) = 0

[Lu ] (t) − v(t) = 0

x(0) = x0, t ∈ [0, T ]

(2)

where the action of a linear operator L on the control
signal u is determined by

[Lu ] (t) :=

{
u(t) for (SP)

u̇(t) for (TV).
(3)

Problem (2) is a convex optimization problem with a
convex objective function and linear constraints. Clearly,
for γ = 0, it simplifies to the standard LQR prob-
lem [23].

III. CONDITIONS FOR OPTIMALITY

We next show that the necessary and sufficient con-
ditions for optimality of (2) are given by

ẋ(t) = Ax(t) + B u(t), x(0) = x0

ẏ(t) = −Qx(t) − AT y(t), y(T ) = Qf x(T )

0 = Ru(t) + BT y(t) + [L∗z ] (t)

0 = [Lu ] (t) − v(t)

0 ∈ γ ∂‖v(t)‖`1 − z(t).
(4)

Here, L∗ is the adjoint of the operator L, and ∂ is the
subdifferential operator, with the ith component of the
vector

∂‖v(t)‖`1 :=
[
∂ |v1(t)| · · · ∂ |vm(t)|

]T
determined by

∂ |vi(t)| =

 1, vi(t) > 0
[−1, 1], vi(t) = 0
−1, vi(t) < 0.

To derive (4), we form the Lagrangian associated with
the constrained optimal control problem (2),

L(x, y;u, v, z) = Jlqr(x, u) + γ

∫ T

0

‖v(t)‖`1dt +

〈y,Ax + B u − ẋ〉 + 〈z, L u − v〉
(5)

where y and z are the Lagrange multipliers associated
with the linear constraints in (2). Taking variation of L
with respect to the Lagrange multiplier y and the state
trajectory x yields the standard TPBVP for the states of
the original and the adjoint systems [23]

ẋ(t) = Ax(t) + B u(t), x(0) = x0

ẏ(t) = −Qx(t) − AT y(t), y(T ) = Qf x(T ).
(6)

On the other hand, setting variations of L with respect
to u, z, and v to zero, respectively, leads to

0 = Ru(t) + BT y(t) + [L∗z ] (t)

0 = [Lu ] (t) − v(t)

0 ∈ γ ∂‖v(t)‖`1 − z(t).

(7)

A. `1-regularized optimal control problem

For the sparsity-promoting optimal control prob-
lem (1)-(SP), the linear operator L in (2) is the identity
operator, and the necessary conditions for optimality (7)
simplify to

0 ∈ Ru(t) + BT y(t) + γ ∂‖u(t)‖`1 .

In addition, when the control cost is the scaled identity,
R := rI with r > 0, we can obtain an explicit
expression for the control input u(t),

u(t) = − (1/r)Sγ
(
BT y(t)

)
= −Sγ/r

(
(1/r)BT y(t)

) (8)
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Fig. 1. The action of the soft thresholding operator Sκ(·) on the ith
component of the vector p.

where the action of the soft thresholding operator Sκ(·),
with κ = γ/r, on the ith component of the vector
p(t) := (1/r)BT y(t) is given by

Sκ(pi) =


pi − κ, pi > κ

0, pi ∈ [−κ, κ]
pi + κ, pi < −κ.

(9)

Thus, the optimal control input for the sparsity-
promoting optimal control problem (1)-(SP) with R :=
rI can be obtained from the solution of the following
nonlinear TPBVP[

ẋ(t)
ẏ(t)

]
=

[
A 0
−Q −AT

] [
x(t)
y(t)

]
−[

B
0

]
Sγ/r

(
(1/r)BT y(t)

)
u(t) = −Sγ/r

(
(1/r)BT y(t)

)
[
x0
0

]
=

[
I 0
0 0

] [
x(0)
y(0)

]
+[

0 0
Qf − I

] [
x(T )
y(T )

]
.

(10)

By comparing the expression for the control input in (10)
with the expression for the control input in LQR,

ulqr(t) = −(1/r)BT y(t)

we see that sparsity is enforced by passing the vector
p(t) = (1/r)BT y(t) through a dead-zone nonlinearity
shown in Fig. 1 (with κ = γ/r). If pi(t) ∈ [−γ/r, γ/r],
ui(t) is set to zero; if |pi(t)| > γ/r, ui(t) is obtained by
moving pi(t) towards zero with the amount γ/r. This
demonstrates that larger values of γ and smaller values
of control penalty r encourage sparser control signals.

System (10) can be solved using MATLAB’s TP-
BVP solver bvp4c or the Chebfun computing environ-
ment [24]; in fact, we found it most convenient to use
bvp4c in conjunction with Chebfun.

Remark 1 (Block sparsity): Rather than enforcing
sparsity by driving individual components of the control
signal to zero (at different time intervals), it may be of
interest to drive all components of the control signal to
zero at certain time intervals. For example, this may be
relevant in applications where all actuators in a system
should either be on or off. Block sparsity can be enforced
by replacing the `1 norm of the vector u(t) in the
definition of the function g appearing in (2) with the
Euclidean norm of u(t) (e.g., see [12]),

g (u(t)) = ‖u(t)‖2 =

√√√√ m∑
i=1

u2i (t).

In the TPBVP (10), soft thresholding operator should be
replaced by block soft thresholding operator [12] whose
action on the vector p(t) = (1/r)BT y(t) is given by

Sblock
κ (p(t)) =


(
1− κ

‖p(t)‖2

)
p(t), ‖p(t)‖2 > κ

0, ‖p(t)‖2 ≤ κ

with κ = γ/r.

B. Total variation regularized optimal control problem

In applications, it is also of interest to promote
sparsity with respect to the rate of change in the control
input. This objective can be attained by incorporating
the total variation of u into the objective function. In
this case, g is given by (TV), and the linear operator L
in (2) becomes the differential operator.

We next show that the conditions for optimality (4)
for the optimal control problem (2) with total variation
regularization term (TV) simplify to[

ẋ(t)
ẏ(t)

]
=

[
A 0
−Q −AT

][
x(t)
y(t)

]
−
[
B
0

]
u(t)

ż(t) = Ru(t) + BT y(t)

u̇(t) = Jumpγ(z(t))[
x0
0

]
=

[
I 0
0 0

] [
x(0)
y(0)

]
+[

0 0
Qf − I

] [
x(T )
y(T )

]
z(0) = z(T ) = 0.

(11)
Here, the action of the jump operator Jumpγ(·) on the
ith component of the vector z is given by

Jumpγ(zi) :=


∞, zi > γ

0, zi ∈ [−γ, γ]
−∞, zi < −γ.

(12)

To derive (11), we take variation of L with respect to
u,

0 =
〈
Ru + BT y, ũ

〉
+
〈
z, ˙̃u
〉
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and use integration by parts to obtain

0 =
〈
Ru+BT y − ż, ũ

〉
+ zT (T ) ũ(T )− zT (0) ũ(0).

Since this condition has to hold for all variations ũ, we
have

ż(t) = Ru(t) + BT y(t)

with the boundary conditions

z(0) = z(T ) = 0.

On the other hand, taking subdifferential of L with
respect to v yields

γ ∂‖v(t)‖`1 − z(t) = 0

which consequently leads to

v(t) = Jumpγ(z(t)). (13)

The derivation of (13) will be reported elsewhere.

The jump operator (12) introduces discontinuity, and
hence, difficulty in solving the TPBVP (11). This chal-
lenge can be overcome by augmenting the objective
function (1) with an additional term, (δ/2) 〈u̇, u̇〉 , where
δ is a small positive parameter. The quadratic regular-
ization on v := u̇ introduces the following continuos
approximation of the jump operator (12)

Jumpγ(z) ≈
1

δ
Sγ(z), 0 < δ � 1 (14)

where Sγ(·) is the soft-thresholding operator (9).

IV. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

We next use the alternating direction method of
multipliers (ADMM) to solve the finite horizon optimal
control problem (2) with L in (3). We refer the reader
to a recent paper [12] that provides a survey of the
utility of ADMM in distributed optimization and modern
applications.

The procedure presented in Section II leads to non-
linear TPBVPs (10) and (11) for the linear quadratic
regulator problem augmented by the `1 and the total
variation regularization terms, respectively. In contrast,
ADMM provides an alternative approach that computes
the optimal controller by solving a sequence of linear
TPBVPs. As a result, this algorithm is well-suited for
efficient implementation for problems with a large num-
ber of optimization variables.

We begin by introducing the augmented Lagrangian

Lρ(x, y;u, v, z) := L(x, y;u, v, z) +
ρ

2
〈Lu − v, L u − v〉

where ρ is a positive parameter and L is the La-
grangian given by (5). For the total variation problem,
we will show that the quadratic penalty on the difference
between u̇ and v allows us to avoid issues that we
encountered with the jump operator in Section II.

Taking variation of Lρ with respect to y and x yields

the TPBVP (6). On the other hand, we will determine
u, v, and z from the following sequence of iterations

uk+1(t) := argmin
u

Lρ( · ;u, vk, zk) (15a)

vk+1(t) := argmin
v

Lρ( · ;uk+1, v, zk) (15b)

zk+1(t) := zk(t) + ρ
(
[Luk+1 ](t)− vk+1(t)

)
(15c)

until 〈
Luk+1 − vk+1, L uk+1 − vk+1

〉
≤ ε2〈

vk+1 − vk, vk+1 − vk
〉
≤ ε2.

The necessary conditions for the optimality of the
u-minimization problem (15a) and the v-minimization
problem (15b) are given by (17). Here, the u-
minimization problem (15a) can be solved efficiently
using the bvp4c in conjunction with Chebfun. On
the other hand, the solution to the v-minimization
problem (15b), for both sparsity-promoting and total
variation problems, amounts to a soft-thresholding op-
eration (9).

To derive (17), we take variation ũ of Lρ with respect
to u and keep the linear term in ũ to get

0 = Lρ(x, y;u+ ũ, v, z) − Lρ(x, y;u, v, z)
=
〈
Ru+BT y + ρL∗(Lu − wk), ũ

〉
where

wk(t) := vk(t) − (1/ρ)zk(t). (16)

Since the above condition has to hold for all variations
ũ we have

(R + ρL∗L)u = −BT y + ρL∗wk.

Moreover, taking subdifferential of Lρ with respect to v
yields

γ ∂‖v(t)‖`1 + ρ v(t) = ρ
(
[Luk+1 ](t) + (1/ρ)zk(t)

)
which consequently leads to

vk+1(t) = Sγ/ρ
(
[Luk+1 ](t) + (1/ρ)zk(t)

)
.

For the `1-regularized optimal control problem (2)-
(SP), L is the identity operator, and the equation for
uk+1 in (17) simplifies to

uk+1(t) = (R + ρI)−1
(
−BT yk+1(t) + ρwk(t)

)
.

For the optimal control problem (2)-(TV), L is the
differential operator, and the equation for uk+1 in (17)
simplifies to

ük+1(t) = ẇk(t) + (1/ρ)(Ruk+1(t) + BT yk+1(t))

with the boundary conditions

u̇k+1(0) = wk(0), u̇k+1(T ) = wk(T ).

Therefore, for the quadratic regulator problem with total
variation regularization term, TPBVP (17) resulting from
the use of ADMM can be rewritten as (18).

1050



u :



[
ẋk+1(t)
ẏk+1(t)

]
=

[
A 0
−Q −AT

] [
xk+1(t)
yk+1(t)

]
+

[
B
0

]
uk+1(t)[

(R + ρL∗L)uk+1
]
(t) = −BT yk+1(t) + ρ

[
L∗(vk − (1/ρ)zk)

]
(t)[

x0
0

]
=

[
I 0
0 0

] [
xk+1(0)
yk+1(0)

]
+

[
0 0
Qf −I

] [
xk+1(T )
yk+1(T )

]
v : vk+1(t) = Sγ/ρ

(
[Luk+1 ](t) + (1/ρ) zk(t)

)
z : zk+1(t) = zk(t) + ρ

(
[Luk+1 ](t) − vk+1(t)

)
(17)

u :



[
ẋk+1(t)
ẏk+1(t)

]
=

[
A 0
−Q −AT

] [
xk+1(t)
yk+1(t)

]
+

[
B
0

]
uk+1(t)

u̇k+1(t) = ξk+1(t)

ξ̇k+1(t) = (1/ρ)
(
Ruk+1(t) + BT yk+1(t)

)
+ v̇k(t)− (1/ρ)żk(t)[

x0
0

]
=

[
I 0
0 0

] [
xk+1(0)
yk+1(0)

]
+

[
0 0
Qf −I

] [
xk+1(T )
yk+1(T )

]
u̇k+1(0) = vk(0)− (1/ρ)zk(0)

u̇k+1(T ) = vk(T )− (1/ρ)zk(T )

v : vk+1(t) = Sγ/ρ
(
u̇k+1(t) + (1/ρ) zk(t)

)
z : zk+1(t) = zk(t) + ρ

(
u̇k+1(t) − vk+1(t)

)

(18)

Fig. 2. Mass-spring system.

V. EXAMPLES

A. Mass-spring system

For a mass-spring system on a line shown in Fig. 2
with N = 10 masses, we set all masses and spring
constants to unity and select Q = I , R = I , and
Qf = qfI with qf = 104. We first solve the optimal
control problem (2) with the `1 penalty (SP) on the
control input. Optimal control and position trajectories
for the mass indexed by n = 6 are obtained by solving
TPBVP (10) using bvp4c in conjunction with Chebfun
and they are shown in Fig. 3. Note that as γ increases,
the sparsity of the control signal u6(t) increases, at the
expense of a larger deviation of position p6(t).

For the total variation penalty (TV), the optimal
control and position trajectories are obtained by solv-
ing TPBVP (11) with the jump operator approximated
by (14); see Fig. 4. As γ increases, we see that the total
variation of the control signal u6(t) decreases, at the
expense of a larger deviation of p6(t).

u6(t): p6(t):

Fig. 3. Optimal control and position trajectories for the mass indexed
by n = 6 in a mass-spring system with N = 10 masses and γ = 1
(◦), γ = 10 (×), and standard LQR (∗).

B. Inverted pendulum

The linearized model of an inverted pendulum on a
cart is given by

p̈ = − mg

M
θ +

1

M
u

θ̈ =
(M +m)g

2Ml
θ − 1

2Ml
u.

Here, p is the cart position, θ is the pendulum angle
deviation from the upright position, u is the force applied
on the cart, m is the pendulum mass, 2l is the pendulum
length, and M is the cart mass. We set M = m =
2l = 1, g = 9.81, and select the initial condition x0 =
[ 0 π/10 0 0 ]T and weight matrices {Q = R = I ,
Qf = qfI} with qf = 1.

We solve the optimal control problem (2) with the
total variation penalty (TV) on the control input. The
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u6(t): p6(t):

Fig. 4. Optimal control and position trajectories for the mass indexed
by n = 6 in a mass-spring system with N = 10 masses and γ = 0.1
(◦), γ = 1 (×), and standard LQR (∗).

u(t): θ(t):

Fig. 5. Optimal control and angle trajectories for the inverted
pendulum with γ = 1 (blue), γ = 10 (red), and standard LQR (black).

optimal control signal and the trajectory of the angle of
the pendulum θ are shown in Fig. 5. As γ increases,
the total variation of the control signal decreases. This
results in a larger deviation of the angle of the pendulum.

VI. CONCLUDING REMARKS

In this paper, we consider the optimal control design
that aims at balancing the quadratic performance with
sparsity and total variation of the control signal. We
show that this convex optimization problem amounts
to solving a two point boundary value problem with
non-differentiable nonlinearities. Furthermore, we use
the ADMM algorithm to compute the optimal controller
by solving a sequence of linear TPBVPs. Parallel devel-
opments for discrete-time systems that were part of our
original submission will be reported elsewhere.

While we have demonstrated flexibility of ADMM,
efficiency of the proposed algorithm is to be tested
against state-of-the-art two point boundary value solvers.
In addition, it is also of interest to investigate the
effectiveness of the developed approach in applications
that give rise to large problems.
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