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an w-periodic linear map G(-) such that”. By this remark, for an
arbitrary w-periodic linear map G(-) € G (Im NS (-)) there
exists an w-periodic map R(-) such that

m NSE () = (LEOMe | Bl ) (39)
thus Im N (k—1) Cpym () Si(k) and this implies that
jkAG’N Cim n¢y St (k). Then

<El:1( | k71;4(:,N> Clm N() Sr(k) (40)

which verifies (i).
(i) By condition (21), relation (40) verifies (ii) of FDP.
(iii) Now, by Proposition 7, there exists a G (-) € G (1 xSk (+))

such that the core spectrum of the induced map £, © is the quo-

u

tient space X'/ T () S (k) is freely assignable, and this verifies
(iii) of FDP. |
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Least-Squares Approximation of Structured Covariances

Fu Lin and Mihailo R. Jovanovi¢

Abstract—State covariances of linear systems satisfy certain constraints
imposed by the underlying dynamics. These constraints dictate a particular
structure of state covariances. However, sample covariances almost always
fail to have the required structure. The renewed interest in using state co-
variances for estimating the power spectra of inputs gives rise to the ap-
proximation problem. In this note, the structured covariance least-squares
problem is formulated and the Lyapunov-type matricial linear constraint
is converted into an equivalent set of trace constraints. Efficient uncon-
strained maximization methods capable of solving the corresponding dual
problem are developed.

Index Terms—Convex optimization, least-squares approximation, struc-
tured covariances.

1. INTRODUCTION

The use of second-order statistics has been extensively studied in
spectral estimation [1]-[3]. Recently, there has been renewed interest
[4], [5] in utilizing state covariances of linear filters to extract informa-
tion about the power spectra of the input processes. To qualify as a valid
state covariance, a positive semi-definite matrix has to satisfy a certain
linear constraint imposed by the underlying dynamics. However, the
sample covariances, computed from a finite measurement record, al-
most always fail to have the required structure. Most methods in spec-
tral estimation [2] take sample covariances even though the effect of
inaccuracy is not well understood nor analyzed in any detail [6].

In view of the above, it is pertinent to find a nonnegative definite
matrix with required structure to approximate the given sample co-
variance. The natural Euclidean distance gives a least-squares problem
which can be solved by standard semi-definite programming (SDP)
solvers. For the n X n covariance matrix, however, the number of
optimization variables is of O(n?), which implies numerical difficulty
(computational effort of O(n°®)) of the interior-point methods em-
ployed in available SDP solvers. In this technical note, we develop an
alternative approach to this optimization problem.

Our presentation is organized as follows: we set up the problem
and give an equivalent formulation in Section II. We derive the dual
problem and present the unconstrained optimization methods in
Section III. Then, a numerical example is provided with the computa-
tional results presented in Section IV. The technical note is concluded
with a brief summary in Section V.

II. PROBLEM FORMULATION

Let a finite dimensional linear system be given by its state equation
= Ax+ Bd

where d € C™ is a stationary, zero-mean stochastic process and = €
C" is the state vector. The system is characterized by the control-
lable pair (A, B), where A € C"*" is Hurwitz, and B € C"*™ is
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full column rank. Under these assumptions, the steady state covariance
X :=lim; — o E{x(t)x™ (1)} satisfies the following linear constraint

(cf. [7])

AX+XA"=—-(BH+ H"B") (LC)
where £(+) is the expectation operator and (-)* is the complex con-
jugate transpose. The matrix H € C™*"™ depends on the input power
spectrum and the pair (A, B). It was also established in [7] that the con-
dition for a positive semi-definite matrix X to be the state covariance of
alinear system (A, B) for some stationary, zero-mean, stochastic input
d, is equivalent to the solvability of (LC) in terms of H. However, the
sample covariance

k

Y= %leaf

i=1
computed from & samples almost always fails to satisfy (LC) [6]. In
view of this, we formulate the following approximation problem.
* Given a positive semi-definite matrix ¥ = £* > 0 and a control-
lable pair (A, B) with A Hurwitz and B full column rank, find
X = X™ = 0 that is closest to ¥ in the least-squares sense and
satisfies (LC) for some H € C™*".
This optimization problem can be formulated as follows:

1 .
minimize §||X -3|%
subject to X = X" >0
AX + XA* = —(BH + H'B") (P1)
where || - ||# denotes the Frobenius norm, and X and H are the opti-

mization variables.

A. Standard SDP Formulation

The primal problem (P1) is a convex optimization problem with a
norm objective function and a linear constraint in the positive semi-
definite cone S;7. By introducing an auxiliary variable #, (P1) can be
cast into an SDP problem [8]

minimize &£

SIX =~ SIE < s
X=X">0
AX+XA*=—(BH+ H"B")

subject to

which can be solved by standard primal-dual interior-point methods.
However, the number of optimization variables is of O(n?), which im-
plies the computational complexity O(n°) of these standard methods.

B. Equivalent Constraints

For a given positive semi-definite matrix X, the solvability of (LC) in
terms of H qualifies X to be a valid steady state covariance. However,
having H as an optimization variable increases the problem size by m X
n, and computations become more expensive as the number of inputs m
increases. We note that the Lyapunov-type constraint (LC) implies that
X must lie in the range of a certain linear operator £, i.e., X € R(L).
Namely, the constraint (LC) can be equivalently represented as

X = /e‘“(BH + H*B* e tdt =: L(H)
9]
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where £ maps H into X . Equivalently, X must be orthogonal to the
null space of the adjoint of £, i.e., X L A (£*?). Next, we determine
the basis of V'(£*?).

1) Real Field Case: Let us first consider the linear constraint over
the field of real numbers. The complex conjugate transpose in (LC)
is then replaced by transpose, AX + XA” = —(BH + H" B").
The linear operator £(H) := [~ e*(BH + HTBT)eATtdt
maps R™*™ to R"*". Let symmetric matrix G € R"*" be in
the range of £. The unique linear operator £ exists and satisfies
(G,L(H)) = (L£L*(G), H) where the inner product is defined as
(M, N) := trace(M" N). Hence

(G, L(H))

=trace | GT /eAt (BH + HTBT) eATt dt

0
o]

:/trace (eATtGeAt (BH—I— HTBT) dt)

0

=2 trace /eATtGeAt dt BH
0
Thus
£°YG) =2B" /eATfGeAtdt =:2BYZ

0

where Z represents the solution to the Lyapunov equation
ATZ + ZA = —G. To construct the basis of A'(£*%), we in-
troduce the change of coordinates {B = PB, A = PAP~'}, such
that B = [Lnxm O(n—myxm]" . Under this coordinate transformation,
the basis G satisfies

sad A0 T 5 Z ZE
NG =BTZ=1 O]{Z2 2

=1z zI]=]0 O].

Therefore, any symmetric matrix Z of the form
- O 0
Z = ~

gives a member of the A'(£*%) by substituting Z into AY Z + ZA =
—@G. Matrices G s are determined by substituting the basis elements of
S(n—m)x(n—m) for 7. Thus, G;’s in the original coordinates {4, B}
are recovered by G; = P* GiP. Finally, the Gram-Schmidt procedure
is employed to orthonormalize G;’s. The number of basis elements, r,
is easily determined by the size of Zs, r = 0.5(n — m)(n — m + 1).
2) Complex Field Case: When the matrices are defined over the
field of complex numbers, the previous inner product procedure fails
to give a linear operator £°¢, because H* is not linear with respect to
H. To circumvent this difficulty, we note that the bijection between a
complex matrix X = X, 4 j X, and a real matrix X of the form

_[X, —-X.
X =
[X,; X, }

is a ring isomorphism [9]. By mapping {4, B, H } into { A, B, H}, the
constraint (LC) transforms to AX + X A" = - (BA+ H"B” ). This
can be also verified by expanding (LC) and equating the real and imag-
inary parts on both sides of the resulting equation. Thus, the procedure
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of Section II-B.1 can be employed to construct the basis G. Corre-
spondingly, the number of basis elements, r, for the complex case is
r=(n—m)(2n—2m+1).

Thus, (LC) is now transformed into the following equivalent set of
constraints:

trace (G;X)=0,i=1,2,...,r. (TC)
As already mentioned, the number of G;’s to span N (£"?) is r =
0.5(n—m)(n—m+1) (inthereal case) andr = (n—m)(2n—2m-+1)
(in the complex case). If m > n, then (LC) is always satisfied for some
H; thus, we assume m < n in the sequel. The transformation of (LC)
to (TC) is advantageous for optimization because:

* iteliminates H, which contains m X n optimization variables;

* the number of corresponding trace constraints decreases as the

number of inputs increases.

Examples where the number of inputs is close to the number of
states, i.e., m & n, can be found in spatially distributed systems. A
particular example, which is the main motivation for current develop-
ments, is encountered in wall-bounded shear flows of incompressible
fluids (e.g., boundary layers subject to spatio-temporal excitation in
the form of a free-stream turbulence). The algorithms developed in this
note are expected to be useful in the study of these problems.

The primal problem is now cast into

1 .
minimize EHX -3|%
subject to X =X">0

trace (G;X)=0,:1=1,2,...,r P2)
where G ’s form the orthonormal basis of A'(£%?). After solving (P2),
the least-squares solution H can be found by a very cheap computation
as follows. Let D := AX™ 4+ X" A", where X * is the unique solution
of (P2). Left-multiplication of (LC) with B* and right-multiplication
with B gives

B*B(HB)+ (HB)*B*B = —B*DB. (1)

With X € R(L), there exists H such that H B is Hermitian (see
Section III, Remark 1 in [7]). Therefore, H can be computed by

H=—(B"B)""(B"D+ MB")

where matrix M := H B is obtained as the solution to the Lyapunov
equation (1).

In the sequel, we study optimization problem (P2). The covariance
matrix approximation problems have been recently studied by several
research groups. Higham first introduced the nearest correlation
matrix problem and proposed an alternating projection method [10].
Malick studied the semi-definite least-squares (SDLS) problem [11],
which generalized S, to any closed convex cone. He proposed a
quasi-Newton algorithm and gave a dual interpretation for the al-
ternating projection method as the standard gradient algorithm (see
Section 5.2 in [11]). Boyd and Xiao studied the least-squares covari-
ance adjustment problem (LSCAP) [12], which is an extension of the
SDLS with trace inequality constraints. They proposed a projected
gradient method and exploited structure (such as sparsity) to reduce
computational expense. The objective functions of the dual problems
in both SDLS and LSCAP are not twice continuously differentiable.
This implies that the convergence rates of the proposed methods
in [11] and [12] are at best linear [13]. Utilizing recent results for
strongly semi-smooth functions [14], Qi and Sun developed a gen-
eralized Newton method with quadratic convergence rate, which is
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highly efficient and outperforms quasi-Newton and projected gradient
methods (as reported in [13]).

Although fruitful results have been developed for general problems
(as evident from the above references), for our specific problem (P2)
we derive and cast its dual problem into an unconstrained problem via
standard optimization theory. We then implement unconstrained max-
imization methods proposed in [11]-[13].

III. DUAL PROBLEM

In this section, the primal problem (P2) is cast into its dual problem
via standard Lagrange multipliers method. It is then converted into an
unconstrained maximization problem by projection on S,". To begin
with, the Lagrangian [15] is formed by introducing the Lagrange mul-
tipliers v; € C and Z € C™*"

Lv,Z,X):= %HS — X||7 — trace (ZX) + Zyi trace (G;X)
=1

with Z = Z* » 0 corresponding to the inequality constraint. The min-

imizer of L(v, Z, X ) over X satisfies L(v, Z, X)/0X = 0, which

gives Xonin = ¥ + Z — Y1, v:G;. By choosing X = X, and

denoting G, := Y., v;G;, we have the dual objective function

9. Z) = = 0.5]|1Z — G, ||} — trace (Z — G,,)Y)

— 05+ Z = G|l + 051217

Thus, the dual problem is given by

maximize g(v,Z) = 0.5+ Z — G, |7
+0.5(Z|F

subject to Z =Z" > 0.

Note that any Hermitian matrix can be decomposedas X = X +X_
with X4 and X_, respectively, being the positive and nega-
tive semi-deﬁnize parts of X, ie., X4 = Z& <0 A, and
X_ =37, .o \itti@i; . Here @1, .. ., @i, denote a set of orthonormal
eigenvectors of X with the corresponding eigenvalues {\1,..., A, }.
Hence, the eigenvalue decomposition of X gives

IXI3 = trace (DATTAT") = 30N,
=1

Thus, for given vector v, the choice Z* = —(X — G, )— eliminates the
negative eigenvalues of ¥ — G, It follows that Z* is the maximizer
over S;. Hence, the dual problem is finally cast into the following
unconstrained maximization problem

.. : 1 : 1 :
maximize g(v) = —=||(X — Gu)+||2p + 5”2”% (D)

2
where (¥ — G, )+ is the corresponding positive semi-definite part of
¥ — G, . The operation ()4 on a Hermitian matrix can be interpreted as
the projection on the positive semi-definite cone S, . Specifically, one
can compute the eigenvalue decomposition and replace the negative
eigenvalues by zero to obtain the nonnegative definite part. The dual
variables are scalars v;’s.

For the convex primal problem with linear constraints, feasibility is
sufficient to guarantee strong duality [15, p. 504]. The primal problem
constraints are easily seen feasible (for instance, X = 0). Therefore,
there is no duality gap and the optimal can be obtained by solving the
unconstrained dual problem (D). With the solution from dual problem
given by v’s, the optimal solution of the primal problem is determined
by X* = (¥ — G+ )+. One advantage of the dual formulation is that
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the number of the variables r = 0.5(n — m)(n — m + 1) is only
a fraction of the size of the primal problem (P2), 0.5(n” + n), when
m = n. Furthermore, due to the absence of constraints any method for
unconstrained maximization problem can be utilized.

A. Unconstrained Maximization Methods

We derive the gradient of the objective function using standard
perturbation theory and borrow available results from [13] to obtain
generalized second-order derivative. Let A; be the eigenvalue of
¥ — G, with the associated orthonormal eigenvector u;. Define
&(\) := max(0, \). Then, the objective function is given by

A 1o
g(v) = —3 ;Q (Aj) + §”EHF~

We now employ results from standard perturbation analysis [16] to
determine the gradient of g(v). For simplicity, consider a matrix F’
perturbed by v, where G and F’ are Hermitian matrices and v is a
scalar. The derivative of an isolated eigenvalue A of the resulting ma-
trix F' — vG with respect to v is given by O\ /dv = —u™Gu, where
w is the unit eigenvector associated to A. Therefore, the ith entry of
Vg is determined by dg(v)/dv; = Z/\PU AjuiGiuy, and it can be
rewritten compactly as

dg(v) _ 37 NG,

(()l/,;
A;>0
= Z Wi (Z = Gu)+Giuj
)\7>0
= trace Z wju (S — G,)1+Gi

A;>0
trace (UU™ (T — Gb)+G)
= trace ((¥ — Gb)+G)).

The quasi-Newton method utilizes the gradients of two consecutive
steps to construct the approximation of the second-order derivative
(Hessian). The Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme
is employed due to its efficiency for general problems. Starting with
negative identity, the negative definite matrix H, in our maximization
problem is updated using the following BFGS scheme (see [15, p.
150])

+ ny H.ss'H.
Hy =H.o+ vTs  sTH,s
where y := Vg(v™) — Vg(v) and 5 := v — v with »* and v de-
noting the current and previous step variables, respectively. The BFGS
direction is determined by vgras = —H, ' Vg(r). Given vo, the first
step 1 can be obtained by a gradient method which is necessary for
the BFGS iterations to proceed.

The objective function is not twice continuously differentiable when
¥ — G, has zero eigenvalues [13]. This implies that the classical Hes-
sian needs to be generalized. The detailed discussion about the smooth-
ness property of the objective function and the derivation of general-
ized Newton direction can be found in [13]. To compute generalized
V2g(v), one constructs the symmetric matrix €2 as follows,

(e(Ai)=8(X;))

i=x)) if A; # Aj
Q5 = ifA;i=X;>0
0 if A\; =A; <0.
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Then for any Av € R", the generalized Hessian acting on Av is given
by

trace (=U (20 (U Ga,U))U*GH)
Vzg(y)(AI/) =
trace (=U(Qo (U*Ga,U))UG,)

where o denotes the Hadamard product, i.e., entrywise multiplication.
By solving VZg(v)(vn1) = —Vg(v) using conjugate gradient (CG)
method [13], [15], we obtain the generalized Newton direction vy .

B. Implementation

With the three ascending directions Vg, vpras and vyt deter-
mined above, the algorithm for the unconstrained problem is given
next. We choose the standard backtracking line search as the step size
method, with parameters o« = 0.3, 3 = 0.5 (see [17, p. 464]).

Algorithm:

Start with initial point v (e.g., vo = 0) and at each step k
repeat:
1) project ¥ — G,, onto S;}, then compute ascending direction
Vk;
2) use the backtracking line search to determine step size ¢, then
update vi4+1 = vi + tug.
until: stopping criterion ||Vg(v)||2 < e is reached.

The convergence to the global optimal is guaranteed by the convexity

of the problem.

C. Complexity Analysis

The computational effort of each algorithm is studied in this
section. At each step of the gradient method, the computational
effort is O(max (n®, rn?)) operations, where O(n?) operations are
required for the eigenvalue decomposition of & — G, and O(n?)
operations are required for computation of the matrix inner product
trace((¥ — G, )4+G;) for each ¢ = 1,2,...,r. As BFGS method
uses gradient directions to form H, it requires the same amount of
operations as the gradient method. The extra effort comes from com-
puting the inverse of H,, which requires O(r*) operations. Thus, each
BFGS step costs O(max (n*,rn?, r*)) operations. To compute the
generalized Newton direction, it takes O(max (n”, rn?)) operations
to determine U (2 o (U*Ga, U))U™ in each CG step, where O(rn?)
operations are required to form the sum G, and O(n?*) operations
are required for matrix multiplications. Thus, the cost of each CG
step is O(max (n®,rn?)) operations. The number of CG steps is
O(r) provided that the problem is well pre-conditioned [13], [15].
Therefore, each Newton step costs O(max (rn®, r*n?)) operations
assuming O(r) CG steps.

For a given problem with n states, the cost of the above algorithms
relies heavily on the number of dual variables. From the construction
of the basis in Section II-B, the number of inputs m dictates the size of
r = 0.5(n — m)(n —m + 1). Thus, if the number of inputs is close to
the number of states, i.e., m = n, presented algorithms are expected
to be computationally efficient.

IV. NUMERICAL EXPERIMENTS

We present a mass-spring-damper example and compare the
computation results for different formulations of the problem. As
discussed in Section II, the original primal problem (P1) is equivalent
to primal problem (P2), which is then cast into the dual problem (D)
in Section III. The first two formulations can be solved by available
SDP solvers such as SeDuMi. Following [12], [13], we develop
unconstrained maximization methods for the dual formulation. The
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m m m m
kO 1 kl 2, k2 kl—2 -1 kl—l 1 k[ S
oot~ =+~
rdy ppdy P dy  Pid

Fig. 1. Mass-spring-damper system.

following experiments are performed in Matlab on a personal com-
puter with 3.2 GHz CPU and 2.5 GB RAM. Primal problems (P1) and
(P2) are solved using Yalmip [18] with SeDuMi as its SDP solver.

A. Mass-Spring-Damper Example

We consider a mass-spring-damper system consisting of / masses
and ! 4 1 springs and dampers on a line as in Fig. 1. (The dampers are
not shown in the figure.) The dynamics of the <th mass m; are given by

miPi + bic1 (Pi — Pi=1) + bi(Di — Pig1)
+ki—1(pi — pi—1) + ki(pi — pig1) = d;

where p; represents the displacement from a reference position of the
ith mass, b; is the damping coefficient of the ith damper and £; is the
spring constant of the /th spring. We assign unit values to {m;, b;, k; },
and assume that a stationary Gaussian white stochastic process, d;, with
zero-mean and unit variance is introduced to the ith mass. The first and
the last masses are connected to fixed boundaries; hence, po = 0, po =
0, pi+1 = 0, pi+1 = 0. By selecting the state variables x1 := col{p;}
and x2 := col{p;}, the state-space representation is determined by

o I 0
a=[r z]-2=[7]

where T’ := toeplitz([-2 1 0 --- 0 ]), I is! x [ identity matrix,
O is 1 x [ zero matrix, and input d := col {d;}. To demonstrate the
performance with respect to different number of inputs, we assume the
first/ —m components in d to be identically equal to zero; the definition
of input matrix B should be changed correspondingly in this case.

Knowledge of the dynamics of the linear system and covariance ()

of d can be used to obtain the steady state covariance X by solving the
Lyapunov equation

AX + XA" = -BQB".

However, we consider a situation in which only limited observed
sample data is available to estimate state covariance and infer the
second-order statistics of the inputs. In the numerical experiments,
we take 1000 state samples (uniformly sampled in time from O to
10 seconds) and compute the sample covariance X. Invariably, ¥
fails to satisfy (LC) and we utilize approximation algorithms to find
least-squares estimate of .

B. Performance Comparison of Three Formulations

As discussed in Section III-C, the computational effort of all un-
constrained maximization algorithms depends heavily on the number
of dual variables determined by » = 0.5(n — m)(n — m + 1) (in
this example, n = 2[). Hence, two sets of optimization experiments
are carried out with difference in the number of inputs m relative to
the number of states n (m = 0.1n in the first set and m = 0.5n
in the second set with the results shown in Tables I and II, respec-
tively). The time for all computations is given in seconds. We only
present results of BFGS method for the dual formulation because it
generally outperforms gradient and generalized Newton methods. It is

TABLE I
PERFORMANCE COMPARISON FOR m = 0.1n
Time(s) ILNo. [X* -3} XSl
F
r =378 BFGS 25.1 238  3.6280e-4 13.5%
n=30 Pl 7.7 21 3.6288e-4 13.5%
P2 13.0 21  3.6288e-4 13.5%
r =666 BFGS 108.3 298  4.4958e-4 13.5%
n=40 Pl 34.6 23 4.4965e-4 13.5%
P2 64.1 22 4.4965e-4 13.5%
r = 1035 BFGS 1182.8 1104  3.2386e-3 12.7%
n=>50 PI 127.1 28  3.2388e-3 12.7%
P2 281.6 28  3.2388e-3 12.7%
TABLE II
PERFORMANCE COMPARISON FOR m = 0.5n
Time(s) ItNo. [X* -z} X -3lE
F
r =120 BFGS 0.1 5 6.3172e-3 5.3%
n=30 Pl 24.7 24  6.3172e-3 5.3%
P2 4.5 24 6.3172e-3 5.3%
r =210 BFGS 0.2 5 7.2892e-3 5.9%
n=40 Pl 117.3 24 7.2893e-3 5.9%
P2 17.9 24 7.2893e-3 5.9%
r = 325 BFGS 0.5 5 6.7127e-2 7.4%
n=>50 Pl 413.5 23 6.7127e-2 7.4%
P2 62.4 24 6.7127e-2 7.4%
TABLE III
BFGS AND BASIS TIME FOR m = 0.1n
n =30 n =40 n =50
r=378 r=666 r=1035
Basis time(s) 9.3 34.6 219.2
BFGS time(s) 25.1 108.3 1182.8

observed in this example that the conjugate gradient method usually
runs into difficulty when » > 100. However, in numerical examples
reported in [13], the generalized Newton method outperformed BFGS
method significantly. The purpose of our experiments is not to provide
comparison between different unconstrained maximization methods
but rather to compare the different formulations of the problem in terms
of their computational efficiency. For simplicity, the initial condition
for BFGS method is set to be a zero vector and the stopping criterion
is [|[Vg(v)[l < 107°.

As evident from Tables I and II, three different formulations give
very close optimal solutions. For m = 0.1n, the primal formulation
(P1) can be solved more efficiently than formulation (P2) by standard
SDP solver. The BFGS (as well as gradient and generalized Newton
methods) has difficulty in solving the dual formulation. For m = 0.5n,
however, the unconstrained formulation can be solved very efficiently
and the BFGS method significantly outperforms standard SDP solvers.
Also, note that even for the same SDP solver, formulation (P2) is much
easier to handle than formulation (P1). Another aspect of the dual for-
mulation is the construction of the basis. From results listed in Table III,
the time required to construct the basis is actually comparable to the op-
timization time. However, the basis can be computed off-line and stored
for future computations.
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V. CONCLUDING REMARKS

The state sample covariances almost always fail to satisfy linear
constraint imposed by the underlying dynamics. The consistency with
such dynamics is crucial in addressing the problem of characterizing
the input power spectra. We formulate the structured covariance
least-squares problem and convert the matricial linear constraint into
an equivalent set of trace constraints. The corresponding dual problem
can be solved efficiently by unconstrained maximization methods
when the number of inputs is close to the number of states.

With a different notion of distance, one can formulate an alterna-
tive covariance approximation problem [6]. The quantum relative en-
tropy is an interesting distance function used to quantify information
and uncertainty in quantum systems. A solution to this problem using
homotopy-based approach was recently provided in [19]. We intend to
explore large-scale covariance approximation problems with this dis-
tance measure in our future work. An interesting question may be to
compare the optimal covariances from both the relative entropy dis-
tance and the Euclidean least-squares distance.

APPENDIX
RESULTS OF NUMERICAL EXPERIMENTS

In the following tables, the time is given in seconds. In Tables I and
I, the optimal value || X* — £||3 and the ratio || X* — |3 /1S3
are reported. The time for (P1) and (P2) is the time required to run the
SDP solver SeDuMi. We note that the interface Yalmip requires more
time than solver SeDuMi. The stopping criterion for BFGS method is
IVg(»)|l2 € 10™°. The number of dual variables is given by r =
0.5(n —m)(n —m+1).
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Decentralized Learning in Finite Markov Chains: Revisited

Hyeong Soo Chang, Senior Member, IEEE

Abstract—The convergence proof in the paper “Decentralized learning in
finite Markov chains,” published in the /EEE Transactions on Automatic Con-
trol, vol. AC-31, no. 6, pp. 519-526, 1986, is incomplete. This note first pro-
vides a sufficient condition for the existence of a unique optimal policy for
infinite-horizon average-cost Markov decision processes (MDPs), making
the convergence result established by Wheeler and Narendra preserved
with the condition. We then present a novel simulation-based decentral-
ized algorithm, called “sampled joint-strategy fictitious play for MDP” for
average MDPs based on the recent study by Garcia et al. of a decentralized
approach to discrete optimization via fictitious play applied to games with
identical payoffs. We establish a stronger almost-sure convergence result
than Wheeler and Narendra’s, showing that the sequence of probability
distributions over the policy space for a given MDP generated by the algo-
rithm converges to a unique optimal policy with probability one.

Index Terms—Controlled Markov chain, decentralized learning, ficti-
tious play, learning automata, Markov decision process.

I. INTRODUCTION

Wheeler and Narendra [27] studied a decentralized learning ap-
proach to solving ergodic controlled Markov chains, i.e., Markov
decision processes (MDPs) [21] with finite state and finite action
spaces. In their approach, each state is associated with a learning
automaton (LA). At each time step, only the LA associated with
the currently visited state updates its probability distribution over its
available actions based on a response from the system and the LA
samples an action according to its updated probability distribution,
which will take to a next state at the next time step and this overall
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