

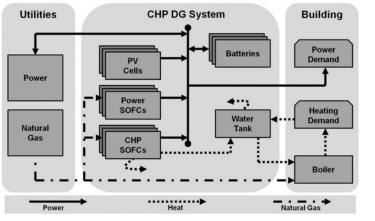
Distributed Generation for Buildings:

A Multi-Scale Optimization Approach

Fu Lin Sven Leyffer Todd Munson

Argonne National Laboratory

Distributed generation for buildings

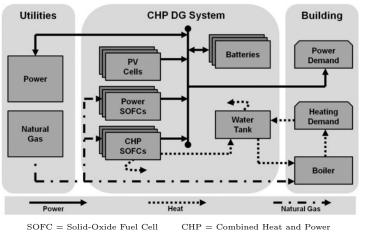


SOFC = Solid-Oxide Fuel Cell

CHP = Combined Heat and Power

Pruitt, Braun, Newman 2013

Distributed generation for buildings



Pruitt, Braun, Newman 2013

Current investment decisions: What technology? How many units?
Long-term operation scheduling: When to turn on/off machines?

Distributed generation for buildings

- 1. What new technologies to implement? How many units?
 - Current design problem: ≈ 10 integer variables
- 2. How to operate over a period of 10-20 years?
 - Long-term operation problem: $\mathcal{O}(10^6)$ binary variables
- 3. How to cope with uncertainty in problem data?
 - Future demands and prices: $\mathcal{O}(10^4)$ scenarios
 - \Rightarrow Large two-stage stochastic mix-integer program (MIP)

In this talk, we focus on the first two issues

Two-stage mixed-integer program (MIP)

minimize	current design (1st-stage cost) + long-term operation (2nd-stage cost)
subject to	demand constraints (e.g., heat, power)
	coupling over technologies
	dynamics constraints (e.g., storage, battery)
	coupling over time periods
	operation constraints (e.g., technology units on/off)
	other constraints (e.g., max power output)

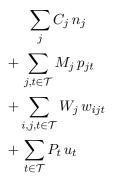
Two-stage mixed-integer program (MIP)

minimize	$\begin{array}{rcr} \text{current design} \\ (1\text{st-stage cost}) \end{array} + & \begin{array}{r} \text{long-term operation} \\ (2\text{nd-stage cost}) \end{array}$
subject to	demand constraints (e.g., heat, power)
	coupling over technologies
	dynamics constraints (e.g., storage, battery)
	coupling over time periods
	operation constraints (e.g., technology units on/off)
	other constraints (e.g., max power output)

- Large MIP \Rightarrow beyond the scope of current MIP solvers
- Coupling constraints ⇒ Not amenable to decomposition techniques
 (fixing 1st-stage decisions does not decouple 2nd-stage problem)

Objective

 $\underset{n,p,w,u,u^{\max}}{\text{minimize}}$



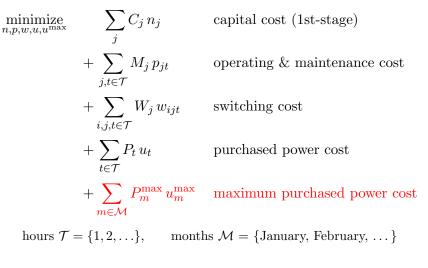
capital cost (1st-stage)

operating & maintenance cost

switching cost

purchased power cost

Objective



 $u_m^{\max} \ge u_t, \quad \forall t \in \{\text{hours in month } m\}$

INTER-TEMPORAL COUPLING

Coupling constraints

• Maximum purchased power constraint

 $u_m^{\max} \ge u_t, \quad \forall t \in \{\text{hours in month } m\}$

coupling over hours in months

• Storage with lossy coefficient $Q \in (0, 1)$

$$s_{t+1} = (1-Q)s_t + s_t^{\text{in}} - s_t^{\text{out}}, \quad \forall t \in \mathcal{T}$$

coupling over immediate hours

• Power demand in hour t

$$\sum_{j} p_{jt} + u_t + s_t^{\text{out}} \ge D_t, \quad \forall t \in \mathcal{T}$$

coupling over technologies (e.g., Power SOFCs, CHP SOFCs)

Binary variables

• On-off decisions

 $y_{ijt} \in \{0,1\}$ for unit *i* of tech *j* at time *t*

• Switching decisions

 $w_{ijt} \ge y_{ij(t+1)} - y_{ijt}$ switching-on decision $w_{ijt} \ge y_{ijt} - y_{ij(t+1)}$ switching-off decision $\Rightarrow w_{ijt} \in \{0, 1\}$

Challenges of the two-stage MIP

- A small number (≈ 10) of integral variables at 1st-stage
- A large number $\mathcal{O}(10^6)$ of binary variables at 2nd-stage

Hourly operation for 10 years

87,600 hours \times

Multiple units over several technologies

12 units

 $> 10^6$ binary variables

• Coupling constraints over time and technologies

Not obvious how to decompose over time periods

Outline

• Exploit multi-period structure

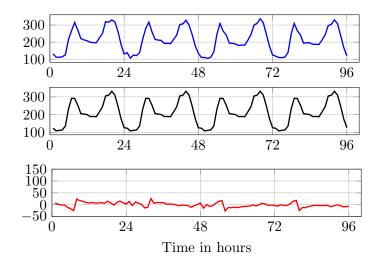
(daily, weekly, and yearly demand cycles for buildings)

• Column generation for dimension reduction (parameterization in daily operation profiles)

• Computational results

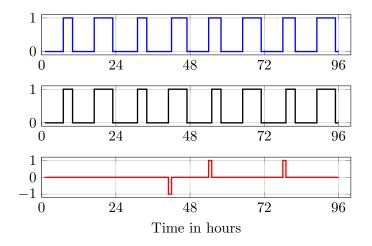
(tractable problems with performance bounds)

Demand profiles = periodic profile + perturbations



Similar cyclic structure in weekly, monthly, and yearly demand

On-off operational profiles = base profile + variations



Coarsen **hourly** on/off operations to **daily** profiles Hope: a small number of daily profiles suffice

Coarsening hourly on/off decisions

Replace hourly $y_t \in \{0, 1\}$ by daily profiles Z_k $\begin{pmatrix} y_{24(d-1)} \\ \vdots \\ y_{24(d-1)} \end{pmatrix} = \sum_{k \in \mathcal{K}} \lambda_{dk} Z_k \text{ and } \lambda_{dk} \in \{0,1\}, \sum_{k \in \mathcal{K}} \lambda_{dk} = 1$ Dn-off Coarsening Choose different daily Profiles operational profile to meet demand. 24480 Hours ... reduce problem size of two-stage MIP by order of magnitude <ロト < 団 ト < 茎 ト < 茎 ト = 12717

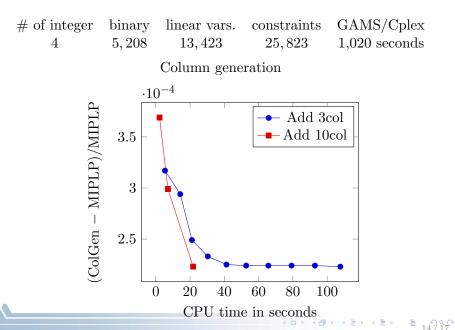
Column generation algorithm

- 1. Generate a database of columns (daily profiles)
- 2. Initialize active set of columns
- 3. Solve two-stage MIP parameterized with active columns
- 4. Compute negative reduced cost for inactive columns
- 5. Add inactive columns with most negative reduced costs
- 6. Go to Step 3 until stopping criteria are satisfied

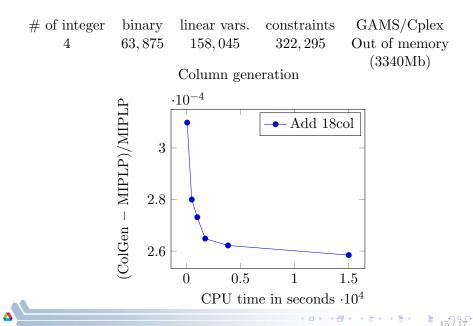
Provides a feasible solution \Rightarrow an upper bound

Relaxes second-stage integrality (MIPLP) \Rightarrow a lower bound

One-month example



One-year example



Conclusions

- Formulated two-stage MIP for distributed generation
 - Two-stage MIP with $\mathcal{O}(10^6)$ binary variables
 - Coupling constraints over time periods and technologies
- Column generation framework for dimension reduction
- Numerical results are promising

Solve one-year model with relative gap $\mathcal{O}(10^{-4})$ in 4 hours

Ongoing work:

- Coarsening dual variables (constraints)
- Analysis of solution quality from ColGen
- Test on data from different building types

Coarsening dual variables (constraints)

- Parameterize using only daily profiles (Semi-Coarse Model)
- Reduce number of constraints (Coarse Model)

