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Large dynamical networks

• ALL AROUND US

Power grid Internet Social networks

• INTERACTIONS CAUSE COMPLEX BEHAVIOR
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Northeast blackout 2003

before: after:

• The blackout was caused by a power plant going offline

US-Canada Power System Outage Task Force Final Report
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Hierarchical structure of Internet

Opte project (www.opte.org)

• resilient to random failure Cohen et al., Phys. Rev. Lett. ’00

• vulnerable to removal of high degree nodes Cohen et al., Phys. Rev. Lett. ’01
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Outline

¶ LEADER SELECTION PROBLEM

? Combinatorial optimization problem

· ALGORITHMS

? Convex relaxation ⇒ lower bound

? Alternating direction method of multipliers ⇒ upper bound

¸ EXAMPLE

¹ CONCLUDING REMARKS
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Leader-follower consensus dynamics

• connected, undirected networks

FOLLOWERS: ẋi(t) = −
∑
j ∈Ni

(xi(t) − xj(t)) + wi(t)

LEADERS: ẋi(t) = −
∑
j ∈Ni

(xi(t) − xj(t)) − xi(t) + wi(t)
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Minimum variance leader selection problem

ẋ(t) = − (L + H)x(t) + w(t)

L =


1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

 , H = diag (h) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



• assign k leaders to minimize the total steady-state variance

Vss = lim
t→∞

trace
(
E{x(t)xT (t)}

)



8

minimize J(h) = trace
(
(L + diag (h))−1

)
subject to hi ∈ {0, 1}, i = 1, . . . , N

hT1 = k

• FEATURES:

? convex objective function, linear constraint

? difficulty: Boolean constraints

• APPROACH:

? convex relaxation ⇒ lower bound

? alternating direction method of multipliers ⇒ upper bound
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Convex relaxation

minimize J(h) = trace
(
(L + diag (h))−1

)
subject to hi ∈ [0, 1], i = 1, . . . , N

hT1 = k

lower bound on J

SEMIDEFINITE PROGRAM:

minimize trace (X)

subject to
[
X I
I L+ diag (h)

]
≥ 0

hi ∈ [0, 1], i = 1, . . . , N

hT1 = k

without exploiting structure: O(N6)
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minimize J(h) = trace
(
(L + diag (h))−1

)
subject to hi ∈ [0, 1], i = 1, . . . , N

hT1 = k

CUSTOMIZED INTERIOR POINT METHOD:

minimize γ trace
(
(L + H)−1

)
+

N∑
i=1

(
− log(hi) − log(1− hi)

)
subject to hT1 = k

Newton’s method: O(N3)
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Alternating direction method of multipliers

• Step 1: introduce indicator function of the constraint set

g(h) =

{
0, hi ∈ {0, 1}, hT1 = k

+∞, otherwise

minimize J(h) + g(h)

• Step 2: introduce additional variable/constraint

minimize J(h) + g(z)

subject to h − z = 0

benefit: decouples J and g
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• Step 3: introduce augmented Lagrangian

Lρ(h, z, λ) = J(h) + g(z) + λT (h − z) +
ρ

2
‖h − z‖22

• Step 4: use ADMM for augmented Lagrangian minimization

ADMM:

hr+1 := arg min
h

Lρ(h, zr, λr)

zr+1 := arg min
z

Lρ(hr+1, z, λr)

λr+1 := λr + ρ(hr+1 − zr+1)

MANY MODERN APPLICATIONS

Boyd et al., Foundations and Trends in Machine Learning ’11
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? z-minimization problem – nonconvex, discontinuous

minimize
z

g(z) +
ρ

2
‖z − z̄‖22

z̄ := (1/ρ)λr + hr+1

GLOBAL SOLUTION: zi =

{
1, z̄i ≥ [z̄]k
0, z̄i < [z̄]k

k = 2, z̄ =


4.1
1.5
−6.7

5.2
3.9

 ⇒ z =


1
0
0
1
0


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Example

• 10× 10 lattice

4 leaders 20 leaders 40 leaders1910 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 8, SEPTEMBER 2008

laws with performance guarantees are not discussed within this
manuscript and represent future research topics.

C. Measure of Suboptimality

Consider system (35) and let and be an LQR controller
and the corresponding ARE solution associated with the weights

and . Therefore, minimizes the
following cost function for any :

(55)

i.e.

(56)
The next results aim at comparing the optimal centralized con-
troller and the distributed suboptimal controller presented
in the previous section. The comparison will be made assuming
(55) reflects the desired performance index and computing the
loss of performance introduced by the distributed control law
(39) with chosen as in Corollaries 4–6.

Proposition 3: Consider the distributed controller in (39)
and the closed loop system (40). If (40) is stable, then

(57)

where is the positive definite solution of the following Lya-
punov equation:

(58)

Proof: By assumption, system (40) is stable and thus the
positive definite solution to the Lyapunov (58) can be written as

(59)

Consider . From direct computation

(60)

By substituting with we obtain (57).
Proposition 3 shows that the cost associated with the dis-

tributed controller according to the performance index (55)
can be computed by solving a Lyapunov equation for the closed
loop system with weight equal to .

Since is optimal, for
all and thus is a positive semidefinite matrix
which is equal to zero if . Any norm of is a measure
of the suboptimality of the distributed controller .

The “best” linear state-feedback distributed controller
could be computed by solving:

(61a)

Fig. 1. A 10� 10 finite mesh grid interconnection structure of the simulation
example.

(61b)

(61c)

(61d)

(61e)

As discussed in the previous sections, computing the solution to
problem (61), is a difficult problem in general without further as-
sumptions. Its efficient solution is the topic of current research.

V. EXAMPLE

Consider a 10 10 mesh interconnection of iden-
tical, dynamically decoupled and independently actuated linear
systems moving in a plane with double integrator dynamics in
both spatial dimensions

(62)

The interconnection structure is depicted in Fig. 1. The con-
trol objective is to move each subsystem to a desired absolute
position corresponding to its location in the pre-specified rect-
angular grid, which has equal separation distances defined be-
tween each orthogonal neighbor.

The maximum vertex degree of such an interconnection graph
is 4, as the nodes located at the “corners” of the rectangular grid
have two neighbors, those along the “edges” of the rectangle
have three neighbors and the ones in the “middle” have four
each.

A stabilizing distributed controller is designed for the mesh
interconnection of systems, by solving the following, simple
LQR problem involving only ( )

(63)
where

(64)

J

ADMM: upper bound (◦)

convex relaxation: lower bound (×)
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Concluding remarks

• Leader selection problem: noise-corrupted leaders

• Ongoing research:

? apply these algorithms to complex large networks

? utilize sparsity structure of Laplacian

• Leader selection problem: noise-free leaders (ThB04.1)

? non-convex objective function and non-convex constraints

? semidefinite relaxation

• Design of optimal sparse and block sparse feedback gains via ADMM
Lin, Fardad, Jovanović, IEEE TAC ’11 (submitted; also: arXiv:1111.6188v1)

http://arxiv.org/abs/1111.6188

