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Large dynamical networks

e ALL AROUND US

Power grid Internet Social networks

%, I 5= SN,
YOS I Z

e INTERACTIONS CAUSE COMPLEX BEHAVIOR



Northeast blackout 2003
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e The blackout was caused by a power plant going offline

US-Canada Power System Outage Task Force Final Report



Hierarchical structure of Internet

Opte project (www.opte.org)

e resilient to random failure Cohen et al., Phys. Rev. Lett. ‘00

e vulnerable to removal of high degree nodes Cohen et al., Phys. Rev. Lett. 01
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Outline
@ LEADER SELECTION PROBLEM

» Combinatorial optimization problem

® ALGORITHMS

* Convex relaxation = lower bound

* Alternating direction method of multipliers = upper bound

® EXAMPLE

® CONCLUDING REMARKS



Leader-follower consensus dynamics

e connected, undirected networks

FOLLOWERS: x;

LEADERS: z;

(1) = = Y (wi(t) — x;(t)
jEN;

(1) = = Y (w(t) — x;(t)
jEN;




Minimum variance leader selection problem

t(t) = — (L + H)z(t) + w(t)
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e assign k leaders to minimize the total steady-state variance

Ves = lim trace (S{x(t)xT(t)})
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minimize J(h) trace ((L + diag(h))™ 1)
subject to h, € {0,1}, i =1,...,N

M1 = k

e FEATURES:

*x convex objective function, linear constraint

* difficulty: Boolean constraints
I

e APPROACH:.

* convex relaxation = lower bound

* alternating direction method of multipliers = upper bound



Convex relaxation

minimize J(h) = trace ((L + diag(h))™ )
subject to h;, € 10,1, ¢ =1,...,N

'l = k

lower bound on J

SEMIDEFINITE PROGRAM:

minimize  trace (X)

X I
I L+diag(h) | ="

subject to
h; € [0,1], 1 =1,...,N

hil =k
without exploiting structure: O(N°)




minimize J(h) = trace((L+diag(h))_1)

subject to h;, € 10,1, ¢ =1,....,N

h1 = k

CUSTOMIZED INTERIOR POINT METHOD:

minimize  ytrace (L + H) ') + Z log(h
1=1
subjectto ATl = k

Newton’s method: O(N?)
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Alternating direction method of multipliers

e Step 1: introduce indicator function of the constraint set

0, h; € {0,1}, A1l = k
g(h) = .
+o00, otherwise

minimize J(h) + g(h)

e Step 2: introduce additional variable/constraint

minimize J(h) + g(z)

subjectto h — z = 0

benefit: decouples J and ¢
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e Step 3: introduce augmented Lagrangian

Loz, A) = J(h) + g(z) + NT(h = 2) + Ellh — 2|3

e Step 4: use ADMM for augmented Lagrangian minimization

ADMM:
At = argmin £,(h, 2", \")
h
ZrHL = argmin £,(h" T 2, A7)
)\7"—1—1 — N\ 4 p(hr—l—l o Zr—i—l)

MANY MODERN APPLICATIONS

Boyd et al., Foundations and Trends in Machine Learning ’11



* z-minimization problem — nonconvex, discontinuous

minimize g¢(z) + gllz — z|13

zZ = (1/p)\" + h"tt

{ 17 27; Z
GLOBAL SOLUTION: z; = _
0, z; <
4.1 ]
1.5
k=2 z = —6.7 = z =
5.2
i 3.9 |

SO = O O




Example
10 x 10 lattice
4 leaders 20 leaders
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ADMM: upper bound (o)

convex relaxation: lower bound ()
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Concluding remarks

Leader selection problem: noise-corrupted leaders

Ongoing research:

* apply these algorithms to complex large networks

* utilize sparsity structure of Laplacian

Leader selection problem: noise-free leaders (ThB04.1)

* hon-convex objective function and non-convex constraints

* semidefinite relaxation

Design of optimal sparse and block sparse feedback gains via ADMM
Lin, Fardad, Jovanovi¢, IEEE TAC 11 (submitted; also: arXiv:1111.6188v1)


http://arxiv.org/abs/1111.6188

