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.
Two-stage mixed-integer linear program (MILP)

minimize o’y + bz + v+ dTw
y)x?v7w
subject to y € Z7, x € {0,1}"
UG]RN, Ler<v<Uzx
weRN, w>0

Ay+ Bz +Cv+Dw < f

Ist-stage integer variables y € Z'': m ~ 10

2nd-stage binary variables =z € {0,1}": N =~ 10°

Coupling constraints between 1st- and 2nd-stage: O(10°)

No sparsity assumptions = Not amenable to decomposition method
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EEEE——————
Cogeneration in commercial buildings
Renewable technologies: batteries, fuel cells, solar panels, ...

@ What new technologies to invest? How many units?

o Current design problem: ~ 10 integer variables

© How to operate over a period of 10-20 years?
o Long-term operation problem: O(10°) binary variables
24 hours x 365 days x 10 years x 12 units = 1,051,200
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MILP model for cogeneration problem

minimize
YoP,g,u,u™3 w

> Ciy;
J
+ ZZGtgjt

j teT

+ ZZMjpjt

j teT

+ ZPtUt

teT

+ Z Pﬂn;lax uﬁax
meM

YD) Wiwi

j oteT i

capital cost (1st-stage)

gas cost

maintenance cost

purchased power cost

max power cost

switching cost
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Demand constraints (coupling over technologies)

e Power demand

> pjt +  w o+ WM > DP
=~ ~ -

power from techs purchased  battery

e Heat demand

Z qjt + @t > DY
5 —~— ~—~
heat from techs storage

t € Time  j € Techs (e.g., fuel cells)
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 —
Dynamical constraints (coupling over time)

o Power storage

b1 = (1— LYo, + b — pot

o Heat storage

s = (1= L9)sy + g™ — g™

efficiency loss coefficient L7, L% € (0,1)

o Boundary condition

binitial = Dfinals Sinitial = Sfinal
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 —
Operational constraints (binary variables)

@ On-off constraints for technologies

Tijt € {0,1}

e Switching constraints (coupling over time for binary variables)
Wijt > Tyji41) — Tije  switching-on decision

Wijt > Tijt — Tije+1) Switching-off decision
= wj;; € {0,1} at optimal solution
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Other constraints
e Power rating of technology

min max
Ry aije < pije < Ry wije

e Gas consumption

P
E; X gjt = Djt
~—
electric efficiency

o Heat generation

i Q
qln S E X gt
B
Input to storage thermal efficiency
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An example using commercial MILP solver: CPLEX

‘ Days  Binary  Continuous Constraint ‘

4 1,152 2,994 6,698

7 2,016 5,226 11,738
14 4,032 10,434 23,498
28 8,064 20,850 47,018
84 24,192 62,514 1.41-10°
364 1.05-10°  2.71-10° 6.11-10°

o Problem size increases linearly with horizon length

@ A ten-year model:

~ 10° binary 2.7 x 10% continuous 6.1 x 10° constraints
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An example using commercial MILP solver: CPLEX

’Days Time(s) Nodes LP-iter Bat Boil Chp Pow Stor‘

4 2 0 4,000 1 1 2 0 6
7 241 2,807 4.49-10° 2 1 0 1 0
14 1,210 10,352 2.73-105 2 1 0 1 0
28 5,690 47,770 6.02-105 2 1 0 1 0
84 18,000 11,179 2.37-10° 4 1 0 1 0

84-day reaches 5-hour limit, but relative gap still > 5%

e Exponential increase in complexity

(Can’t solve a 1-year problem)

o First-stage decisions vary as we change the horizon length

(Need to solve long horizon problems)
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Two ideas

e Primal (variable) coarsening

Daily profile representation to coarsen variables

@ Dual (constraint) coarsening

Aggregation of constraints to coarsen constraints

minimize  a’y 4+ bTx + ¢Tv 4+ dTw
y?CD?’U?w
subject to y € Z7, x € {0,1}"
UE]RN, Lr<v<Ux
w E RN, w >0

Ay+ Br+Cv+Dw < f
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Demand profiles = periodic profile + perturbations
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Similar cyclic structure in weekly, monthly, and yearly demand
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On-off operational profiles = base profile + variations

1F — — |— —7 —7 ]
0 S S— ; J__ J__ L
0 24 48 72 96
1/ — — T —7 —
O S W— - J_J_ J_ L |
0 24 48 72 96
1F =
L n I
—1k | I-l | ! —
0 24 48 72 96

Time in hours

Coarsen hourly on/off operations to daily profiles
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Coarsening hourly on/off decisions

Replace hourly z; € {0, 1} by daily profiles X} € {0,1}**

L24(i—1)
: = Zi“ika and Ty, € {0,1}, Z Ty =1
Coti1 kek kek

= 1f ]
?
g M
© 0 Coarsening
8 1F : 7 Choose different daily
°§ ‘ | ‘ | H ‘ ”| operational profile to
[ 0 meet demand

0 24 48

Hours
.. reduce problem size of MILP by order of magnitude
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Coarsening hourly continuous variables
Profile 1 Profile 2
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S ———
Primal variable coarsening (Semi-coarse model)

minimize aTy +bTz+éo+d"w

y7x7/u7w

] =

subject to Zg =1, Ty € {0,1} Coarsened binary vars.
k=1
K I I
ZZ Vijr = 1, Z%szik, 0 <o, <1
k=1 j=1 j=1

E wi; =1, 0<w;; <1 Coarsened continuous vars.

Ay + Bz +Cv+ Dw < f Profiles embedded in B,C, D
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Feasible solution and upper bound

Fact: Let (Z,v,w) be a feasible point of the semi-coarse model. Then it
follows that the corresponding fine-scale variables (z,v,w) are feasible
in the original MILP.

Fact: The semi-coarse model is a tightening of the original MILP, and
its solution provides an upper bound. The two problems are equivalent
if the optimal profiles from the solution of are included in the
semi-coarse model.



S ———
Dual constraint coarsening (Coarse model)

o Still have many hourly constraints

Ay+ Bz +Co+Dw< f

@ Sum m consecutive rows over one period (e.g., m = 24)

011 Cln fl
(o Crmn fm

=+ (Z%) Ui+ (Z%) Unt-- <Y Sy
t=1 t=1 t=1

Reduce the number of constraints by a factor of m
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Related work on aggregation techniques

e Zipkin 1980, 1981, ...

Bounds on row/column-aggregation in linear programs

o Birge 1985, Clay and Grossmann 1997, ...

Constraint aggregation in stochastic programs

o Balas 1965, Glover 1968, 1977, Geoffrion 1969, ...

Surrogate constraints in pure integer programs

o Rogers et al. 91, ...

Aggregation and disaggregation in optimization

o Elhallaoui et al. 05, ...

Dynamic aggregation of constraints in column generation
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S ———
Dual constraint coarsening (Coarse model)

minimize  aly + b7z + el v +dlw

y’x?v,w

K
subject to Z@k =1, Zy €{0,1} Coarsened binary vars.

k=1
K I Iy,
E E Uik = 1, E Vijk = Tig, 0 < U5, <1
k=1 j=1 j=1

J
E wi; =1, 0<w;; <1 Coarsened continuous vars.
Jj=1

Ay + Bt + Co + D@ < f Aggregated daily constraints
o Add violated constraints and resolve until satisfying all constraints
in the semi-coarse model

MILPs do NOT warm start (Use LP-relaxation warm start)
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Algorithm for solving the semi-coarse model

Phase I: LP warm-start
Solve LP-relaxation of coarse model
while Not feasible in the LP-relaxation of the semi-coarse model do
Add violated constraints

Solve the LP-relaxation of the coarse model
end

Phase II: MILP iterations
Solve coarse MILP with constraints identified in Phase I
while Not feasible in the semi-coarse MILP model do
Add violated constraints

Solve the coarse MILP model
end
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LP warm-start phase

Solving one-year coarse model
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LP warm-start iterates

o Fewer constraints added as LP iterates progress

o Almost negligible cost compared with MILP
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Effect of LP warm-start

Constraints

Solving one-year coarse model with or without LP warm-start

1

2 3 4 5 6
MILP iterates

WITH LP WARM-START:

o Fewer MILP iterates
@ Orders of magnitude faster in each MILP iterate
observed in different types of building examples
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23 /31



So far ...

A large two-stage MILP with coupling constraints
= beyond state-of-the-art MILP solvers

o Primal variable coarsening

Daily profile representation =- semi-coarse MILP model

@ Dual constraint coarsening

Constraint aggregation =- coarse MILP model
@ Iterative resolve coarse model with added constraints

Next: Profile generation and selection
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.
Profile generation: Moving horizon method

@ Solve a large number of small full model MILPs

Solve a small MIP problem
Within the current window

- \ Window rolling direction

>
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L LT
= 4 daily on-off profiles
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Profile selection
e Sampling techniques (uniform or frequency-based)
e Envelope methods (profiles with max/min ¢; or {5, norms)

o Clustering algorithms (k-means with f»-distance)

300

2501

2001

1501

1001

50

25

k-means with 2-3 cluster centers (bold) works well in practice
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Solving coarse MILPs for a ten-year model

Iter Binary Continuous Constraint Objective Value
1 131,040 254,935 589,321 3,797,389.08
2 131,040 254,935 589,617 3,797,565.30
3 131,040 254,935 589,629 3,797,568.94

Iter  Time  Nodes LP-iter Bat Boil Chp Pow Stor ‘
1 782183 3,620 1.06-10° 0 1 1 1 1
2 1,341.28 472 2.38 - 10° 0 1 1 1 1
3 1,125.19 938  1.47-10° 0 1 1 1 1

Solution of the first iterate is remarkably good!

o Close objective value (up to 4 digits)

o Consistent first-stage solutions

observed in different types of building examples
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.
Problem size for the full, semi-coarse and coarse models

106 109
1 B [ ] % [
2 2 |
£ 05) 1 £
M g B |
(@]
0L | [ | | ] 0 I | | |
12 4 6 8 10
Years
z O
'CE@ 4 —e— Full Model
[ .
% —=— Semi-Coarse
é 2 —eo— Coarse Model
0

a 28 /31



.
Solution time for different types of building examples

Full model Coarse model
104 [ T T T L0t i T T T ;
) o = s
] D [ d
= 10%| = 10°F E
Q <] = .
= g § §
BT =102 £
‘ ‘ ‘ ‘ i | | L]
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—e— School —#— SuperMarket —e— Restaurant —— Retail —— Hospital

@ Much more scalable with time horizon

o Less variability with different buildings
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Conclusions

o A multi-level approach for large two-stage MILP

with O(10°) binary, continuous vars, and coupling constraints
o Profile representation for binary and continuous variables

o Aggregation of constraints with LP warm-start

LP warm-start works very well for MILP resolves

More details: Preprint ANL/MCS-P5332-0415

Fu Lin, Sven Leyffer, and Todd Munson
A Two-Level Approach to Large Mixed-Integer Programs with
Application to Cogeneration in Energy-Efficient Buildings

AMPL codes publicly available at

http://www.mcs.anl.gov/~fulin/codes/DistrGen.zip.
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http://www.mcs.anl.gov/~fulin/codes/DistrGen.zip

Wish list and extensions

o Wish list:

@ How to analyze upper bounds?
@ How to obtain lower bounds?

© How to dynamically add/remove profiles?

o Extensions:

@ Transmission expansion problem

(Francisco Munoz & Jean-Paul Watson at Sandia)

@ Multi-level graph analysis for MILP
(Mahantesh Halappanavar at PNNL)

@ Connections to multigrid and receding-horizon control
(Victor Zavala at ANL)
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