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Two-stage mixed-integer linear program (MILP)

minimize
y,x,v,w

aT y + bTx + cT v + dTw

subject to y ∈ Zm
+ , x ∈ {0, 1}N

v ∈ RN , Lx ≤ v ≤ Ux

w ∈ RN , w ≥ 0

Ay + Bx + Cv + Dw ≤ f

1st-stage integer variables y ∈ Zm
+ : m ≈ 10

2nd-stage binary variables x ∈ {0, 1}N : N ≈ 106

Coupling constraints between 1st- and 2nd-stage: O(106)

No sparsity assumptions ⇒ Not amenable to decomposition method
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Cogeneration in commercial buildings
Renewable technologies: batteries, fuel cells, solar panels, . . .

1 What new technologies to invest? How many units?

Current design problem: ≈ 10 integer variables

2 How to operate over a period of 10-20 years?

Long-term operation problem: O(106) binary variables

24 hours × 365 days × 10 years × 12 units = 1, 051, 200
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MILP model for cogeneration problem

minimize
y,p,g,u,umax,w

∑
j

Cj yj capital cost (1st-stage)

+
∑
j

∑
t∈T

Gt gjt gas cost

+
∑
j

∑
t∈T

Mj pjt maintenance cost

+
∑
t∈T

Pt ut purchased power cost

+
∑
m∈M

Pmax
m umax

m max power cost

+
∑
j

∑
t∈T

∑
i

Wj wijt switching cost
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Demand constraints (coupling over technologies)

Power demand∑
j

pjt︸︷︷︸
power from techs

+ ut︸︷︷︸
purchased

+ bout
t︸︷︷︸

battery

≥ DP
t

Heat demand ∑
j

qjt︸︷︷︸
heat from techs

+ qout
t︸︷︷︸

storage

≥ DQ
t

t ∈ Time j ∈ Techs (e.g., fuel cells)
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Dynamical constraints (coupling over time)

Power storage

bt+1 = (1− LP )bt + bin
t − bout

t

Heat storage

st+1 = (1− LQ)st + qin
t − qout

t

efficiency loss coefficient LP , LQ ∈ (0, 1)

Boundary condition

binitial = bfinal, sinitial = sfinal
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Operational constraints (binary variables)

On-off constraints for technologies

xijt ∈ {0, 1}

Switching constraints (coupling over time for binary variables)

wijt ≥ xij(t+1) − xijt switching-on decision

wijt ≥ xijt − xij(t+1) switching-off decision

⇒ wijt ∈ {0, 1} at optimal solution
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Other constraints

Power rating of technology

Rmin
j xijt ≤ pijt ≤ Rmax

j xijt

Gas consumption

EP
j︸︷︷︸

electric efficiency

× gjt = pjt

Heat generation

qin
t︸︷︷︸

input to storage

≤
∑
j

EQ
j︸︷︷︸

thermal efficiency

× gjt
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An example using commercial MILP solver: CPLEX

Days Binary Continuous Constraint

4 1,152 2,994 6,698
7 2,016 5,226 11,738
14 4,032 10,434 23,498
28 8,064 20,850 47,018
84 24,192 62,514 1.41 · 105

364 1.05 · 105 2.71 · 105 6.11 · 105

Problem size increases linearly with horizon length

A ten-year model:

≈ 106 binary 2.7× 106 continuous 6.1× 106 constraints
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An example using commercial MILP solver: CPLEX

Days Time(s) Nodes LP-iter Bat Boil Chp Pow Stor

4 2 0 4,000 1 1 2 0 6
7 241 2,807 4.49 · 105 2 1 0 1 0
14 1,210 10,352 2.73 · 106 2 1 0 1 0
28 5,690 47,770 6.02 · 106 2 1 0 1 0
84 18,000 11,179 2.37 · 106 4 1 0 1 0

84-day reaches 5-hour limit, but relative gap still ≥ 5%

Exponential increase in complexity

(Can’t solve a 1-year problem)

First-stage decisions vary as we change the horizon length

(Need to solve long horizon problems)
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Two ideas

Primal (variable) coarsening

Daily profile representation to coarsen variables

Dual (constraint) coarsening

Aggregation of constraints to coarsen constraints

minimize
y,x,v,w

aT y + bTx + cT v + dTw

subject to y ∈ Zm
+ , x ∈ {0, 1}N

v ∈ RN , Lx ≤ v ≤ Ux

w ∈ RN , w ≥ 0

Ay + Bx + Cv + Dw ≤ f
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Demand profiles = periodic profile + perturbations

0 24 48 72 96
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300

0 24 48 72 96
100
200
300

0 24 48 72 96
−50

0
50
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150

Time in hours

Similar cyclic structure in weekly, monthly, and yearly demand
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On-off operational profiles = base profile + variations

0 24 48 72 96
0

1

0 24 48 72 96
0

1

0 24 48 72 96
−1

0
1

Time in hours

Coarsen hourly on/off operations to daily profiles
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Coarsening hourly on/off decisions

Replace hourly xt ∈ {0, 1} by daily profiles Xk ∈ {0, 1}24

 x24(i−1)
...

x24i−1

 =
∑
k∈K

x̄ikXk and x̄ik ∈ {0, 1},
∑
k∈K

x̄ik = 1

0

1

O
n

-o
ff

0 24 48
0

1

Hours

P
ro

fi
le

s

Coarsening

Choose different daily
operational profile to
meet demand

... reduce problem size of MILP by order of magnitude
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Coarsening hourly continuous variables

Profile 1 Profile 2

0

1

O
n

-o
ff

0

1

P
ro

d
u

ct
io

n

Hours Hours

vi =

K∑
k=1

Ik∑
j=1

v̄ijkVjk, 0 ≤ v̄ijk ≤ 1,

K∑
k=1

Ik∑
j=1

v̄ijk = 1,

Ik∑
j=1

v̄ijk = x̄ik
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Primal variable coarsening (Semi-coarse model)

minimize
y,x̄,v̄,w̄

aT y + b̄T x̄ + c̄T v̄ + d̄T w̄

subject to

K∑
k=1

x̄ik = 1, x̄ik ∈ {0, 1} Coarsened binary vars.

K∑
k=1

Ik∑
j=1

v̄ijk = 1,

Ik∑
j=1

v̄ijk = x̄ik, 0 ≤ v̄ijk ≤ 1

J∑
j=1

w̄ij = 1, 0 ≤ w̄ij ≤ 1 Coarsened continuous vars.

Ay + B̄x̄ + C̄v̄ + D̄w̄ ≤ f Profiles embedded in B̄, C̄, D̄

16 / 31



Feasible solution and upper bound

Fact: Let (x̄, v̄, w̄) be a feasible point of the semi-coarse model. Then it
follows that the corresponding fine-scale variables (x, v, w) are feasible
in the original MILP.

Fact: The semi-coarse model is a tightening of the original MILP, and
its solution provides an upper bound. The two problems are equivalent
if the optimal profiles from the solution of are included in the
semi-coarse model.
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Dual constraint coarsening (Coarse model)

Still have many hourly constraints

Ay + B̄x̄ + C̄v̄ + D̄w̄ ≤ f

Sum m consecutive rows over one period (e.g., m = 24)

· · ·+

 C11
...

Cm1

 v̄1 + · · ·+

 C1n
...

Cmn

 v̄n + · · · ≤

 f1
...
fm



⇒ · · ·+

(
m∑
t=1

Ct1

)
v̄1 + · · ·+

(
m∑
t=1

Ctn

)
v̄n + · · · ≤

m∑
t=1

ft

Reduce the number of constraints by a factor of m
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Related work on aggregation techniques

Zipkin 1980, 1981, . . .

Bounds on row/column-aggregation in linear programs

Birge 1985, Clay and Grossmann 1997, . . .

Constraint aggregation in stochastic programs

Balas 1965, Glover 1968, 1977, Geoffrion 1969, . . .

Surrogate constraints in pure integer programs

Rogers et al. ’91, . . .

Aggregation and disaggregation in optimization

Elhallaoui et al. ’05, . . .

Dynamic aggregation of constraints in column generation
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Dual constraint coarsening (Coarse model)

minimize
y,x̄,v̄,w̄

aT y + b̄T x̄ + c̄T v̄ + d̄T w̄

subject to

K∑
k=1

x̄ik = 1, x̄ik ∈ {0, 1} Coarsened binary vars.

K∑
k=1

Ik∑
j=1

v̄ijk = 1,

Ik∑
j=1

v̄ijk = x̄ik, 0 ≤ v̄ijk ≤ 1

J∑
j=1

w̄ij = 1, 0 ≤ w̄ij ≤ 1 Coarsened continuous vars.

Ây + ˆ̄Bx̄ + ˆ̄Cv̄ + ˆ̄Dw̄ ≤ f̂ Aggregated daily constraints

Add violated constraints and resolve until satisfying all constraints
in the semi-coarse model

MILPs do NOT warm start (Use LP-relaxation warm start)
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Algorithm for solving the semi-coarse model

Phase I: LP warm-start

Solve LP-relaxation of coarse model

while Not feasible in the LP-relaxation of the semi-coarse model do

Add violated constraints

Solve the LP-relaxation of the coarse model
end

Phase II: MILP iterations

Solve coarse MILP with constraints identified in Phase I

while Not feasible in the semi-coarse MILP model do

Add violated constraints

Solve the coarse MILP model
end
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LP warm-start phase

Solving one-year coarse model
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Fewer constraints added as LP iterates progress

Almost negligible cost compared with MILP
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Effect of LP warm-start

Solving one-year coarse model with or without LP warm-start
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With LP warm-start:

Fewer MILP iterates

Orders of magnitude faster in each MILP iterate

observed in different types of building examples
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So far . . .

A large two-stage MILP with coupling constraints

⇒ beyond state-of-the-art MILP solvers

Primal variable coarsening

Daily profile representation ⇒ semi-coarse MILP model

Dual constraint coarsening

Constraint aggregation ⇒ coarse MILP model

Iterative resolve coarse model with added constraints

Next: Profile generation and selection
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Profile generation: Moving horizon method

Solve a large number of small full model MILPs

Extract profiles from solutions of small MILPs

0 24 48 72 96
0

1

O
n

-o
ff

⇒ 4 daily on-off profiles
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Profile selection

Sampling techniques (uniform or frequency-based)

Envelope methods (profiles with max/min `1 or `∞ norms)

Clustering algorithms (k-means with `2-distance)

k-means with 2-3 cluster centers (bold) works well in practice
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Solving coarse MILPs for a ten-year model

Iter Binary Continuous Constraint Objective Value

1 131,040 254,935 589,321 3,797,389.08
2 131,040 254,935 589,617 3,797,565.30
3 131,040 254,935 589,629 3,797,568.94

Iter Time Nodes LP-iter Bat Boil Chp Pow Stor

1 7,821.83 3,620 1.06 · 106 0 1 1 1 1
2 1,341.28 472 2.38 · 105 0 1 1 1 1
3 1,125.19 938 1.47 · 105 0 1 1 1 1

Solution of the first iterate is remarkably good!

Close objective value (up to 4 digits)

Consistent first-stage solutions

observed in different types of building examples
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Problem size for the full, semi-coarse and coarse models
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Solution time for different types of building examples

Full model Coarse model
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School SuperMarket Restaurant Retail Hospital

Much more scalable with time horizon

Less variability with different buildings
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Conclusions

A multi-level approach for large two-stage MILP

with O(106) binary, continuous vars, and coupling constraints

Profile representation for binary and continuous variables

Aggregation of constraints with LP warm-start

LP warm-start works very well for MILP resolves

More details: Preprint ANL/MCS-P5332-0415

Fu Lin, Sven Leyffer, and Todd Munson

A Two-Level Approach to Large Mixed-Integer Programs with

Application to Cogeneration in Energy-Efficient Buildings

AMPL codes publicly available at

http://www.mcs.anl.gov/∼fulin/codes/DistrGen.zip.
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Wish list and extensions

Wish list:

1 How to analyze upper bounds?

2 How to obtain lower bounds?

3 How to dynamically add/remove profiles?

Extensions:

1 Transmission expansion problem

(Francisco Munoz & Jean-Paul Watson at Sandia)

2 Multi-level graph analysis for MILP

(Mahantesh Halappanavar at PNNL)

3 Connections to multigrid and receding-horizon control

(Victor Zavala at ANL)
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