

On a combinatorial optimization problem involving the graph Laplacian matrix

Fu Lin 1 Makan Fardad 2 Mihailo Jovanović 3

¹Argonne National Laboratory

 $^2 {\rm Syracuse} \ {\rm University}$

³University of Minnesota

October 25, 2013

Optimization and control of dynamical systems on networks

Specific topics:

- Localized control of vehicular formations
- Sparsity-promoting optimal control
- Sparse consensus networks
- Leader selection in consensus networks

Localized control of vehicular formations

Localized control of vehicular formations

Sparsity-promoting optimal control

Localized control of vehicular formations

Sparsity-promoting optimal control

 p_1, u_1, d_1

Fictitious

leader

Localized control of vehicular formations

Fictitious

follower

Sparsity-promoting optimal control

Sparse consensus networks

Leader selection

CHALLENGES:

- Networks combinatorial objects
- Optimization constrained nonconvex problems

CHALLENGES:

- Networks combinatorial objects
- Optimization constrained nonconvex problems

Approach:

- Identify classes of convex problems (or relaxations)
- Exploit problem structure to develop efficient algorithms

In this talk: Leader selection

• A combinatorial problem involving graph Laplacian

• Applications in vehicular formations and sensor localization

• Lower and upper bounds on global optimal solutions

• Examples from regular lattices and random networks

The problem

 \bullet Given the Laplacian matrix of a connected graph $L \in \mathbb{R}^{n \times n}$

delete k columns and rows such that

The problem

 \bullet Given the Laplacian matrix of a connected graph $L \in \mathbb{R}^{n \times n}$

delete k columns and rows such that

minimize trace
$$\left(L_{f}^{-1}\right)$$

$$L_f$$
 is the principal submatrix in $L = \begin{bmatrix} L_l & L_0^T \\ L_0 & L_f \end{bmatrix}$

Deleting one column and one row

$$L = \begin{bmatrix} 1 - 1 & 0 & 0 & 0 \\ -1 & 2 - 1 & 0 & 0 \\ 0 - 1 & 2 - 1 & 0 \\ 0 & 0 - 1 & 2 - 1 \\ 0 & 0 & 0 - 1 & 1 \end{bmatrix}$$

Deleting one column and one row

delete 1st row and col.

$$L_f = \begin{bmatrix} 2 - 1 & 0 & 0 \\ -1 & 2 - 1 & 0 \\ 0 & -1 & 2 - 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

 $L = \begin{bmatrix} 1 - 1 & 0 & 0 & 0 \\ -1 & 2 - 1 & 0 & 0 \\ 0 & -1 & 2 - 1 & 0 \\ 0 & 0 & -1 & 2 - 1 \\ 0 & 0 & 0 - 1 & 1 \end{bmatrix}$

Deleting one column and one row

$$L = \begin{bmatrix} 1 - 1 & 0 & 0 & 0 \\ -1 & 2 - 1 & 0 & 0 \\ 0 - 1 & 2 - 1 & 0 \\ 0 & 0 - 1 & 2 - 1 \\ 0 & 0 & 0 - 1 & 1 \end{bmatrix}$$

delete 1st row and col.

2nd row and col.

$$L_f = \begin{bmatrix} 2 - 1 & 0 & 0 \\ -1 & 2 - 1 & 0 \\ 0 & -1 & 2 - 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 - 1 & 0 \\ 0 & -1 & 2 - 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

 $L = \begin{bmatrix} 1 - 1 & 0 & 0 & 0 \\ -1 & 2 - 1 & 0 & 0 \\ 0 & -1 & 2 - 1 & 0 \\ 0 & 0 & -1 & 2 - 1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$ Deleting one column and one row

delete 1st row and col. 2nd row and col. 3rd row and col. $L_f = \begin{bmatrix} 2 - 1 & 0 & 0 \\ -1 & 2 - 1 & 0 \\ 0 & -1 & 2 - 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$

 $L = \begin{bmatrix} 1 - 1 & 0 & 0 & 0 \\ -1 & 2 - 1 & 0 & 0 \\ 0 & -1 & 2 - 1 & 0 \\ 0 & 0 & -1 & 2 - 1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$ Deleting one column and one row

delete 1st row and col. 2nd row and col. 3rd row and col. $L_f = \begin{bmatrix} 2 - 1 & 0 & 0 \\ -1 & 2 - 1 & 0 \\ 0 & -1 & 2 - 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$

$$\operatorname{trace}\left(L_{f}^{-1}\right) = 10, \quad 7, \quad 6$$

FOLLOWER:
$$\dot{\psi}_i(t) = -\sum_{j \in \mathcal{N}_i} (\psi_i(t) - \psi_j(t)) + w_i(t) \leftarrow \text{noise}$$

FOLLOWER:
$$\dot{\psi}_i(t) = -\sum_{j \in \mathcal{N}_i} (\psi_i(t) - \psi_j(t)) + w_i(t) \leftarrow \text{noise}$$

LEADER: $\dot{\psi}_i(t) = 0$ no deviation from desired trajectory

FOLLOWER:
$$\dot{\psi}_i(t) = -\sum_{j \in \mathcal{N}_i} (\psi_i(t) - \psi_j(t)) + w_i(t) \leftarrow \text{noise}$$

LEADER: $\dot{\psi}_i(t) = 0$ no deviation from desired trajectory

• Select k leaders to minimize the variance of followers

• GOAL: Estimate n sensor positions in $1D \quad \psi \in \mathbb{R}^n$

• GOAL: Estimate n sensor positions in 1D $\psi \in \mathbb{R}^n$

Relative measurements corrupted by white noise

$$y_r = \psi_i - \psi_j + w_r$$

• GOAL: Estimate n sensor positions in 1D $\psi \in \mathbb{R}^n$

Relative measurements corrupted by white noise

$$y_r = \psi_i - \psi_j + w_r$$

$$y \;=\; E^T \psi \;+\; w$$

• GOAL: Estimate n sensor positions in 1D $\psi \in \mathbb{R}^n$

Relative measurements corrupted by white noise

$$y_r = \psi_i - \psi_j + w_i$$
$$y = E^T \psi + w$$

Anchor nodes with known positions ψ_l

$$y \; = \; \left[\begin{matrix} E_l \\ E_f \end{matrix} \right]^T \left[\begin{matrix} \pmb{\psi_l} \\ \psi_f \end{matrix} \right] \; + \; w$$

Laplacian of measurement graph

$$L = EE^{T} = \begin{bmatrix} E_{l}E_{l}^{T} & E_{l}E_{f}^{T} \\ E_{f}E_{l}^{T} & E_{f}E_{f}^{T} \end{bmatrix} = \begin{bmatrix} L_{l} & L_{0}^{T} \\ L_{0} & L_{f} \end{bmatrix}$$

Laplacian of measurement graph

$$L = EE^{T} = \begin{bmatrix} E_{l}E_{l}^{T} & E_{l}E_{f}^{T} \\ E_{f}E_{l}^{T} & E_{f}E_{f}^{T} \end{bmatrix} = \begin{bmatrix} L_{l} & L_{0}^{T} \\ L_{0} & L_{f} \end{bmatrix}$$

Total variance of estimation error

trace
$$\left(L_f^{-1}\right)$$

Laplacian of measurement graph

$$L = EE^{T} = \begin{bmatrix} E_{l}E_{l}^{T} & E_{l}E_{f}^{T} \\ E_{f}E_{l}^{T} & E_{f}E_{f}^{T} \end{bmatrix} = \begin{bmatrix} L_{l} & L_{0}^{T} \\ L_{0} & L_{f} \end{bmatrix}$$

Total variance of estimation error

trace
$$\left(L_f^{-1}\right)$$

• Select k anchors to minimize variance of estimation error

Laplacian of measurement graph

$$L = EE^{T} = \begin{bmatrix} E_{l}E_{l}^{T} & E_{l}E_{f}^{T} \\ E_{f}E_{l}^{T} & E_{f}E_{f}^{T} \end{bmatrix} = \begin{bmatrix} L_{l} & L_{0}^{T} \\ L_{0} & L_{f} \end{bmatrix}$$

Total variance of estimation error

trace
$$\left(L_f^{-1}\right)$$

• Select k anchors to minimize variance of estimation error

many other applications in networks...

Related work

- Greedy algorithms with approximations
 Patterson and Bamieh '10
- Submodular optimization with performance guarantees Clark and Poovendran '11, Clark et al. '12, '13
- Semidefinite programming for related sensor selection problem Joshi and Boyd '09
- Information-centrality-based approach

Fitch and Leonard '13

In this talk

- Related problem on diagonally strengthened graph Laplacian
- Efficient algorithms for bounds on global optimal value
 - Convex relaxations lower bounds
 - Greedy algorithms upper bounds (exploiting low-rank structure)
- Examples from regular lattices and random networks

Diagonally strengthened graph Laplacian

• Arise in several applications

• Give insights to submatrix selection problem

• Easier to solve ;-)

Diagonally strengthened graph Laplacian

• Given L and $\alpha > 0$, select k diagonal elements of L to strengthen

minimize
$$J(x) = \operatorname{trace} \left((L + \alpha \operatorname{diag} (x))^{-1} \right)$$

subject to $x_i \in \{0, 1\}, \quad i = 1, \dots, n$
 $\mathbb{1}^T x = k$

Diagonally strengthened graph Laplacian

• Given L and $\alpha > 0$, select k diagonal elements of L to strengthen

minimize
$$J(x) = \operatorname{trace} \left((L + \alpha \operatorname{diag} (x))^{-1} \right)$$

subject to $x_i \in \{0, 1\}, \quad i = 1, \dots, n$
 $\mathbbm{1}^T x = k$

Recover submatrix selection problem $\alpha \rightarrow \infty$

$$\begin{bmatrix} L_l + \alpha I \ L_0^T \\ L_0 \ L_f \end{bmatrix}^{-1} \rightarrow \begin{bmatrix} 0 & 0 \\ 0 \ L_f^{-1} \end{bmatrix}$$

Interpretation: Noise-corrupted leaders

FOLLOWERS:
$$\dot{\psi}_i(t) = -\sum_{j \in \mathcal{N}_i} (\psi_i(t) - \psi_j(t)) + w_i(t)$$

LEADERS:
$$\dot{\psi}_i(t) = -\sum_{j \in \mathcal{N}_i} (\psi_i(t) - \psi_j(t)) - \alpha \psi_i(t) + w_i(t)$$

 $\alpha > 0$

Interpretation: Noise-corrupted leaders

FOLLOWERS:
$$\dot{\psi}_i(t) = -\sum_{j \in \mathcal{N}_i} (\psi_i(t) - \psi_j(t)) + w_i(t)$$

LEADERS:
$$\dot{\psi}_i(t) = -\sum_{j \in \mathcal{N}_i} (\psi_i(t) - \psi_j(t)) - \alpha \psi_i(t) + w_i(t)$$

 $\alpha > 0$

Leaders have GPS devices and know their own positions

$$\dot{\psi}(t) = -(L + \alpha \operatorname{diag}(x))\psi(t) + w(t)$$

 $x_i \in \{0,1\}, \quad 1 - \text{Leader}, \quad 0 - \text{Follower}$
$$\dot{\psi}(t) = - (L + \alpha \operatorname{diag}(x)) \psi(t) + w(t)$$

 $x_i \in \{0,1\}$, 1 - Leader, 0 - Follower

Algorithms for noise-corrupted formulation

minimize
$$J(x) = \operatorname{trace} \left((L + \alpha \operatorname{diag} (x))^{-1} \right)$$

subject to $x_i \in \{0, 1\}, \quad i = 1, \dots, n$
 $\mathbb{1}^T x = k$

38 / 97

Algorithms for noise-corrupted formulation

minimize
$$J(x) = \operatorname{trace} \left((L + \alpha \operatorname{diag} (x))^{-1} \right)$$

subject to $x_i \in \{0, 1\}, \quad i = 1, \dots, n$
 $\mathbb{1}^T x = k$

FEATURES:

- Convex objective function
- Boolean constraints

Algorithms for noise-corrupted formulation

minimize
$$J(x) = \operatorname{trace} \left((L + \alpha \operatorname{diag} (x))^{-1} \right)$$

subject to $x_i \in \{0, 1\}, \quad i = 1, \dots, n$
 $\mathbb{1}^T x = k$

FEATURES:

- Convex objective function
- Boolean constraints

APPROACH:

- Convex relaxation \Rightarrow lower bound
- Greedy algorithm \Rightarrow upper bound

Convex relaxation

 $\begin{array}{lll} \underset{x}{\operatorname{minimize}} & J(x) \ = \ \operatorname{trace}\left((L \ + \ \alpha \ \operatorname{diag}\,(x))^{-1}\right) \\ \\ \text{subject to} & \quad \begin{array}{c} x_i \ \in \ [0,1], \\ \\ & \quad \begin{array}{c} i \ = \ 1, \dots, n \end{array} \\ \\ & \quad \begin{array}{c} \mathbbm{1}^T x \ = \ k \end{array} \end{array}$

Enlarge feasible set \Rightarrow lower bound

Convex relaxation

minimize $J(x) = \operatorname{trace} \left((L + \alpha \operatorname{diag} (x))^{-1} \right)$ subject to $x_i \in [0, 1], \quad i = 1, \dots, n$ $\mathbb{1}^T x = k$

Enlarge feasible set \Rightarrow lower bound

• SDP formulation with complexity $O(n^4)$ – number of nodes

• Customized interior point method $O(n^3)$

Greedy algorithm

• One-leader-at-a-time

$$L + \alpha e_i e_i^T$$

RANK-1 UPDATE: $O(n^2)$ per leader

number of leaders $k \ll n \Rightarrow O(n^3)$ with one matrix inverse

Greedy algorithm

• One-leader-at-a-time

$$L + \alpha e_i e_i^T$$

RANK-1 UPDATE: $O(n^2)$ per leader

number of leaders $k \ll n \Rightarrow O(n^3)$ with one matrix inverse

After selecting k leaders

• Swap a leader and a follower

$$L - \alpha e_i e_i^T + \alpha e_j e_j^T$$

RANK-2 UPDATE: $O(n^2)$ per swap

Recap

minimize
$$J(x) = \operatorname{trace} \left((L + \alpha \operatorname{diag} (x))^{-1} \right)$$

subject to $x_i \in \{0, 1\}, \quad i = 1, \dots, n$
 $\mathbb{1}^T x = k$

Convex relaxation ⇒ lower bound

Standard SDP formulation $O(n^4)$

Customized interior point method $O(n^3)$

• Greedy algorithm \Rightarrow upper bound

Without exploiting structure $O(n^4k)$

Low rank updates $O(\max\{n^3, n^2k\})$

Lin, Fardad, and Jovanović, IEEE CDC '11

A random network with $100 \ \mathrm{nodes}$

Lower and upper bounds

Lower and upper bounds

Gap between bounds

Few leaders vs. many leaders

Few leaders vs. many leaders

Few leaders vs. many leaders

• Few leaders: Partition graphs and spread leaders

• Many leaders: Boundary with low-degree nodes

A 2D lattice

Leaders spread out from center

Δ

• Principal submatrix of graph Laplacian (noise-free leaders)

• Applications in vehicular formations and sensor localization

• Diagonally strengthened Laplacian (noise-corrupted leaders)

• Algorithms for lower and upper bounds on global solutions

• Alternative formulation for noise-free leader selection

• Algorithms for lower and upper bounds on global solutions

• A flexible framework - amenable to other applications

$$J_f(x) = \operatorname{trace}(L_f^{-1})$$
 NOT EXPLICIT IN x

 $x_i \in \{0,1\}, \quad 1 - \text{Leader}, \quad 0 - \text{Follower}$

$$J_{f}(x) = \operatorname{trace} (L_{f}^{-1}) \quad \text{NOT EXPLICIT IN } x$$
$$x_{i} \in \{0,1\}, \quad 1 - \operatorname{LEADER}, \quad 0 - \operatorname{FOLLOWER}$$
With permutation :
$$L = \begin{bmatrix} L_{l} \ L_{0}^{T} \\ L_{0} \ L_{f} \end{bmatrix}, \quad x = \begin{bmatrix} 1_{k} \\ 0_{n-k} \end{bmatrix}$$

$$J_{f}(x) = \operatorname{trace} (L_{f}^{-1}) \quad \text{NOT EXPLICIT IN } x$$
$$x_{i} \in \{0,1\}, \quad 1 - \operatorname{LEADER}, \quad 0 - \operatorname{FOLLOWER}$$
With permutation :
$$L = \begin{bmatrix} L_{l} \ L_{0}^{T} \\ L_{0} \ L_{f} \end{bmatrix}, \quad x = \begin{bmatrix} \mathbb{1}_{k} \\ 0_{n-k} \end{bmatrix}$$

$$L \circ ((\mathbb{1} - x)(\mathbb{1} - x)^T) = \begin{bmatrix} L_l & L_0^T \\ L_0 & L_f \end{bmatrix} \circ \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & L_f \end{bmatrix}$$

$$J_{f}(x) = \operatorname{trace} (L_{f}^{-1}) \qquad \text{NOT EXPLICIT IN } x$$
$$x_{i} \in \{0, 1\}, \quad 1 - \operatorname{LEADER}, \quad 0 - \operatorname{FOLLOWER}$$
With permutation :
$$L = \begin{bmatrix} L_{l} \ L_{0}^{T} \\ L_{0} \ L_{f} \end{bmatrix}, \quad x = \begin{bmatrix} 1_{k} \\ 0_{n-k} \end{bmatrix}$$
$$L \circ ((\mathbb{1} - x)(\mathbb{1} - x)^{T}) = \begin{bmatrix} L_{l} \ L_{0}^{T} \\ L_{0} \ L_{f} \end{bmatrix} \circ \begin{bmatrix} 0 \ 0 \\ 0 \ 1 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \\ 0 \ L_{f} \end{bmatrix}$$

$$[L \circ ((\mathbb{1} - x)(\mathbb{1} - x)^T) + \operatorname{diag}(x)]^{-1} = \begin{bmatrix} I_k & 0\\ 0 & L_f^{-1} \end{bmatrix}$$

$$J_{f}(x) = \operatorname{trace} \left(L_{f}^{-1}\right) \quad \text{NOT EXPLICIT IN } x$$

$$x_{i} \in \{0,1\}, \quad 1 - \operatorname{LEADER}, \quad 0 - \operatorname{FOLLOWER}$$
With permutation :
$$L = \begin{bmatrix} L_{l} \ L_{0}^{T} \\ L_{0} \ L_{f} \end{bmatrix}, \quad x = \begin{bmatrix} 1_{k} \\ 0_{n-k} \end{bmatrix}$$

$$L \circ \left((\mathbb{1} - x)(\mathbb{1} - x)^{T}\right) = \begin{bmatrix} L_{l} \ L_{0}^{T} \\ L_{0} \ L_{f} \end{bmatrix} \circ \begin{bmatrix} 0 \ 0 \\ 0 \ 1 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \\ 0 \ L_{f} \end{bmatrix}$$

$$\left[L \circ \left((\mathbb{1} - x)(\mathbb{1} - x)^{T}\right) + \operatorname{diag}(x)\right]^{-1} = \begin{bmatrix} I_{k} \ 0 \\ 0 \ L_{f}^{-1} \end{bmatrix}$$

 $J_f(x) = \operatorname{trace} \left([L \circ ((\mathbb{1} - x)(\mathbb{1} - x)^T) + \operatorname{diag} (x)]^{-1} \right) - k$

$$J_f(x) = \operatorname{trace} \left([L \circ ((\mathbb{1} - x)(\mathbb{1} - x)^T) + \operatorname{diag} (x)]^{-1} \right) - k$$

$$y = 1 - x$$

$$J_f(x) = \operatorname{trace}\left(\left[L \circ \left((\mathbb{1} - x)(\mathbb{1} - x)^T\right) + \operatorname{diag}(x)\right]^{-1}\right) - k$$
$$y = \mathbb{1} - x$$

minimize
$$J_f(y) = \operatorname{trace} \left([L \circ yy^T + \operatorname{diag} (\mathbb{1} - y)]^{-1} \right) - k$$

subject to $y_i \in \{0, 1\}, \quad i = 1, \dots, n$
 $\mathbb{1}^T y = n - k$

$$J_f(x) = \operatorname{trace}\left([L \circ ((\mathbb{1} - x)(\mathbb{1} - x)^T) + \operatorname{diag}(x)]^{-1} \right) - k$$
$$y = \mathbb{1} - x$$

minimize
$$J_f(y) = \operatorname{trace} \left([L \circ yy^T + \operatorname{diag} (\mathbb{1} - y)]^{-1} \right) - k$$

subject to $y_i \in \{0, 1\}, \quad i = 1, \dots, n$
 $\mathbb{1}^T y = n - k$

$$\begin{array}{lll} \underset{Y,y}{\text{minimize}} & J_f(Y,y) \ = \ \text{trace} \left([L \circ Y \ + \ \text{diag} \left(\mathbbm{1} \ - \ y \right)]^{-1} \right) \ - \ k \\ \text{subject to} & Y \ = \ yy^T \\ & y_i \ \in \ \{0,1\}, \qquad i \ = \ 1, \dots, n \\ & \mathbbm{1}^T y \ = \ n - k \end{array}$$

 $\begin{array}{lll} \underset{Y, y}{\operatorname{minimize}} & J_f(Y, y) \ = \ \operatorname{trace} \left((L \circ Y + \operatorname{diag} (\mathbbm{1} - y))^{-1} \right) \ - \ k \\ \text{subject to} & Y \ = \ yy^T \\ & y_i \ \in \ \{0, 1\}, \quad i \ = \ 1, \dots, n \\ & Y_{ij} \ \in \ \{0, 1\}, \quad i, j \ = \ 1, \dots, n \\ & \mathbbm{1}^T y \ = \ n - k \\ & \mathbbm{1}^T Y \mathbbm{1} \ = \ (n - k)^2 \end{array}$

 $\underset{Y, y}{\text{minimize}} \quad J_f(Y, y) = \text{trace} \left((L \circ Y + \text{diag} (\mathbb{1} - y))^{-1} \right) - k$ subject to $Y = u u^T$ $y_i \in \{0,1\}, \quad i = 1, \dots, n$ $Y_{ij} \in \{0,1\}, \quad i,j = 1, \dots, n$ $\mathbb{1}^T y = n - k$ $1^T Y 1 = (n-k)^2$ $Y = yy^T \iff \{Y \succeq 0, \operatorname{rank}(Y) = 1\}$

minimize $J_f(Y,y) = \operatorname{trace}\left((L \circ Y + \operatorname{diag}(\mathbb{1} - y))^{-1}\right) - k$ Y, ysubject to $Y = u u^T$ $y_i \in \{0,1\}, \quad i = 1, \dots, n$ $Y_{ij} \in \{0,1\}, \quad i,j = 1, \dots, n$ $\mathbb{1}^T y = n - k$ $1^T Y 1 = (n-k)^2$ $Y = yy^T \iff \{Y \succeq 0, \operatorname{rank}(Y) = 1\}$

Convex relaxation

$$\begin{array}{rll} \underset{Y,y}{\text{minimize}} & J_f(Y,y) \ = \ \text{trace} \left((L \circ Y + \text{diag} (\mathbbm{1} - y))^{-1} \right) - k \\ \text{subject to} & Y \ \succeq \ 0 \\ & y_i \ \in \ [0,1], \quad i \ = \ 1, \dots, n \\ & Y_{ij} \ \in \ [0,1], \quad i,j \ = \ 1, \dots, n \\ & \mathbbm{1}^T y \ = \ n - k \\ & \mathbbm{1}^T Y \mathbbm{1} \ = \ (n-k)^2 \end{array}$$
How important is rank-1 constraint?

How important is rank-1 constraint?

$\bullet~{\sf A}$ tree network with $25~{\sf nodes}$

• Select k = 5 noise-free leaders

Solution from convex relaxation

Solution from convex relaxation

Leader selection based on v_{\max}

	global solution		convex relaxation	
k	J_f	leaders	J_f	leaders
1	66.0	13	112.0	25
2	38.4	8,25	43.3	7,25
3	30.0	8, 16, 25	32.1	7, 16, 25
4	25.3	7, 9, 16, 25	25.3	7, 9, 16, 25
5	20.7	3, 7, 9, 16, 25	20.7	3, 7, 9, 16, 25

Can we say something in general?

Can we say something in general?

Not really ... ;-(

A "bad" example

$\bullet\,$ A random network with 25 nodes

• Select k = 5 noise-free leaders

Solution from convex relaxation

 Y^{\ast} is still approximately low-rank

Solution from convex relaxation

 Y^{\ast} is still approximately low-rank

No clear-cut separation

Leader selection

Based on magnitude of v_{\max}

Globally optimal solution (exhaustive search)

Leader selection

Based on magnitude of v_{\max}

Globally optimal solution (exhaustive search)

Back to greedy algorithm

Greedy algorithm

- One-leader-at-a-time
 - RANK-2 UPDATE: $O(n^2)$ per leader

Greedy algorithm

- One-leader-at-a-time
 - RANK-2 UPDATE: $O(n^2)$ per leader

Without exploiting structure $O(n^4k)$

Low-rank updates $O(n^3k)$

Greedy algorithm

- One-leader-at-a-time
 - RANK-2 UPDATE: $O(n^2)$ per leader

Without exploiting structure $O(n^4k)$

Low-rank updates $O(n^3k)$

• Swap a leader and a follower

• RANK-2 UPDATE: $O(n^2)$ per swap

Convex relaxation

 $\begin{array}{rll} \underset{Y,y}{\operatorname{minimize}} & J_f(Y,y) \ = \ \operatorname{trace}\left((L \circ Y + \operatorname{diag}\left(\mathbbm{1} - y\right))^{-1}\right) - k\\ \text{subject to} & Y \succeq 0\\ & & & \\ & & Y_{ij} \ \in \ [0,1], \quad i,j \ = \ 1,\ldots,n\\ & & \\ &$

Convex relaxation

 $\begin{array}{lll} \underset{Y, y}{\operatorname{minimize}} & J_f(Y, y) \ = \ \operatorname{trace} \left((L \circ Y + \operatorname{diag} (\mathbbm{1} - y))^{-1} \right) - k \\ \text{subject to} & Y \succeq 0 \\ & & Y_{ij} \ \in \ [0, 1], \quad i, j \ = \ 1, \dots, n \\ & & \mathbbm{1}^T Y \mathbbm{1} \ = \ (n - k)^2 \\ & & y_i \ \in \ [0, 1], \quad i \ = \ 1, \dots, n \\ & & & \mathbbm{1}^T y \ = \ n - k \end{array}$

- SDP solvers $O(n^6)$
- Exploit problem structure:

positive semidefinite cone + simplex sets

Alternating direction method of multipliers (ADMM)

• First-order method - not for high accuracy

• Solve a sequence of subproblems

• Optimization over positive semidefinite cone and simplex

• Each subproblem costs $O(n^3)$

An example

 $200\ {\rm randomly}\ {\rm distributed}\ {\rm nodes}\ {\rm in}\ {\rm a}\ {\rm C}{\rm -shaped}\ {\rm region}$

Srirangarajan, Tewfik, and Luo IEEE TSP '08

k = 3

k = 9

Both noise-free and noise-corrupted formulations yield similar selection of leaders

More details

Papers:

- Lin, Fardad, and Jovanović, IEEE CDC '11
- Lin, Fardad, and Jovanović, IEEE TAC '13 (accepted)

Matlab implementation:

www.mcs.anl.gov/~fulin/software

Extensions:

- Robustness of leader selection
- Applications to social networks

Questions

- How good are the lower and upper bounds?
- For what graphs, these bounds are reasonably tight?
- Can we use solution from convex relaxation to choose leaders?

Any suggestions are welcome! ;-)