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Research overview

Optimization and control of dynamical systems on networks

Specific topics:

Localized control of vehicular formations

Sparsity-promoting optimal control

Sparse consensus networks

Leader selection in consensus networks
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Research overview

Challenges:

Networks – combinatorial objects

Optimization – constrained nonconvex problems

Approach:

Identify classes of convex problems (or relaxations)

Exploit problem structure to develop efficient algorithms
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In this talk: Leader selection

A combinatorial problem involving graph Laplacian

Applications in vehicular formations and sensor localization

Lower and upper bounds on global optimal solutions

Examples from regular lattices and random networks
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The problem

Given the Laplacian matrix of a connected graph L ∈ Rn×n

delete k columns and rows such that

minimize trace
(
L−1f

)

Lf is the principal submatrix in L =

[
Ll L

T
0

L0 Lf

]
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An example

L =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1


Deleting one column and one row

delete 1st row and col.

Lf =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


2nd row and col.
1 0 0 0
0 2 −1 0
0 −1 2 −1
0 0 −1 1


3rd row and col.

1 −1 0 0
−1 2 0 0
0 0 2 −1
0 0 −1 1



trace
(
L−1f

)
= 10, 7, 6
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Applications: Formation of vehicles

follower: ψ̇i(t) = −
∑
j ∈Ni

(ψi(t) − ψj(t)) + wi(t) ← noise

leader: ψ̇i(t) = 0 no deviation from desired trajectory

Select k leaders to minimize the variance of followers
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Applications: Sensor localization

Goal: Estimate n sensor positions in 1D ψ ∈ Rn

Relative measurements corrupted by white noise

yr = ψi − ψj + wr

y = ETψ + w

Anchor nodes with known positions ψl

y =

[
El

Ef

]T [
ψl

ψf

]
+ w
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Applications: Sensor localization

Laplacian of measurement graph

L = EET =

[
ElE

T
l ElE

T
f

EfE
T
l EfE

T
f

]
=

[
Ll L

T
0

L0 Lf

]

Total variance of estimation error

trace
(
L−1f

)

Select k anchors to minimize variance of estimation error

many other applications in networks...
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Related work

Greedy algorithms with approximations

Patterson and Bamieh ’10

Submodular optimization with performance guarantees

Clark and Poovendran ’11, Clark et al. ’12, ’13

Semidefinite programming for related sensor selection problem

Joshi and Boyd ’09

Information-centrality-based approach

Fitch and Leonard ’13
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In this talk

Related problem on diagonally strengthened graph Laplacian

Efficient algorithms for bounds on global optimal value

Convex relaxations – lower bounds

Greedy algorithms – upper bounds (exploiting low-rank structure)

Examples from regular lattices and random networks
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Diagonally strengthened graph Laplacian

Arise in several applications

Give insights to submatrix selection problem

Easier to solve ;-)
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Diagonally strengthened graph Laplacian

Given L and α > 0, select k diagonal elements of L to strengthen

minimize
x

J(x) = trace
(
(L + α diag (x))−1

)
subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = k

Recover submatrix selection problem α→∞

[
Ll + αI LT

0

L0 Lf

]−1
→

[
0 0

0 L−1f

]
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Interpretation: Noise-corrupted leaders

followers: ψ̇i(t) = −
∑
j ∈Ni

(ψi(t) − ψj(t)) + wi(t)

leaders: ψ̇i(t) = −
∑
j ∈Ni

(ψi(t) − ψj(t)) − αψi(t) + wi(t)

α > 0

Leaders have GPS devices and know their own positions
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ψ̇(t) = − (L + α diag (x))ψ(t) + w(t)

xi ∈ {0, 1}, 1 – leader, 0 – follower

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 , diag (x) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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Algorithms for noise-corrupted formulation

minimize
x

J(x) = trace
(
(L + α diag (x))−1

)
subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = k

Features:

Convex objective function

Boolean constraints

Approach:

Convex relaxation ⇒ lower bound

Greedy algorithm ⇒ upper bound
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Convex relaxation

minimize
x

J(x) = trace
(
(L + α diag (x))−1

)
subject to xi ∈ [0, 1], i = 1, . . . , n

1Tx = k

Enlarge feasible set ⇒ lower bound

SDP formulation with complexity O(n4) – number of nodes

Customized interior point method O(n3)
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Greedy algorithm

One-leader-at-a-time

L + α eie
T
i

rank-1 update: O(n2) per leader

number of leaders k � n ⇒ O(n3) with one matrix inverse

After selecting k leaders

Swap a leader and a follower

L − α eie
T
i + α eje

T
j

rank-2 update: O(n2) per swap
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Recap
minimize

x
J(x) = trace

(
(L + α diag (x))−1

)
subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = k

Convex relaxation ⇒ lower bound

Standard SDP formulation O(n4)

Customized interior point method O(n3)

Greedy algorithm ⇒ upper bound

Without exploiting structure O(n4k)

Low rank updates O(max{n3, n2k})

Lin, Fardad, and Jovanović, IEEE CDC ’11
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A random network with 100 nodes
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Lower and upper bounds

0 10 20 30 40
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number of leaders k
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Gap between bounds

47 / 97



Lower and upper bounds

0 10 20 30 40

10

20

30

40

number of leaders k

upper bounds
lower bounds

0 10 20 30 40
0

5

10

number of leaders k

Gap between bounds

48 / 97



Degree heuristics vs. greedy algorithm

k = 5 J = 27.8

k = 5 J = 19.0

k = 40 J = 15.0 k = 40 J = 9.5
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Few leaders vs. many leaders

Few leaders: Partition graphs and spread leaders

Many leaders: Boundary with low-degree nodes
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A 2D lattice
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k = 31

Leaders spread out from center
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k = 31

Leaders spread out from center

58 / 97



...So far

Principal submatrix of graph Laplacian (noise-free leaders)

Applications in vehicular formations and sensor localization

Diagonally strengthened Laplacian (noise-corrupted leaders)

Algorithms for lower and upper bounds on global solutions
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Next...

Alternative formulation for noise-free leader selection

Algorithms for lower and upper bounds on global solutions

A flexible framework – amenable to other applications
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Alternative formulation

Jf (x) = trace (L−1f ) not explicit in x

xi ∈ {0, 1}, 1 − leader, 0 − follower

With permutation : L =

[
Ll L

T
0

L0 Lf

]
, x =

[
1k

0n−k

]

L ◦ ((1− x)(1− x)T ) =

[
Ll L

T
0

L0 Lf

]
◦
[
0 0
0 1

]
=

[
0 0
0 Lf

]

[L ◦ ((1− x)(1− x)T ) + diag (x)]−1 =

[
Ik 0

0 L−1f

]

Jf (x) = trace
(
[L ◦ ((1− x)(1− x)T ) + diag (x)]−1

)
− k
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Jf (x) = trace
(
[L ◦ ((1− x)(1− x)T ) + diag (x)]−1

)
− k

y = 1 − x

minimize
y

Jf (y) = trace
(
[L ◦ yyT + diag (1 − y)]−1

)
− k

subject to yi ∈ {0, 1}, i = 1, . . . , n

1T y = n− k

minimize
Y, y

Jf (Y, y) = trace
(
[L ◦ Y + diag (1 − y)]−1

)
− k

subject to Y = yyT

yi ∈ {0, 1}, i = 1, . . . , n

1T y = n− k
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minimize
Y, y

Jf (Y, y) = trace
(
(L ◦ Y + diag (1− y))−1

)
− k

subject to Y = yyT

yi ∈ {0, 1}, i = 1, . . . , n

Yij ∈ {0, 1}, i, j = 1, . . . , n

1T y = n− k

1TY 1 = (n− k)2

Y = yyT ⇐⇒ {Y � 0, rank (Y ) = 1 }

Drop rank constraint + relax Boolean constraints

⇓

convex relaxation
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Convex relaxation

minimize
Y, y

Jf (Y, y) = trace
(
(L ◦ Y + diag (1− y))−1

)
− k

subject to Y � 0

yi ∈ [0, 1], i = 1, . . . , n

Yij ∈ [0, 1], i, j = 1, . . . , n

1T y = n− k

1TY 1 = (n− k)2
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How important is rank-1 constraint?
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A tree network with 25 nodes

Select k = 5 noise-free leaders
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Solution from convex relaxation

λ(Y ∗)

Solution Y ∗ is low-rank

vmax with λmax(Y
∗)

clear separation in magnitude
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Leader selection based on vmax
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global solution convex relaxation

k Jf leaders Jf leaders

1 66.0 13 112.0 25
2 38.4 8, 25 43.3 7, 25
3 30.0 8, 16, 25 32.1 7, 16, 25
4 25.3 7, 9, 16, 25 25.3 7, 9, 16, 25
5 20.7 3, 7, 9, 16, 25 20.7 3, 7, 9, 16, 25
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Can we say something in general?

Not really ... ;-(
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A “bad” example

A random network with 25 nodes

Select k = 5 noise-free leaders
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Solution from convex relaxation

λ(Y ∗)

Y ∗ is still approximately low-rank

vmax with λmax(Y
∗)

No clear-cut separation
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Leader selection

Based on magnitude of vmax Globally optimal solution
(exhaustive search)

Back to greedy algorithm
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Greedy algorithm

One-leader-at-a-time

rank-2 update: O(n2) per leader

Without exploiting structure O(n4k)

Low-rank updates O(n3k)

Swap a leader and a follower

rank-2 update: O(n2) per swap
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Convex relaxation

minimize
Y, y

Jf (Y, y) = trace
(
(L ◦ Y + diag (1− y))−1

)
− k

subject to Y � 0

Yij ∈ [0, 1], i, j = 1, . . . , n

1TY 1 = (n− k)2

yi ∈ [0, 1], i = 1, . . . , n

1T y = n− k

SDP solvers O(n6)

Exploit problem structure:

positive semidefinite cone + simplex sets
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Alternating direction method of multipliers (ADMM)

First-order method – not for high accuracy

Solve a sequence of subproblems

Optimization over positive semidefinite cone and simplex

Each subproblem costs O(n3)
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An example
200 randomly distributed nodes in a C-shaped region

Srirangarajan, Tewfik, and Luo IEEE TSP ’08
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k = 3
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k = 9

Both noise-free and noise-corrupted formulations

yield similar selection of leaders
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More details

Papers:

Lin, Fardad, and Jovanović, IEEE CDC ’11

Lin, Fardad, and Jovanović, IEEE TAC ’13 (accepted)

Matlab implementation:

www.mcs.anl.gov/∼fulin/software

Extensions:

Robustness of leader selection

Applications to social networks
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Questions

How good are the lower and upper bounds?

For what graphs, these bounds are reasonably tight?

Can we use solution from convex relaxation to choose leaders?

Any suggestions are welcome! ;-)
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