On a combinatorial optimization problem involving the graph Laplacian matrix

Fu Lin ${ }^{1}$ Makan Fardad ${ }^{2}$ Mihailo Jovanović ${ }^{3}$
${ }^{1}$ Argonne National Laboratory
${ }^{2}$ Syracuse University
${ }^{3}$ University of Minnesota

October 25, 2013

Research overview

Optimization and control of dynamical systems on networks

Specific topics:

- Localized control of vehicular formations
- Sparsity-promoting optimal control
- Sparse consensus networks
- Leader selection in consensus networks

Research overview

Localized control of vehicular formations

Research overview

Localized control of vehicular formations

Sparsity-promoting optimal control

Research overview

Localized control of vehicular formations

Sparsity-promoting optimal control

Sparse consensus networks

Research overview

Localized control of vehicular formations

Sparsity-promoting optimal control

Sparse consensus networks

Research overview

Challenges:

- Networks - combinatorial objects
- Optimization - constrained nonconvex problems

Research overview

Challenges:

- Networks - combinatorial objects
- Optimization - constrained nonconvex problems

Approach:

- Identify classes of convex problems (or relaxations)
- Exploit problem structure to develop efficient algorithms

In this talk: Leader selection

- A combinatorial problem involving graph Laplacian
- Applications in vehicular formations and sensor localization
- Lower and upper bounds on global optimal solutions
- Examples from regular lattices and random networks

The problem

- Given the Laplacian matrix of a connected graph $L \in \mathbb{R}^{n \times n}$
delete k columns and rows such that

The problem

- Given the Laplacian matrix of a connected graph $L \in \mathbb{R}^{n \times n}$ delete k columns and rows such that

$$
\text { minimize trace }\left(L_{f}^{-1}\right)
$$

$$
L_{f} \text { is the principal submatrix in } L=\left[\begin{array}{ll}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right]
$$

An example

An example

delete 1st row and col.

$$
L_{f}=\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

An example

$L=\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right]$
delete 1st row and col.
$L_{f}=\left[\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right] \quad\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$

An example

$L=\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right]$
delete 1st row and col.
$L_{f}=\left[\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$

2nd row and col.
$\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$
$\left[\begin{array}{rrrr}1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$

An example

$L=\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right]$
delete 1st row and col.
$L_{f}=\left[\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$

3rd row and col.

$$
\operatorname{trace}\left(L_{f}^{-1}\right)=10,7,6
$$

Applications: Formation of vehicles

Applications: Formation of vehicles

FOLLOWER: $\dot{\psi}_{i}(t)=-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)+w_{i}(t) \leftarrow$ noise

Applications: Formation of vehicles

FOLLOWER: $\dot{\psi}_{i}(t)=-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)+w_{i}(t) \leftarrow$ noise

LEADER: $\dot{\psi}_{i}(t)=0$ no deviation from desired trajectory

Applications: Formation of vehicles

FOLLOWER: $\dot{\psi}_{i}(t)=-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)+w_{i}(t) \leftarrow$ noise

$$
\text { LEADER: } \dot{\psi}_{i}(t)=0 \quad \text { no deviation from desired trajectory }
$$

- Select k leaders to minimize the variance of followers

Applications: Sensor localization

- Goal: Estimate n sensor positions in 1D $\quad \psi \in \mathbb{R}^{n}$

Applications: Sensor localization

- Goal: Estimate n sensor positions in 1D $\quad \psi \in \mathbb{R}^{n}$

Relative measurements corrupted by white noise

$$
y_{r}=\psi_{i}-\psi_{j}+w_{r}
$$

Applications: Sensor localization

- Goal: Estimate n sensor positions in 1D $\quad \psi \in \mathbb{R}^{n}$

Relative measurements corrupted by white noise

$$
\begin{aligned}
y_{r} & =\psi_{i}-\psi_{j}+w_{r} \\
y & =E^{T} \psi+w
\end{aligned}
$$

Applications: Sensor localization

- Goal: Estimate n sensor positions in 1D $\quad \psi \in \mathbb{R}^{n}$

Relative measurements corrupted by white noise

$$
\begin{aligned}
y_{r} & =\psi_{i}-\psi_{j}+w_{r} \\
y & =E^{T} \psi+w
\end{aligned}
$$

Anchor nodes with known positions ψ_{l}

$$
y=\left[\begin{array}{c}
E_{l} \\
E_{f}
\end{array}\right]^{T}\left[\begin{array}{c}
\psi_{l} \\
\psi_{f}
\end{array}\right]+w
$$

Applications: Sensor localization

Laplacian of measurement graph

$$
L=E E^{T}=\left[\begin{array}{cc}
E_{l} E_{l}^{T} & E_{l} E_{f}^{T} \\
E_{f} E_{l}^{T} & E_{f} E_{f}^{T}
\end{array}\right]=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right]
$$

Applications: Sensor localization

Laplacian of measurement graph

$$
L=E E^{T}=\left[\begin{array}{cc}
E_{l} E_{l}^{T} & E_{l} E_{f}^{T} \\
E_{f} E_{l}^{T} & E_{f} E_{f}^{T}
\end{array}\right]=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right]
$$

Total variance of estimation error

$$
\operatorname{trace}\left(L_{f}^{-1}\right)
$$

Applications: Sensor localization

Laplacian of measurement graph

$$
L=E E^{T}=\left[\begin{array}{cc}
E_{l} E_{l}^{T} & E_{l} E_{f}^{T} \\
E_{f} E_{l}^{T} & E_{f} E_{f}^{T}
\end{array}\right]=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right]
$$

Total variance of estimation error

$$
\operatorname{trace}\left(L_{f}^{-1}\right)
$$

- Select k anchors to minimize variance of estimation error

Applications: Sensor localization

Laplacian of measurement graph

$$
L=E E^{T}=\left[\begin{array}{cc}
E_{l} E_{l}^{T} & E_{l} E_{f}^{T} \\
E_{f} E_{l}^{T} & E_{f} E_{f}^{T}
\end{array}\right]=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right]
$$

Total variance of estimation error

$$
\operatorname{trace}\left(L_{f}^{-1}\right)
$$

- Select k anchors to minimize variance of estimation error many other applications in networks...

Related work

- Greedy algorithms with approximations

Patterson and Bamieh '10

- Submodular optimization with performance guarantees

Clark and Poovendran '11, Clark et al. '12, '13

- Semidefinite programming for related sensor selection problem Joshi and Boyd '09
- Information-centrality-based approach

Fitch and Leonard '13

In this talk

- Related problem on diagonally strengthened graph Laplacian
- Efficient algorithms for bounds on global optimal value
- Convex relaxations - lower bounds
- Greedy algorithms - upper bounds (exploiting low-rank structure)
- Examples from regular lattices and random networks

Diagonally strengthened graph Laplacian

- Arise in several applications
- Give insights to submatrix selection problem
- Easier to solve ;-)

Diagonally strengthened graph Laplacian

- Given L and $\alpha>0$, select k diagonal elements of L to strengthen

$$
\left.\begin{array}{rl}
\underset{x}{\operatorname{minimize}} & J(x) \\
\text { subject to } & \quad x_{i} \in\{0,1\}, \quad i=1, \ldots, n \\
& \mathbb{1}^{T} x
\end{array}\right)=k
$$

Diagonally strengthened graph Laplacian

- Given L and $\alpha>0$, select k diagonal elements of L to strengthen

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & J(x) \\
\text { subject to } & \quad x_{i} \in\{0,1\}, \quad i=1, \ldots, n \\
& \mathbb{1}^{T} x=k
\end{aligned}
$$

Recover submatrix selection problem $\quad \alpha \rightarrow \infty$

$$
\left[\begin{array}{cc}
L_{l}+\alpha I & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right]^{-1} \rightarrow\left[\begin{array}{cc}
0 & 0 \\
0 & L_{f}^{-1}
\end{array}\right]
$$

Interpretation: Noise-corrupted leaders

FOLLOWERS: $\quad \dot{\psi}_{i}(t)=-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)+w_{i}(t)$

$$
\begin{aligned}
\text { LEADERS: } \quad \dot{\psi}_{i}(t) & =-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)-\alpha \psi_{i}(t)+w_{i}(t) \\
\alpha & >0
\end{aligned}
$$

Interpretation: Noise-corrupted leaders

FOLLOWERS: $\quad \dot{\psi}_{i}(t)=-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)+w_{i}(t)$

$$
\begin{aligned}
\text { LEADERS: } \quad \dot{\psi}_{i}(t) & =-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)-\alpha \psi_{i}(t)+w_{i}(t) \\
\alpha & >0
\end{aligned}
$$

Leaders have GPS devices and know their own positions

$$
\dot{\psi}(t)=-(L+\alpha \operatorname{diag}(x)) \psi(t)+w(t)
$$

$$
x_{i} \in\{0,1\}, \quad 1 \text { - LEADER, } \quad 0 \text { - FOLLOWER }
$$

$$
\dot{\psi}(t)=-(L+\alpha \operatorname{diag}(x)) \psi(t)+w(t)
$$

$$
x_{i} \in\{0,1\}, \quad 1 \text { - LEADER, } \quad 0-\text { FOLLOWER }
$$

Algorithms for noise-corrupted formulation

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} J(x) \\
& \text { subject to } \operatorname{trace}\left((L+\alpha \operatorname{diag}(x))^{-1}\right) \\
& \quad x_{i} \in\{0,1\}, \quad i=1, \ldots, n \\
& \mathbb{1}^{T} x=k
\end{aligned}
$$

Algorithms for noise-corrupted formulation

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} J(x)=\operatorname{trace}\left((L+\alpha \operatorname{diag}(x))^{-1}\right) \\
& \text { subject to } \quad x_{i} \in\{0,1\}, \quad i=1, \ldots, n \\
& 1^{T} x=k
\end{aligned}
$$

Features:

- Convex objective function
- Boolean constraints

Algorithms for noise-corrupted formulation

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} J(x)=\operatorname{trace}\left((L+\alpha \operatorname{diag}(x))^{-1}\right) \\
& \text { subject to } \quad x_{i} \in\{0,1\}, \quad i=1, \ldots, n \\
& \mathbb{1}^{T} x=k
\end{aligned}
$$

Features:

- Convex objective function
- Boolean constraints

Approach:

- Convex relaxation $\quad \Rightarrow$ lower bound
- Greedy algorithm $\quad \Rightarrow \quad$ upper bound

Convex relaxation

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} J(x)=\operatorname{trace}\left((L+\alpha \operatorname{diag}(x))^{-1}\right) \\
& \text { subject to } \quad x_{i} \in[0,1], \quad i=1, \ldots, n \\
& \mathbb{1}^{T} x=k
\end{aligned}
$$

Enlarge feasible set \Rightarrow lower bound

Convex relaxation

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} J(x) \\
&\text { subject to } \left.\quad \operatorname{trace}^{(}(L+\alpha \operatorname{diag}(x))^{-1}\right) \\
& \in[0,1], \quad i=1, \ldots, n \\
& \mathbb{1}^{T} x=k
\end{aligned}
$$

Enlarge feasible set \Rightarrow lower bound

- SDP formulation with complexity $O\left(n^{4}\right)$ - number of nodes
- Customized interior point method $O\left(n^{3}\right)$

Greedy algorithm

- One-leader-at-a-time

$$
\begin{gathered}
L+\alpha e_{i} e_{i}^{T} \\
\text { RANK-1 UPDATE: } \quad O\left(n^{2}\right) \quad \text { per leader }
\end{gathered}
$$

number of leaders $k \ll n \quad \Rightarrow \quad\left(n^{3}\right) \quad$ with one matrix inverse

Greedy algorithm

- One-leader-at-a-time

$$
\begin{gathered}
L+\alpha e_{i} e_{i}^{T} \\
\text { RANK-1 UPDATE: } \quad O\left(n^{2}\right) \quad \text { per leader }
\end{gathered}
$$

number of leaders $k \ll n \Rightarrow O\left(n^{3}\right) \quad$ with one matrix inverse

After selecting k leaders

- Swap a leader and a follower

$$
L-\alpha e_{i} e_{i}^{T}+\alpha e_{j} e_{j}^{T}
$$

$$
\text { RANK-2 UPDATE: } O\left(n^{2}\right) \text { per swap }
$$

Recap

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} J(x) & =\operatorname{trace}\left((L+\alpha \operatorname{diag}(x))^{-1}\right) \\
\text { subject to } \quad x_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
\mathbb{1}^{T} x & =k
\end{aligned}
$$

- Convex relaxation $\quad \Rightarrow$ lower bound

Standard SDP formulation $O\left(n^{4}\right)$
Customized interior point method $O\left(n^{3}\right)$

- Greedy algorithm $\quad \Rightarrow \quad$ upper bound

Without exploiting structure $O\left(n^{4} k\right)$
Low rank updates $O\left(\max \left\{n^{3}, n^{2} k\right\}\right)$
Lin, Fardad, and Jovanović, IEEE CDC '11

A random network with 100 nodes

Lower and upper bounds

Lower and upper bounds

Gap between bounds

Degree heuristics vs. greedy algorithm

Degree heuristics vs. greedy algorithm

Degree heuristics vs. greedy algorithm

Degree heuristics vs. greedy algorithm

Few leaders vs. many leaders

Few leaders vs. many leaders

Few leaders vs. many leaders

- Few leaders: Partition graphs and spread leaders
- Many leaders: Boundary with low-degree nodes

A 2D lattice

Gap between bounds

Leaders spread out from center

- Principal submatrix of graph Laplacian (noise-free leaders)
- Applications in vehicular formations and sensor localization
- Diagonally strengthened Laplacian (noise-corrupted leaders)
- Algorithms for lower and upper bounds on global solutions

Next...

- Alternative formulation for noise-free leader selection
- Algorithms for lower and upper bounds on global solutions
- A flexible framework - amenable to other applications

Alternative formulation

$$
\begin{aligned}
& J_{f}(x)=\operatorname{trace}\left(L_{f}^{-1}\right) \quad \text { NOT EXPLICIT IN } x \\
& x_{i} \in\{0,1\}, \quad 1-\operatorname{LEADER}, \quad 0-\text { FOLLOWER }
\end{aligned}
$$

Alternative formulation

$$
\begin{aligned}
& J_{f}(x)=\operatorname{trace}\left(L_{f}^{-1}\right) \quad \text { NOT EXPLICIT IN } x \\
& x_{i} \in\{0,1\}, \quad 1-\text { LEADER, } \quad 0-\text { FOLLOWER }
\end{aligned}
$$

With permutation : $\quad L=\left[\begin{array}{cc}L_{l} & L_{0}^{T} \\ L_{0} & L_{f}\end{array}\right], \quad x=\left[\begin{array}{c}\mathbb{1}_{k} \\ 0_{n-k}\end{array}\right]$

Alternative formulation

$$
\begin{aligned}
& J_{f}(x)=\operatorname{trace}\left(L_{f}^{-1}\right) \quad \text { NOT EXPLICIT IN } x \\
& x_{i} \in\{0,1\}, \quad 1-\text { LEADER, } \quad 0-\text { FOLLOWER }
\end{aligned}
$$

With permutation : $\quad L=\left[\begin{array}{cc}L_{l} & L_{0}^{T} \\ L_{0} & L_{f}\end{array}\right], \quad x=\left[\begin{array}{c}\mathbb{1}_{k} \\ 0_{n-k}\end{array}\right]$

$$
L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right] \circ\left[\begin{array}{ll}
0 & 0 \\
0 & \mathbb{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & L_{f}
\end{array}\right]
$$

Alternative formulation

$$
\begin{aligned}
& J_{f}(x)=\operatorname{trace}\left(L_{f}^{-1}\right) \quad \text { NOT EXPLICIT IN } x \\
& x_{i} \in\{0,1\}, \quad 1-\text { LEADER, } \quad 0-\text { FOLLOWER }
\end{aligned}
$$

With permutation : $\quad L=\left[\begin{array}{cc}L_{l} & L_{0}^{T} \\ L_{0} & L_{f}\end{array}\right], \quad x=\left[\begin{array}{c}\mathbb{1}_{k} \\ 0_{n-k}\end{array}\right]$

$$
L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right] \circ\left[\begin{array}{ll}
0 & 0 \\
0 & \mathbb{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & L_{f}
\end{array}\right]
$$

$$
\left[L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right]^{-1}=\left[\begin{array}{cc}
I_{k} & 0 \\
0 & L_{f}^{-1}
\end{array}\right]
$$

Alternative formulation

$$
\begin{aligned}
& J_{f}(x)=\operatorname{trace}\left(L_{f}^{-1}\right) \quad \text { NOT EXPLICIT IN } x \\
& x_{i} \in\{0,1\}, \quad 1-\operatorname{LEADER}, \quad 0-\text { FOLLOWER }
\end{aligned}
$$

With permutation : $\quad L=\left[\begin{array}{cc}L_{l} & L_{0}^{T} \\ L_{0} & L_{f}\end{array}\right], \quad x=\left[\begin{array}{c}\mathbb{1}_{k} \\ 0_{n-k}\end{array}\right]$

$$
L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right] \circ\left[\begin{array}{ll}
0 & 0 \\
0 & \mathbb{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & L_{f}
\end{array}\right]
$$

$$
\left[L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right]^{-1}=\left[\begin{array}{cc}
I_{k} & 0 \\
0 & L_{f}^{-1}
\end{array}\right]
$$

$$
J_{f}(x)=\operatorname{trace}\left(\left[L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right]^{-1}\right)-k
$$

$$
J_{f}(x)=\operatorname{trace}\left(\left[L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right]^{-1}\right)-k
$$

$$
y=\mathbb{1}-x
$$

$$
\begin{gathered}
J_{f}(x)=\operatorname{trace}\left(\left[L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right]^{-1}\right)-k \\
y=\mathbb{1}-x
\end{gathered}
$$

$\underset{y}{\operatorname{minimize}} J_{f}(y)=\operatorname{trace}\left(\left[L \circ y y^{T}+\operatorname{diag}(\mathbb{1}-y)\right]^{-1}\right)-k$ subject to

$$
\begin{aligned}
y_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
\mathbb{1}^{T} y & =n-k
\end{aligned}
$$

$J_{f}(x)=\operatorname{trace}\left(\left[L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right]^{-1}\right)-k$

$$
y=\mathbb{1}-x
$$

$\underset{y}{\operatorname{minimize}} J_{f}(y)=\operatorname{trace}\left(\left[L \circ y y^{T}+\operatorname{diag}(\mathbb{1}-y)\right]^{-1}\right)-k$ subject to $\quad y_{i} \in\{0,1\}, \quad i=1, \ldots, n$

$$
\mathbb{1}^{T} y=n-k
$$

$\underset{Y, y}{\operatorname{minimize}} J_{f}(Y, y)=\operatorname{trace}\left([L \circ Y+\operatorname{diag}(\mathbb{1}-y)]^{-1}\right)-k$ subject to

$$
\begin{aligned}
Y & =y y^{T} \\
y_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
\mathbb{1}^{T} y & =n-k
\end{aligned}
$$

$\underset{Y}{\operatorname{minimize}} \quad J_{f}(Y, y)=\operatorname{trace}\left((L \circ Y+\operatorname{diag}(\mathbb{1}-y))^{-1}\right)-k$
subject to $\quad Y=y y^{T}$

$$
\begin{aligned}
y_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
Y_{i j} & \in\{0,1\}, \quad i, j=1, \ldots, n \\
\mathbb{1}^{T} y & =n-k \\
\mathbb{1}^{T} Y \mathbb{1} & =(n-k)^{2}
\end{aligned}
$$

$\underset{Y}{\operatorname{minimize}} J_{f}(Y, y)=\operatorname{trace}\left((L \circ Y+\operatorname{diag}(\mathbb{1}-y))^{-1}\right)-k$ Y, y
subject to

$$
\begin{aligned}
y_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
Y_{i j} & \in\{0,1\}, \quad i, j=1, \ldots, n \\
\mathbb{1}^{T} y & =n-k \\
\mathbb{1}^{T} Y \mathbb{1} & =(n-k)^{2} \\
Y=y y^{T} & \Longleftrightarrow\{Y \succeq 0, \operatorname{rank}(Y)=1\}
\end{aligned}
$$

$\underset{Y, y}{\operatorname{minimize}} J_{f}(Y, y)=\operatorname{trace}\left((L \circ Y+\operatorname{diag}(\mathbb{1}-y))^{-1}\right)-k$
subject to $\quad Y=y y^{T}$

$$
\begin{aligned}
y_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
Y_{i j} & \in\{0,1\}, \quad i, j=1, \ldots, n \\
\mathbb{1}^{T} y & =n-k \\
\mathbb{1}^{T} Y \mathbb{1} & =(n-k)^{2}
\end{aligned}
$$

$$
Y=y y^{T} \quad \Longleftrightarrow \quad\{Y \succeq 0, \operatorname{rank}(Y)=1\}
$$

Drop rank constraint + relax Boolean constraints

Convex relaxation

$\underset{Y, y}{\operatorname{minimize}} J_{f}(Y, y)=\operatorname{trace}\left((L \circ Y+\operatorname{diag}(\mathbb{1}-y))^{-1}\right)-k$ subject to

$$
\begin{aligned}
Y & \succeq 0 \\
y_{i} & \in[0,1], \quad i=1, \ldots, n \\
Y_{i j} & \in[0,1], \quad i, j=1, \ldots, n \\
\mathbb{1}^{T} y & =n-k \\
\mathbb{1}^{T} Y \mathbb{1} & =(n-k)^{2}
\end{aligned}
$$

How important is rank-1 constraint?

How important is rank-1 constraint?

- A tree network with 25 nodes
- Select $k=5$ noise-free leaders

Solution from convex relaxation

$$
\lambda\left(Y^{*}\right)
$$

Solution Y^{*} is low-rank

Solution from convex relaxation

Solution Y^{*} is low-rank

clear separation in magnitude

Leader selection based on $v_{\max }$

	global solution		convex relaxation	
k	J_{f}	leaders	J_{f}	leaders
1	66.0	13	112.0	25
2	38.4	8,25	43.3	7,25
3	30.0	$8,16,25$	32.1	$7,16,25$
4	25.3	$7,9,16,25$	25.3	$7,9,16,25$
5	20.7	$3,7,9,16,25$	20.7	$3,7,9,16,25$

Can we say something in general?

Can we say something in general?

Not really ... ;-(

A "bad" example

- A random network with 25 nodes
- Select $k=5$ noise-free leaders

Solution from convex relaxation

$$
\lambda\left(Y^{*}\right)
$$

Y^{*} is still approximately low-rank

Solution from convex relaxation

Y^{*} is still approximately low-rank

No clear-cut separation

Leader selection

Based on magnitude of $v_{\text {max }}$

Globally optimal solution (exhaustive search)

Leader selection

Based on magnitude of $v_{\text {max }}$

Globally optimal solution (exhaustive search)

Back to greedy algorithm

Greedy algorithm

- One-leader-at-a-time
- RANK-2 Update: $O\left(n^{2}\right)$ per leader

Greedy algorithm

- One-leader-at-a-time
- RANK-2 UPDATE: $O\left(n^{2}\right)$ per leader

Without exploiting structure $O\left(n^{4} k\right)$

Low-rank updates $O\left(n^{3} k\right)$

Greedy algorithm

- One-leader-at-a-time
- RANK-2 Update: $O\left(n^{2}\right)$ per leader

Without exploiting structure $O\left(n^{4} k\right)$

Low-rank updates $O\left(n^{3} k\right)$

- Swap a leader and a follower
- RANK-2 UPDATE: $O\left(n^{2}\right)$ per swap

Convex relaxation

$$
\left.\begin{array}{rl}
\underset{Y, y}{\operatorname{minimize}} & J_{f}(Y, y)
\end{array}=\operatorname{trace}\left((L \circ Y+\operatorname{diag}(\mathbb{1}-y))^{-1}\right)-k\right)
$$

Convex relaxation

$$
\begin{aligned}
\underset{Y, y}{\operatorname{minimize}} \quad J_{f}(Y, y) & =\operatorname{trace}\left((L \circ Y+\operatorname{diag}(\mathbb{1}-y))^{-1}\right)-k \\
\text { subject to } & \\
Y & \succeq 0 \\
Y_{i j} & \in[0,1], \quad i, j=1, \ldots, n \\
\mathbb{1}^{T} Y \mathbb{1} & =(n-k)^{2} \\
y_{i} & \in[0,1], \quad i=1, \ldots, n \\
\mathbb{1}^{T} y & =n-k
\end{aligned}
$$

- SDP solvers $O\left(n^{6}\right)$
- Exploit problem structure:
positive semidefinite cone + simplex sets

Alternating direction method of multipliers (ADMM)

- First-order method - not for high accuracy
- Solve a sequence of subproblems
- Optimization over positive semidefinite cone and simplex
- Each subproblem costs $O\left(n^{3}\right)$

An example

200 randomly distributed nodes in a C-shaped region

Gap between bounds

Both noise-free and noise-corrupted formulations yield similar selection of leaders

More details

Papers:

- Lin, Fardad, and Jovanović, IEEE CDC '11
- Lin, Fardad, and Jovanović, IEEE TAC '13 (accepted)

Matlab implementation:

> www.mcs.anl.gov/~fulin/software

Extensions:

- Robustness of leader selection
- Applications to social networks

Questions

- How good are the lower and upper bounds?
- For what graphs, these bounds are reasonably tight?
- Can we use solution from convex relaxation to choose leaders?

Any suggestions are welcome! ;-)

