Algorithms for leader selection
 in consensus networks

Fu Lin

joint work with:
Makan Fardad
Mihailo Jovanović

UNIVERSITY
of Minnesota

University of Washington, July 2013

Overview

Optimal control of dynamical systems on networks

- MAIN topics:
* Localized control of vehicular formations
* Sparsity-promoting optimal control
* Sparse consensus networks
* Algorithms for leader selection in consensus networks

Localized control of vehicular formations

Sparse consensus networks

Sparsity-promoting optimal control

- Challenges:
* Networks - combinatorial objects
* Optimization - constrained nonconvex problems
- Approach:
* Identify classes of convex problems
* Exploit problem structure to develop efficient algorithms

In this talk

- Leader selection in consensus networks
- Applications in vehicular formations and sensor localization
- Algorithms for lower and upper bounds on global solutions
- Examples from regular lattices and random networks

Leader-follower consensus dynamics

- Time-invariant undirected connected networks

$$
\begin{array}{r}
\text { FOLLOWER: } \quad \dot{\psi}_{i}(t)=-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)+w_{i}(t) \\
\uparrow \\
\text { disturbancel }
\end{array}
$$

$$
\text { LEADER: } \quad \dot{\psi}_{i}(t)=0
$$

$$
\left[\begin{array}{c}
\dot{\psi}_{l}(t) \\
\dot{\psi}_{f}(t)
\end{array}\right]=-\left[\begin{array}{cc}
0 & 0 \\
L_{0} & L_{f}
\end{array}\right]\left[\begin{array}{l}
\psi_{l}(t) \\
\psi_{f}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
w(t)
\end{array}\right]
$$

Variance of followers depend on network structure and locations of leaders

Leader selection problem

- Select N_{l} leaders to minimize variance of followers

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} J_{f}(x) & =\operatorname{trace}\left(L_{f}^{-1}\right) \\
\text { subject to } \quad x_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
\mathbb{1}^{T} x & =N_{l} \\
x_{i} \in\{0,1\}, & 1-\text { LEADER, } \quad 0-\text { FOLLOWER } \\
L & =\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right], \quad x=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \| \quad L_{f}=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Connections to sensor localization problem

GoAL: Estimate n sensor positions in 1D \|

Relative measurements corrupted by noise

$$
y_{k}=\psi_{i}-\psi_{j}+w_{k}
$$

I

Anchor nodes with known positions ψ_{l}

$$
\begin{aligned}
y & =E^{T} \psi+w \\
\boldsymbol{\|} & =\left[\begin{array}{c}
E_{l} \\
E_{f}
\end{array}\right]^{T}\left[\begin{array}{l}
\psi_{l} \\
\psi_{f}
\end{array}\right]+w
\end{aligned}
$$

In this talk: $\quad \mathcal{E}\left(w w^{T}\right)=I$

Laplacian of measurement graph

$$
L=E E^{T}=\left[\begin{array}{cc}
E_{l} E_{l}^{T} & E_{l} E_{f}^{T} \\
E_{f} E_{l}^{T} & E_{f} E_{f}^{T}
\end{array}\right]=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right]
$$

Minimum variance estimation

$$
\hat{\psi}_{f}=\left(E_{f} E_{f}^{T}\right)^{-1} E_{f}\left(y-E_{l}^{T} \psi_{l}\right)
$$

Covariance of estimation error $\psi_{f}-\hat{\psi}_{f}$

$$
\Sigma=\left(E_{f} E_{f}^{T}\right)^{-1}=L_{f}^{-1}
$$

- Select N_{l} anchors to minimize variance of estimation error

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} \quad J_{f}(x)=\operatorname{trace}\left(L_{f}^{-1}\right) \\
& \text { subject to } \quad x_{i} \in\{0,1\}, \quad i=1, \ldots, n \\
& \mathbb{1}^{T} x=N_{l} \\
& x_{i} \in\{0,1\}, \quad 1 \text { - ANCHOR, } 0-\text { UNKNOWN SENSOR }
\end{aligned}
$$

- Other applications via the interpretation of effective resistance

Related work

- Greedy algorithms with approximations

Patterson and Bamieh '10

- Submodular optimization with performance guarantees

Clark and Poovendran '11
Clark, Bushnell, and Poovendran '12, '13, ...

- Semidefinite programming for related sensor selection problem Joshi and Boyd '09
- A large literature on controllability of leader-follower networks

Tanner '04
Liu, Chu, Wang, and Xie '08
Rahmani, Ji, Mesbahi, and Egerstedt '09
Clark, Bushnell, and Poovendran '12
Kawashima and Egerstedt '12, ...

In this talk

- Related noise-corrupted leader selection problem
- Efficient algorithms for bounds on global optimal value
* Convex relaxations - lower bounds

夫 Greedy algorithms - upper bounds (exploiting low-rank structure)

- Examples from regular lattices and random networks

Noise-corrupted leader selection

- Arise in several applications
- Give insights to noise-free leader selection
- Easier to solve ;-)

Noise-corrupted leaders

- Undirected connected networks

$$
\begin{aligned}
& \text { FOLLOWERS: } \quad \dot{\psi}_{i}(t)=-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)+w_{i}(t) \\
& \qquad \begin{aligned}
\text { LEADERS: } \quad \dot{\psi}_{i}(t) & =-\sum_{j \in \mathcal{N}_{i}}\left(\psi_{i}(t)-\psi_{j}(t)\right)-\alpha \psi_{i}(t)+w_{i}(t) \\
\alpha & >0
\end{aligned}
\end{aligned}
$$

Leaders have GPS devices

Diagonally strengthened Laplacian matrix

$$
\begin{gathered}
\dot{\psi}(t)=-(L+\alpha \operatorname{diag}(x)) \psi(t)+w(t) \\
x_{i} \in\{0,1\}, \quad 1 \text {-LEADER, } \quad 0-\text { FOLLOWER } \\
L=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right], \quad \operatorname{diag}(x)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\longleftrightarrow
\end{gathered}
$$

Noise-corrupted leader selection

- Select N_{l} leaders to minimize variance of the network

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & J(x) \\
\text { subject to } & x_{i} \\
& \in\{0,1\}, \quad i=1, \ldots, n \\
\mathbb{1}^{T} x & =N_{l}
\end{aligned}
$$

Recover the noise-free formulation $\quad \alpha \rightarrow \infty$
$\begin{aligned} & \text { LEADERS } \\ & \text { FOLLOWERS }\end{aligned}\left[\begin{array}{c}\psi_{l} \\ \psi_{f}\end{array}\right]: \quad\left[\begin{array}{cc}L_{l}+\alpha I & L_{0}^{T} \\ L_{0} & L_{f}\end{array}\right]^{-1} \rightarrow\left[\begin{array}{cc}0 & 0 \\ 0 & L_{f}^{-1}\end{array}\right]$

Connections to sensor localization problem

Goal: Estimate sensor positions $\quad \psi \in \mathbb{R}^{n}$

- Relative measurements $y_{k}=\psi_{i}-\psi_{j}+w_{k}$
- Absolute measurements $\quad y_{i}=\psi_{i}+\frac{1}{\alpha} w_{i}$

Select N_{l} absolute measurements to minimize variance of estimation error

Algorithms for noise-corrupted formulation

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & J(x)
\end{aligned}=\operatorname{trace}\left((L+\alpha \operatorname{diag}(x))^{-1}\right)
$$

- Feature: Convex objective function
- Difficult: Boolean constraints II
- Approach:
* Convex relaxation $\quad \Rightarrow \quad$ lower bound
* Greedy algorithm $\quad \Rightarrow \quad$ upper bound

Convex relaxation

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & J(x)
\end{aligned}=\operatorname{trace}\left((L+\alpha \operatorname{diag}(x))^{-1}\right)
$$

Enlarge feasible set \Rightarrow lower bound

- SDP formulation with complexity $O\left(n^{4}\right)$ - number of nodes
- Customized interior point method $O\left(n^{3}\right)$

Greedy algorithm

- One-leader-at-a-time

$$
L+\alpha e_{i} e_{i}^{T}
$$

* RANK-1 UPDATE: $O\left(n^{2}\right)$ per leader

Complexity: $\quad N_{l} \ll n \Rightarrow O\left(n^{3}\right) \quad$ one matrix inverse

After selecting N_{l} leaders

- Swap a leader and a follower

$$
L-\alpha e_{i} e_{i}^{T}+\alpha e_{j} e_{j}^{T}
$$

* RANK-2 UPDATE: $O\left(n^{2}\right)$ per swap

Recap

$$
\left.\left.\begin{array}{rl}
\underset{x}{\operatorname{minimize}} \quad J(x) & =\operatorname{trace}\left((L+\alpha \operatorname{diag}(x))^{-1}\right) \\
\text { subject to } & x_{i}
\end{array}\right)\{0,1\}, \quad i=1, \ldots, n\right\}
$$

- Convex relaxation \Rightarrow lower bound
* Semidefinite program $O\left(n^{4}\right)$
* Customized interior point method $O\left(n^{3}\right)$
- Greedy algorithm $\quad \Rightarrow$ upper bound
* Without exploiting structure $O\left(n^{4} N_{l}\right)$
* Low rank updates $O\left(n^{3}\right)$

A random network with 100 nodes

Gap between bounds

Degree heuristics vs. greedy algorithm

Degree heuristics vs. greedy algorithm

$N_{l}=5 \quad J=27.8$

$N_{l}=40 \quad J=15.0$

$N_{l}=40 \quad J=9.5$

Few leaders vs. many leaders

- Few leaders: Partition graphs and spread leaders
- Many leaders: Boundary with low-degree nodes

A 2D lattice

Gap between bounds

Leaders spread out from center

So far...

- Leader selection in consensus networks
- Applications in vehicular formations and sensor localization
- Noise-corrupted leaders
- Algorithms for lower and upper bounds on global solutions
- Examples from random networks and 2D lattices

Next...

- Alternative formulation for noise-free leader selection
- Algorithms for lower and upper bounds on global solutions
- A flexible framework - amenable to other applications

Alternative formulation

$$
J_{f}(x)=\operatorname{trace}\left(L_{f}^{-1}\right) \quad \text { NOT EXPLICIT IN } x
$$

$$
x_{i} \in\{0,1\}, \quad 1-\text { LEADER }, \quad 0-\text { FOLLOWER }
$$

$$
L=\left[\begin{array}{ll}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right], \quad x=\left[\begin{array}{c}
\mathbb{1}_{N_{l}} \\
0_{N_{f}}
\end{array}\right]
$$

$$
\begin{gathered}
L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)=\left[\begin{array}{cc}
L_{l} & L_{0}^{T} \\
L_{0} & L_{f}
\end{array}\right] \circ\left[\begin{array}{ll}
0 & 0 \\
0 & \mathbb{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & L_{f}
\end{array}\right] \\
\left(L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right)^{-1}=\left[\begin{array}{cc}
I_{N_{l}} & 0 \\
0 & L_{f}^{-1}
\end{array}\right] \\
J_{f}(x)=\operatorname{trace}\left(\left(L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right)^{-1}\right)-N_{l}
\end{gathered}
$$

$$
J_{f}(x)=\operatorname{trace}\left(\left(L \circ\left((\mathbb{1}-x)(\mathbb{1}-x)^{T}\right)+\operatorname{diag}(x)\right)^{-1}\right)-N_{l}
$$

$$
y=\mathbb{1}-x
$$

$\underset{y}{\operatorname{minimize}} J_{f}(y)=\operatorname{trace}\left(\left(L \circ y y^{T}+\operatorname{diag}(\mathbb{1}-y)\right)^{-1}\right)-N_{l}$ subject to $\quad y_{i} \in\{0,1\}, \quad i=1, \ldots, n$

$$
\mathbb{1}^{T} y=N_{f}
$$

$\underset{Y}{\operatorname{minimize}} \quad J_{f}(Y, y)=\operatorname{trace}\left((L \circ Y+\operatorname{diag}(\mathbb{1}-y))^{-1}\right)-N_{l}$
subject to

$$
\begin{aligned}
Y & =y y^{T} \\
y_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
\mathbb{1}^{T} y & =N_{f}
\end{aligned}
$$

$$
\begin{aligned}
\underset{Y, y}{\operatorname{minimize}} J_{f}(Y, y) & =\operatorname{trace}((L \circ Y+\operatorname{diag}(\mathbb{1}-y)) \\
\text { subject to } & =y y^{T} \\
y_{i} & \in\{0,1\}, \quad i=1, \ldots, n \\
Y_{i j} & \in\{0,1\}, \quad i, j=1, \ldots, n \\
\mathbb{1}^{T} y & =N_{f} \\
\mathbb{1}^{T} Y \mathbb{1} & =N_{f}^{2} \\
Y=y y^{T} & \Longleftrightarrow\{Y \succeq 0, \operatorname{rank}(Y)=1\}
\end{aligned}
$$

Drop rank constraint + relax Boolean constraints \Rightarrow convex relaxation

FLEXIBLE FRAMEWORK FOR NODE-SELECTION PROBLEMS

Convex relaxation

$$
\begin{aligned}
\underset{Y, y}{\operatorname{minimize}} & J_{f}(Y, y) \\
\text { subject to } & =\operatorname{trace}\left((L \circ Y+\operatorname{diag}(\mathbb{1}-y))^{-1}\right)-N_{l} \\
Y & \succeq 0 \\
y_{i} & \in[0,1], \quad i=1, \ldots, n \\
Y_{i j} & \in[0,1], \quad i, j=1, \ldots, n \\
\mathbb{1}^{T} y & =N_{f} \\
\mathbb{1}^{T} Y \mathbb{1} & =N_{f}^{2}
\end{aligned}
$$

- Semidefinite program formulation $O\left(n^{6}\right)$
- Alternating direction method of multipliers
* Solve a sequence of subproblems
* Each subproblem costs $O\left(n^{3}\right)$

Greedy algorithm

- One-leader-at-a-time
* RANK-2 UPDATE: $O\left(n^{2}\right)$ per leader

Without exploiting structure $O\left(n^{4} N_{l}\right)$

Low rank updates $O\left(n^{3} N_{l}\right)$

- Swap a leader and a follower
* RANK-2 UPDATE: $O\left(n^{2}\right)$ per swap

An example

200 randomly distributed notes in a C-shaped region

Srirangarajan, Tewfik, and Luo '08

Gap between bounds

Both noise-free and noise-corrupted formulations yield similar selection of leaders

Concluding remarks

- Leader selection in consensus networks
- Applications in vehicular formations and sensor localization
- Algorithms for lower and upper bounds on global solutions
* Convex relaxations: lower bounds
* Greedy algorithms: upper bounds

www.umn.edu/~mihailo/software/leaders

Ongoing work:

- Robustness of leader selection w.r.t convergence rate, controllability index, ...
- Extension to social networks

