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Overview

Optimal control of dynamical systems on networks

• MAIN TOPICS:

? Localized control of vehicular formations

? Sparsity-promoting optimal control

? Sparse consensus networks

? Algorithms for leader selection in consensus networks
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Localized control of
vehicular formations

Sparsity-promoting optimal control

Sparse consensus networks Algorithms for leader selection
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• CHALLENGES:

? Networks – combinatorial objects

? Optimization – constrained nonconvex problems

• APPROACH:

? Identify classes of convex problems

? Exploit problem structure to develop efficient algorithms
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In this talk

• Leader selection in consensus networks

• Applications in vehicular formations and sensor localization

• Algorithms for lower and upper bounds on global solutions

• Examples from regular lattices and random networks
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Leader-follower consensus dynamics

• Time-invariant undirected connected networks

FOLLOWER: ψ̇i(t) = −
∑
j ∈Ni

(ψi(t) − ψj(t)) + wi(t)

↑
disturbance

LEADER: ψ̇i(t) = 0

[
ψ̇l(t)

ψ̇f(t)

]
= −

[
0 0
L0 Lf

] [
ψl(t)
ψf(t)

]
+

[
0

w(t)

]

Variance of followers depend on network structure and locations of leaders
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Leader selection problem

• Select Nl leaders to minimize variance of followers

minimize
x

Jf(x) = trace (L−1f )

subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = Nl

xi ∈ {0, 1}, 1 − LEADER, 0 − FOLLOWER

L =


1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

 , x =


1
0
0
0

 , Lf =

 2 −1 0
−1 2 −1

0 −1 1
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Connections to sensor localization problem

GOAL: Estimate n sensor positions in 1D

Relative measurements corrupted by noise

yk = ψi − ψj + wk

Anchor nodes with known positions ψl

y = ETψ + w

=

[
El

Ef

]T [
ψl

ψf

]
+ w

In this talk: E(wwT ) = I
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Laplacian of measurement graph

L = EET =

[
ElE

T
l ElE

T
f

EfE
T
l EfE

T
f

]
=

[
Ll LT

0

L0 Lf

]

Minimum variance estimation

ψ̂f = (EfE
T
f )−1Ef (y − ET

l ψl)

Covariance of estimation error ψf − ψ̂f

Σ = (EfE
T
f )−1 = L−1f
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• Select Nl anchors to minimize variance of estimation error

minimize
x

Jf(x) = trace (L−1f )

subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = Nl

xi ∈ {0, 1}, 1 − ANCHOR, 0 − UNKNOWN SENSOR

• Other applications via the interpretation of effective resistance
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Related work
• Greedy algorithms with approximations

Patterson and Bamieh ’10

• Submodular optimization with performance guarantees

Clark and Poovendran ’11
Clark, Bushnell, and Poovendran ’12, ’13, . . .

• Semidefinite programming for related sensor selection problem

Joshi and Boyd ’09

• A large literature on controllability of leader-follower networks

Tanner ’04
Liu, Chu, Wang, and Xie ’08
Rahmani, Ji, Mesbahi, and Egerstedt ’09
Clark, Bushnell, and Poovendran ’12
Kawashima and Egerstedt ’12, . . .
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In this talk

• Related noise-corrupted leader selection problem

• Efficient algorithms for bounds on global optimal value

? Convex relaxations – lower bounds

? Greedy algorithms – upper bounds (exploiting low-rank structure)

• Examples from regular lattices and random networks
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Noise-corrupted leader selection

• Arise in several applications

• Give insights to noise-free leader selection

• Easier to solve ;-)



13

Noise-corrupted leaders

• Undirected connected networks

FOLLOWERS: ψ̇i(t) = −
∑
j ∈Ni

(ψi(t) − ψj(t)) + wi(t)

LEADERS: ψ̇i(t) = −
∑
j ∈Ni

(ψi(t) − ψj(t)) − αψi(t) + wi(t)

α > 0

Leaders have GPS devices
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Diagonally strengthened Laplacian matrix

ψ̇(t) = − (L + α diag (x))ψ(t) + w(t)

xi ∈ {0, 1}, 1 – LEADER, 0 – FOLLOWER

L =


1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

 , diag (x) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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Noise-corrupted leader selection

• Select Nl leaders to minimize variance of the network

minimize
x

J(x) = trace
(
(L + α diag (x))−1

)
subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = Nl

Recover the noise-free formulation α→∞

LEADERS
FOLLOWERS

[
ψl

ψf

]
:

[
Ll + α I LT

0

L0 Lf

]−1
→

[
0 0
0 L−1f

]
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Connections to sensor localization problem

Goal: Estimate sensor positions ψ ∈ Rn

• Relative measurements yk = ψi − ψj + wk

• Absolute measurements yi = ψi +
1

α
wi

Select Nl absolute measurements to minimize variance of estimation error
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Algorithms for noise-corrupted formulation

minimize
x

J(x) = trace
(
(L + α diag (x))−1

)
subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = Nl

• FEATURE: Convex objective function

• DIFFICULT: Boolean constraints

• APPROACH:

? Convex relaxation ⇒ lower bound

? Greedy algorithm ⇒ upper bound
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Convex relaxation

minimize
x

J(x) = trace
(
(L + α diag (x))−1

)
subject to xi ∈ [0, 1], i = 1, . . . , n

1Tx = Nl

Enlarge feasible set ⇒ lower bound

• SDP formulation with complexity O(n4) – number of nodes

• Customized interior point method O(n3)
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Greedy algorithm

• One-leader-at-a-time

L + α eie
T
i

? RANK-1 UPDATE: O(n2) per leader

Complexity: Nl � n ⇒ O(n3) one matrix inverse

After selecting Nl leaders

• Swap a leader and a follower

L − α eie
T
i + α eje

T
j

? RANK-2 UPDATE: O(n2) per swap
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Recap

minimize
x

J(x) = trace
(
(L + α diag (x))−1

)
subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = Nl

• Convex relaxation ⇒ lower bound

? Semidefinite program O(n4)

? Customized interior point method O(n3)

• Greedy algorithm ⇒ upper bound

? Without exploiting structure O(n4Nl)

? Low rank updates O(n3)
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A random network with 100 nodes
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Degree heuristics vs. greedy algorithm
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Degree heuristics vs. greedy algorithm

Nl = 5 J = 27.8 Nl = 5 J = 19.0

Nl = 40 J = 15.0 Nl = 40 J = 9.5
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Few leaders vs. many leaders

• Few leaders: Partition graphs and spread leaders

• Many leaders: Boundary with low-degree nodes
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A 2D lattice
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Nl = 31

Leaders spread out from center
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So far...

• Leader selection in consensus networks

• Applications in vehicular formations and sensor localization

• Noise-corrupted leaders

• Algorithms for lower and upper bounds on global solutions

• Examples from random networks and 2D lattices



29

Next...

• Alternative formulation for noise-free leader selection

• Algorithms for lower and upper bounds on global solutions

• A flexible framework – amenable to other applications
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Alternative formulation

Jf(x) = trace (L−1f ) NOT EXPLICIT IN x

xi ∈ {0, 1}, 1 − LEADER, 0 − FOLLOWER

L =

[
Ll LT

0

L0 Lf

]
, x =

[
1Nl

0Nf

]

L ◦ ((1− x)(1− x)T ) =

[
Ll LT

0

L0 Lf

]
◦
[

0 0
0 1

]
=

[
0 0
0 Lf

]

(L ◦ ((1− x)(1− x)T ) + diag (x))−1 =

[
INl

0
0 L−1f

]

Jf(x) = trace
(
(L ◦ ((1− x)(1− x)T ) + diag (x))−1

)
− Nl



31

Jf(x) = trace
(
(L ◦ ((1− x)(1− x)T ) + diag (x))−1

)
− Nl

y = 1 − x

minimize
y

Jf(y) = trace
(
(L ◦ yyT + diag (1 − y))−1

)
− Nl

subject to yi ∈ {0, 1}, i = 1, . . . , n

1Ty = Nf

minimize
Y, y

Jf(Y, y) = trace
(
(L ◦ Y + diag (1 − y))−1

)
− Nl

subject to Y = yyT

yi ∈ {0, 1}, i = 1, . . . , n

1Ty = Nf
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minimize
Y, y

Jf(Y, y) = trace
(
(L ◦ Y + diag (1− y))−1

)
− Nl

subject to Y = yyT

yi ∈ {0, 1}, i = 1, . . . , n

Yij ∈ {0, 1}, i, j = 1, . . . , n

1Ty = Nf

1TY 1 = N2
f

Y = yyT ⇐⇒ {Y � 0, rank (Y ) = 1 }

Drop rank constraint + relax Boolean constraints ⇒ convex relaxation

FLEXIBLE FRAMEWORK FOR NODE-SELECTION PROBLEMS
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Convex relaxation

minimize
Y, y

Jf(Y, y) = trace
(
(L ◦ Y + diag (1− y))−1

)
− Nl

subject to Y � 0

yi ∈ [0, 1], i = 1, . . . , n

Yij ∈ [0, 1], i, j = 1, . . . , n

1Ty = Nf

1TY 1 = N2
f

• Semidefinite program formulation O(n6)

• Alternating direction method of multipliers

? Solve a sequence of subproblems

? Each subproblem costs O(n3)
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Greedy algorithm

• One-leader-at-a-time

? RANK-2 UPDATE: O(n2) per leader

Without exploiting structure O(n4Nl)

Low rank updates O(n3Nl)

• Swap a leader and a follower

? RANK-2 UPDATE: O(n2) per swap
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An example

200 randomly distributed notes in a C-shaped region

Srirangarajan, Tewfik, and Luo ’08
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Nl = 3
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Nl = 9

Both noise-free and noise-corrupted formulations yield similar selection of leaders
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Concluding remarks

• Leader selection in consensus networks

• Applications in vehicular formations and sensor localization

• Algorithms for lower and upper bounds on global solutions

? Convex relaxations: lower bounds

? Greedy algorithms: upper bounds

www.umn.edu/∼mihailo/software/leaders

Ongoing work:

• Robustness of leader selection w.r.t convergence rate, controllability index, . . .

• Extension to social networks

http://www.ece.umn.edu/users/mihailo/software/leaders

