A Taxonomy of Programming Models for Symmetric
Multiprocessors and SMP Clusters

W. W. Gropp and E. L. Lusk
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439

Abstract

The basic processing element, from PCs to large
systems, 1is rapidly becoming a symmetric multipro-
cessor (SMP). As a result, the nodes of a parallel
computer will often be an SMP. The resulting mized
hardware models (combining shared-memory and dis-
tributed memory) provide a challenge to system soft-
ware developers to provide users with programming
models that are portable, understandable, and effi-
cient. This paper describes and compares a variety
of programming models for a parallel computer made
up of SMP nodes.

1 Introduction

The first commercial parallel computers were
shared-memory machines. As time passed, it was
found that the cost benefits of large-scale parallelism
provided an advantage to architectures that were
more scalable than the bus-based shared-memory ma-
chines, and high-performance computing came to be
dominated by message-passing machines like the In-
tel iPSC/860 and Paragon, the IBM SP1 and SP2,
the TMC CM-5, and the Cray T3D. Now, however,
parallel versions of RISC-based workstations are giv-
ing the shared-memory paradigm a new life, with
scalability provided by interconnecting multiple such
shared-memory machines (symmetric multiprocessors,
or SMP’s) with high-speed (or even low-speed) net-
works and switches. Thus we are approaching a situa-
tion in which the hardware model presented to a pro-
grammer consists of a cluster of SMP’s, with shared
memory provided for inter-process communication on
a single SMP, and message-passing provided for inter-
process communication between SMP’s. This same
model is being presented from three different direc-
tions:

t High-speed networks connecting large SMP’s.
Such clusters compete with traditional MPP’s
(massively parallel processors).

t Small SMP nodes connected by high-speed
switches. These are the next generation of
MPP’s.

t Small SMP workstations and multiprocessor PC’s
on inexpensive networks. These are the next gen-
eration of today’s workstation networks.

Although different, all of these platforms provide the
same system model combining shared memory with
message passing. Their operating systems may or may
not provide aspects of advanced programming envi-
ronments: virtual shared-memory across the cluster,
threads within a cluster, remote memory operations
such as put/get, but are very likely to provide the
minimum components in some form: processes, mem-
ory accessible by more than one process, locks to pro-
tect variables in shared memory, messages to provide
data transfer from one process’s private memory to an-
other’s. We focus here on what can be accomplished
with this basic set of tools, and consider higher-level
constructs to be built on these.

The idea of combining the shared-memory and
message-passing models is not new. It has been de-
scribed in [1] and implemented in a widely-available
programming system [2]. However, the current com-
puting environment, with this programming model be-
coming available in so many different ways, gives the
topic renewed importance.

In Section 2, we define the terms we will use in our
discussion of programming models. Section 3 briefly
describes the criteria we will use in evaluating pro-
gramming models, and Section 4 lists components of
the models we will examine. Section 5 contains a
rough classification of programming models for SMP
clusters and some commentary on each model with re-
gard to the criteria discussed in section 3. Section 6
draws some conclusions.

2 Common Programming Models

Since many of the terms we use in this discussion
mean different things to different people, in this sec-
tion we define our basic vocabulary.

2.1 Processors

In the following discussion, a processor is a CPU,
capable of executing a program. A processor may or
may not be individually addressable or controllable.
An example of such a processor might be a CPU in a
symmetric multiprocessor. That is, we will say that
a single symmetric multiprocessor with four CPU’s,
capable of running four Unix processes simultaneously,
has four processors.

2.2 Processes and Threads

A process has its own address space, together with
a single program counter and stack. A Unix process is

a good example. A single process may contain multi-
ple threads. A thread has its own stack and program
counter, but shares the rest of memory with other
threads in the same process. On shared-memory ma-
chines, there is often a way for processes to obtain a
pointer to a block of memory that is shared with other
processes, although such mechanisms are highly non-
standard. Conversely, there is a way for threads to
acquire private memory. The Posix “pthread” stan-
dard provides a standard, portable way to do this,
although not all thread systems are Posix-compliant.

Processes are scheduled for execution on a single
processor by the operating system. The cost of switch-
ing execution on that processor from one process to an-
other is generally considered to be large, because of the
cost of changing address spaces. Threads are sched-
uled within a single process with a variety of methods,
which differ in cost on different systems, depending on
whether they are scheduled by the operating system
or not. Thread scheduling may be entirely under user
control, whereas process scheduling is in general not
under user control. Since the address space need not
be changed, the cost of switching threads within a pro-
cess is generally considered to be low.

An important thread-scheduling issue is whether a
system call blocks only the calling thread or the en-
tire process. (Of course it may block all threads on
some system calls but not others.) This is a crucial
issue for the interaction of message-passing libraries
and thread libraries. A convenient programming tech-
nique is to fork a thread to perform a blocking receive
while other threads continue to execute. For this to
work, it is essential that the blocking receive operation
not block the entire process. In addition, the thread
must become dispatchable when the receive completes.
Thus, useful thread libraries cannot be completely in-
dependent of the message-passing system, I/O system,
or other parts of the operating system, such as some
“user threads” packages are. Unfortunately, a thread
library can be POSIX compliant without the impor-
tant feature that system calls block only the calling
thread, not all threads in the calling process. There-
fore it is often difficult to tell from system documen-
tation whether this feature is present or not, and ex-
perimentation is required.

Any comparison of processes with threads must
take into account both the different memory models
and the different scheduling mechanisms.

Processes are typically scheduled independently.
Gang scheduling refers to scheduling sets of processes
simultaneously. Gang scheduling is important for
performance if synchronization among the processes
occurs. Without it, message-passing latency or the
delay required to obtain a lock may be “unnatu-
rally” increased because the other process has been
swapped out in order to execute another user’s pro-
cess. Threads belonging to a single process are in some
sense automatically gang-scheduled when the number
of threads is less than the number of processors, since
the unit of scheduling by the operating system is nor-
mally the process.

2.3 Message Passing

By message passing we mean the transfer of
data between processes (and in some cases, between
threads) by send/receive operations, in which both
processes must participate in the transfer. Thus we
explicitly do not include “active” messages or remote-
memory copy operations, which can be carried out
by a single process. We will discuss these operations,
which are likely to be provided in some form on SMP
clusters of the near future, but we do not consider
them (yet) to be part of the message-passing model.
They are not part of the Message Passing Interface
(MPI) standard, as defined by [3]. They may be in-
cluded, however, in an extended version of MPI [4].

2.4 Shared Memory

By shared memory we mean the capability of mul-
tiple processes to access the same memory location.
Under ordinary circumstances, for example, Unix pro-
cesses have completely separate address spaces. How-
ever, many systems with shared-memory hardware
(and some without) provide a mechanism whereby cer-
tain addresses are accessible to more than one process.
A relatively cumbersome and incomplete mechanism
has long been provided in the Unix context via Sys-
tem V shared-memory operations (shmget, shmat) or
by mmap. Various vendors have also provided their own
mechanisms (such as SGI’s “shared arenas”).

It is also possible to provide a single address space
shared by all processes. An example is provided by
the SGI sproc system call, which can “fork” a set of
processes that share all memory. The normal Unix
fork copies memory, which is then not shared!. Pro-
cesses in this situation behave much like threads, since
they share all memory. There is little agreement on
standards for this model, with renders it not portable.
By wvirtual shared memory we mean the provision of
this model on distributed memory machines. A va-
riety of techniques have been proposed for doing this
efficiently.

In order to coordinate access to shared mem-
ory by multiple processes, some form of locks must
be provided. These also are typically non-portable.
Locks can come in a variety of types (spinlocks, ex-
ponential back-off, etc.), and can be used to con-
struct higher-level synchronization mechanisms, such
as semaphores, barriers, and monitors. Little stan-
dardization has occurred on the form of these opera-
tions, although the msemaphores defined by OSF are
available on more than one platform (at least KSR,
Convex, and IBM). Locks may involve system calls
(with the resulting expense) or may be achieved with
low-level memory operations.

For some programmers, the “shared memory”
model means that compiler directives control the par-
allelism available in certain loop, particularly if data
locality has been controlled by other compiler direc-
tives. This is particularly attractive in Fortran, which
has no explicit memory model containing the notion of
address. Such compiler directives have only recently

LA variant is vfork, which is expected to copy only on use.
In some Unix’s, however, such as IBM’s AIX, vfork is exactly
the same as fork.

achieved any type of standardization, with data dis-
tribution directives being specified by HPF [5].

2.5 “One-sided” Message Passing

A characteristic feature of what we define here as
the message-passing model is that data can only be
moved from the local address space of one process to
the local address space of another process through the
cooperation of both processes. This can cause un-
necessary synchronization. Some systems offer “one-
sided” data transfer operations that offer some of
the advantages of the shared-memory paradigm in a
message-passing environment.

The first widely-used such system was the active
message library on the CM-5, where messages could
trigger actions, including node-to-node memory trans-
fers, on remote nodes. A more recent version of this is
the Cray T3D Shmem library, which provides put/get
operations that can be used by a process on one node
of the machine to transfer data to/from the memory
of another node. In such schemes, a critical issue is
how addresses on other nodes are represented, com-
municated, validated, and protected.

For examples, on the Cray T3D, physical addresses
are communicated, and validation of the address for
a put operation is done at the sending node. This is
adequate for SPMD programs with uniform data lay-
outs on all the nodes, but not for more sophisticated
message-passing programs. On the Meiko CS-2, on
the other hand, shadow page tables are maintained
in the communication processor, so that virtual ad-
dresses can be communicated and addresses can be
validated on the nodes where they are to be used.

3 Criteria

Here we describe the criteria that we will use to
evaluate programming models that can be supported
on clusters of SMP’s.

The first one is performance. For some users of
such machines, no programming model will be accept-
able if it prevents them from obtaining a very large
percentage of the maximum available performance.
They are likely to evaluate the performance of applica-
tions in terms of floating point operations per second,
with message-passing latency and bandwidth treated
as known obstacles to obtaining peak megaflop rates.
Since peak megaflop rates of today’s RISC processors
depend on having operands in cache, cache effects are
an important part of the model.

The second major consideration is portability.
There are at least three types of portability. Firstly,
there are already “dusty deck”, or “legacy”, parallel
programs. The ease with which these programs, of-
ten currently running on distributed-memory MPP’s,
can be moved to SMP clusters will be a factor in the
market acceptance of the SMP’s. Secondly, users in-
creasingly have access to multiple computers of the
same programming model, and will want their code to
be portable from one SMP cluster to another. Stan-
dards such as MPI will be helpful in creating high-
performance portable code. And finally, as software
life cycles get longer and hardware life cycles get
shorter, portability is necessary to be able to continue

to develop and run the same application on multiple
generations of the same manufacturer’s products.

It is crucial that the models support correctness in
that users cannot corrupt the memory of other pro-
cesses. The Elan hardware in the Meiko CS-2, which
maintains copies of page tables on the communications
processor, is an example of a correctness-promoting
design.

Fase of use relates to how cumbersome it is to write
high-performance, portable, correct code at the level
we are addressing here. Some may consider this irrele-
vant, assuming that “users” will interface to these sys-
tems through high-level parallel languages (e.g., For-
tran M), parallel versions of existing languages (e.g.,
HPF), or “distributed objects”. Nonetheless, someone
has to provide these higher-level systems, and for them
ease of use translates into more robust, less expensive,
more maintainable user systems.

4 Components of the model

There are several components of any programming
model for SMP’s. These components are (almost) in-
dependent. We will consider all combinations of them.

4.1 Address space

The first part of the programming model to con-
sider is whether or not the user sees a single address
space (shared memory) or separate and distributed
address spaces.

There is also an intermediate position: the address
spaces are mostly distinct, but it is possible to have
some space that is shared. This model is typified by
the Unix System V shared memory operations. In this
model, users can allocate shared memory, often with
a special malloc (in C) or compiler directives (e.g.,
shared common for Fortran).

4.2 Process scheduling

The next part of the programming model concerns
how the threads of control are handled. On each SMP,
a user may have one or more processes, each of which
may have one or more threads of control. There are a
number of cases:

1. One process per thread of control, no more pro-
cesses than processors.

2. One process on the SMP, with many threads of
control (but no more than the number of proces-
sors)

3. Many processes (more than the number of pro-
cessors), one thread per process

4. Many threads in each process
5. Combinations of these.

Each of these can be combined with the different
memory models. Specifically, we do not require that
processes have disjoint address spaces.

In this model, a key feature of a thread is the user-
control over the scheduling of threads. This is the
only major distinction between threads and processes
that share an address space. (But recall the discussion

in Section 2 on whether system calls block threads or
processes.)

One issue that affects the choice of threads or pro-
cesses is how they are scheduled. For many applica-
tions, there are three important choices. They are

t All processes/threads scheduled independently

t All processes/threads within a single SMP can be
scheduled together (gang scheduling)

T All processes/threads can be scheduled together
(grand gang scheduling)

In the discussion above, we distinguished between
at most one user process per processor and more than
one user process per processor without discussing how
the number of processors is characterized. The obvi-
ous characterization that takes the number of proces-
sors may be misleading, since we are referring, par-
ticularly in the case of gang scheduling, to processors
that the user has effectively exclusive access to. On
an SMP running a full-featured operating system such
as some variant of Unix, the operating system and its
demons can consume enough CPU resources to cause
performance problems for applications that use static
load balancing (such demons include network demons,
file system, accounting, message logging, etc). Thus,
on an SMP with p processors, a user may want to use
only p i 1, leaving the last for the operating system.
This is expensive for the user, of course.

4.3 Heterogeneity of model

The last component to consider is whether the user
sees a uniform model (e.g., all shared memory or all
message-passing) or not.

A uniform programming effectively hides some as-
pect of the cluster of SMPs. One model hides the
shared memory of the SMPs by using message-passing
everywhere. The other hides the interconnections be-
tween the clusters by using shared memory everywhere
(that is, virtual shared memory between SMP’s).

5 Commentary

There are eight basic options (2 choices along each
of 3 axes). Two of these, non-shared address space
threads with either model, are irrelevant and will not
be discussed further.

The remaining six are shown in Table 1. In this
section we examine each of the six possible models and
discuss them with respect to the criteria described in
Section 3.

1. Shared-memory processes, non-uniform
programming model. This model has the po-
tential to provide high-performance on SMP clus-
ters, due to explicit exploitation of shared mem-
ory on single SMP’s. It is most likely to be real-
ized in compiler-based parallelism for exploiting
shared memory with explicit message passing be-
tween nodes (individual SMP’s). Particularly in
the case of large SMP’s, explicit shared-memory
programming, coupled with a small amount of
message-passing, will deliver high-performance.
Peak performance will depend on the hardware
(and software!) that connects the nodes.

Type Address Processes Uniform
Space or Threads Model
1. shared process no
2. non-shared process no
3. shared thread no
4. shared process yes
d. non-shared process yes
6. shared thread yes

Table 1: Possible Models

2. Non-shared-memory processes, non-
uniform. This is not really an option, since if
the processes don’t share memory the model is
uniform and occurs below.

3. Shared-memory, threads, non-
uniform model. Compilers for systems that
support threads are very likely to produce code
that exploits multiple processors sharing all mem-
ory by compiling for threads rather than separate
processes. The model will be non-uniform if the
programmer adds explicit message-passing calls
to his code. Also, programmers may write explic-
itly multi-threaded programs that use message
passing. Note that this is only possible with a
thread-safe message-passing library like MPT [3].

4. Shared-memory, processes, uniform model.
This is the virtual shared memory programming
model, in which all memory is shared, It is likely
to be less efficient on SMP clusters (and on pure
distributed-memory machines) than on SMP’s,
but useful in porting codes developed on single
SMP’s.

5. Non-shared, process, uniform model. This
is the most portable of all the programming mod-
els considered here, because it consists of pure
message passing, with the shared memory in each
SMP used to provide particularly efficient mes-
sage passing among processes on that node (See
Section 5.2). Onme could expect MPI programs,
for example, to port transparently from MPP’s
to SMP’s and SMP clusters, with good perfor-
mance.

6. Shared-memory, uniform, with threads.
This is the same as the preceding, but with
threads instead of processes.

5.1 A Note on Message Passing among
Threads

For large SMP’s, some have advocated porting
message-passing codes to the SMP’s by replacing pro-
cesses by a single multithreaded process in order to
gain the advantages of fast thread scheduling along
with the sharing of memory that can make the mes-
sage passing particularly efficient. This can be an ef-
fective approach, but one must be sure to understand

the issues involved. The port is unlikely to be trans-
parent, because of the very different memory models
involved. In particular, when replacing processes with
threads, variables that were by default (and by ne-
cessity) local to each process will now become shared
by default. One can expect that changes will have to
be made to a message-passing code for it to run with
threads on an SMP, and that the changes will not
port back to the distributed-memory machine, where
threads sharing memory on different nodes is unlikely
to be supported. It is also the case that threads are
not the only way to obtain shared memory on most
SMP’s; there is always some kind of explicit shared
memory available.

The issue is really scheduling. The main motiva-
tion for replacing processes by threads without replac-
ing the message passing with explicit shared-memory
operations is to get all threads scheduled on multiple
processes simultaneously. If the operating system sup-
ports gang scheduling of processes (as is possible with
SGT’s sproc) then the need to address this model is
eliminated.

5.2 Is message-passing slow?

One assumption that many researchers make is that
message-passing is slow and that a shared memory
model is faster. This view is based on the overhead
of message-passing operations (i.e., matching message
tags, synchronizing senders and receivers, and data
buffer management). While there is some truth to
this, the actual situation is more complex.

Comm Perf for MPI
type = blocking
T T T

500 T T T

400 — —

100 — —

L | L | L | L
0 20000 40000 60000 80000

Size (bytes)

Figure 1: Performance for message-passing on shared
memory hardware (preliminary figures)

To see why, first consider a shared memory pro-
gram. Each access to shared data must be guarded,
either by an explicit lock or some sort of barrier syn-
chronization. Depending on the amount of hardware
support for managing locks (or monitors or critical
sections), this can be relatively expensive; in SMPs
providing multiprocessing, even hardware support will
probably need to be managed by the operating sys-
tem, causing locks to require a system call (locks based

Comm Perf for MPI (AIX 4.1)
type = blocking
T T T

Rate (MB/sec)

L | L | L | L
0 20000 40000 60000 80000

Size (bytes)

Figure 2: Performance for message-passing on shared
memory hardware with two copies (preliminary fig-
ures)

purely on atomic reads and writes require many oper-
ations and are also not inexpensive).

Message passing requires many of the same opera-
tions. In one implementation, sending a message in-
volves two locks and and a data copy, as well as some
logic. This is not much higher than the locks required
by shared memory.

Now consider the cost to access data. In shared
memory, the data may be read directly. In message-
passing, it must be copied from one buffer to an-
other. This suggests that message-passing involves
extra data-motion. But this need not be so. If there
is one thread of control per processor, and each pro-
cessor has a separate data cache, then even in the
shared-memory case, the data will need to be copied
into the cache of the processor that is referencing it.
Thus, shared-memory may also need to copy the data,
although this happens implicitly. The advantage over
message-passing is thus primarily one of being able to
access all of memory directly, without synchronizing
with any other processor. But is this such an advan-
tage?

Users must protect all memory reference operations
safe code must lock everything); locks are removed
implicitly) by assertions that data is not subject to
multiple simultaneous writers or non-atomic read op-
erations. This programming cost is often not taken
into account.

Experiments on an SGI Power Challenge bear this
out. The maximum obtainable bandwidth on this par-
ticularly system is 600 MB/sec; the asymptote is 586
MB/sec for the message-passing model (See Figure 1).
Latency for short messages is close to locking cost.
Note that these figures are for cache-to-cache copies.

Note that it is shared-memory hardware that makes
this performance so good; our argument is that writ-
ing effective programs with shared memory is harder
than it might seem, and in many situations any ad-

vantage over message passing is slight. Of course, if
the programmer can guarantee that many operations
can be performed while a single lock is held, then the
cost of the locks can be amortized over many accesses.

On an IBM PowerPC-based SMP, preliminary data
shows bandwidth given in Figure 2. In this implemen-
tation, shared memory is used for transferring mes-
sages, but with a “two-copy” mechanism, in which
data is copied into shared memory from the send-
ing process, and then from the shared memory into
the receiving process’s address space. Here we see
lower bandwidth than the machine is capable of de-
livering, based on its underlying memory-to-memory
copy speeds.

5.3 Latency Hiding

By latency-hiding we mean any programming strat-
egy that allows useful work to be done while the pro-
cess is waiting for an operation to complete. One ap-
proach to latency hiding is to have multiple threads
per processor. For example, if a major component of
latency in message passing is the cost of handshakes
between source and destination, a second thread could
run while the first thread is waiting for the handshake
to occur. (This approach is often used for I/O and
even for memory references, as on the Tera computer
and the Alewife.) The downside is the additional cost
of providing multi-threading (no thread may block an-
other) to the single resource of the high-speed inter-
connect.
5.4 Obstacles to the Development of Per-

formance Models

It would be advantageous to be able to analytically
model the various programming models in order to
determine their merits and costs. Unfortunately, an
effective model is difficult to develop. Some of the
complications include:

t the costs of switching threads (including locks,
data structures, etc.)

t the effects on cache utilization (Do threads in
same process have separate cache mappings?
What about conflicts?)

T scheduling effects

6 Conclusions

The advent of SMP’s and particularly clusters of
them challenges existing programming models, and
provides for a wealth of possibilities to be supported
by vendors. Here we draw attention to three particu-
lar models that merit support from vendors, each for
different reasons.

t The uniform, process-based, non-shared memory
model is a crucial one because it offers the great-
est portability. If an SMP and associated SMP
cluster supports MPI, for example, then existing
applications, programmed in MPI and running on
MPP’s, will port transparently.

t The non-uniform, threads-based model with
shared-addresses local to a node but not local,

is an important model because it offers greatest
performance by exploiting the hardware fully. On
each SMP, shared memory will be used to avoid
message passing overheads and controlled by ex-
plicit POSIX-style thread primitives or a com-
piler, either generating message-passing calls in-
ternally or allowing the user to do so.

t The uniform shared-memory process model (vir-
tual shared memory) offers the greatest ease of
use in parallelizing codes that exist in serial form.
compiler-based parallelism can often aid in get-
ting such codes running quickly although not at
peak performance. The transition to a high-
performance version of the code can then proceed
incrementally.

Other models are likely to be demanded by users,
particularly those writing libraries that deliver par-
allelism in more abstract, object-oriented ways. But
these three are essential.

Acknowledgements

This work was supported by the Mathematical, In-
formation, and Computational Sciences Division sub-
program of the Office of Computational and Technol-
ogy Research, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38.

References

[1] James Boyle, Ralph Butler, Terrence Disz, Barnett
Glickfeld, Ewing Lusk, Ross Overbeek, James Pat-
terson, and Rick Stevens. Portable Programs for

Parallel Processors. Holt, Rinehart, and Winston,
1987.

[2] Ralph Butler and Ewing Lusk. Monitors, mes-
sages, and clusters: The p4 parallel programming
system. Parallel Computing, 20:547-564, April
1994. (Also Argonne National Laboratory Math-
ematics and Computer Science Division preprint
P362-0493).

[3] Message Passing Interface Forum. MPI: A
message-passing interface standard. International
Journal of Supercomputing Applications, 8(3/4),
1994.

[4] The MPI Forum. Extensions to the message-
passing interface, 1996.

[5] Charles H. Koelbel, David B. Loveman, Robert S.
Schreiber, Guy L. Steele Jr., and Mary E. Zosel.
The High Performance Fortran Handbook. MIT
Press, 1993.

