
Building Library Components That Can Use

Any MPI Implementation

William Gropp

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL
gropp@mcs.anl.gov

http://www.mcs.anl.gov/~gropp

Abstract. The Message Passing Interface (MPI) standard for program-
ming parallel computers is widely used for building both programs and
libraries. Two of the strengths of MPI are its support for libraries and
the existence of multiple implementations on many platforms. These two
strengths conflict, however, when an application wants to use libraries
built with different MPI implementations. This paper describes several
solutions to this problem, based on minor changes to the API. These
solutions also suggest design considerations for other standards, particu-
larly those that expect to have multiple implementations and to be used
in concert with other libraries.

The MPI standard [1, 2] has been very successful (see, for example, [3]).
Multiple implementations of MPI exist for most parallel computers [4], including
vendor-optimized versions and several freely-available versions. In addition, MPI
provides support for constructing parallel libraries. When an application wants to
use routines from several different parallel libraries, however, it must ensure that
each library was built with the same implementation of MPI. The reason rests
with the lack of detailed specification in the header files ‘mpi.h’ for C and C++,
‘mpif.h’ for Fortran 77, or the MPI module for Fortran 90. Because the goals
of MPI included high performance, the MPI standard gives the implementor
wide latitude in the specification of many of the datatypes and constants used
in an MPI program. For each individual MPI program, this lack of detailed
specification in the header file causes no problems; few users are even aware
that the specific value of, for example, MPI ANY SOURCE is not specified by the
standard. Only the names are specified by the standard.
A problem does arise, however, in building an application from multiple li-

braries. The user must either mandate that a specific MPI implementation be
used for all components or that all libraries be built with all MPI implemen-
tations. Neither approach is adequate; third-party MPI libraries (such as those
created by ISVs) may be available only for specific MPI implementations, the
building and testing each library for each MPI implementation are both time-
consuming and difficult to manage. In addition, the risk of picking the wrong
version of a library is high, leading to problems that are difficult to diagnose.

Furthermore, while building each library with each version of MPI is possible,
this solution doesn’t scale to other APIs that have multiple implementations.
This is not a hypothetical problem. At least one ISV has already experienced
this problem, as has any site that has installed MPICH, LAM/MPI, or MPICH-
GM. Thus, a solution that allows an application to use any implementation of
MPI (and, using similar techniques, other libraries) is needed.

At least two solutions to this problem are feasible. The first is completely
generic. It effectively wraps all MPI routines and objects with new versions
that work with any MPI implementation by deferring the choice of a specific
implementation to link- or even run-time if dynamically-linked libraries are used.
For this approach, one can use new tools for building language-specific interfaces
from language-independent descriptions of components. The second approach
may be applied to those MPI implementations whose opaque objects have the
same size (e.g., MPI Requests are four bytes in all implementations). Neither
solution is perfect; both require some changes to the source code of an existing
component that already uses MPI. In many cases, however, these changes can
be automated, making their use almost transparent.

This paper reviews in Section 1 the MPI values and objects that are defined
in the ‘mpi.h’ header file. In Section 2, the paper describes the issues in creating
a generic ‘mpi.h’ for the C binding of MPI, with some comments about C++
and Fortran. Section 3 provides an example that shows the same object library
used by two different popular MPI implementations.

The approach described here does not address the issues of performance
portability, particularly the problem of chosing the MPI routines with the best
performance. However, this approach does allow libraries to use the conventional
approach of encapsulating performance-critical operations in separate routines
and then using runtime configuration variables to choose the best approach.
Performance measurement tools such as SkaMPI [6] can be used to help identify
the appropriate choice for a particular MPI implemenation.

1 Brief Overview of MPI

The MPI specification itself is language independent. The MPI-1 standard spec-
ifies bindings to C and Fortran (then Fortran 77); the MPI-2 standard added
bindings for C++ and Fortran 90. MPI programs are required to include the ap-
propriate header file (or module for Fortran 90); for C and C++, this is ‘mpi.h’.
The file includes: typedefs for MPI opaque objects, definitions of compile-time
constants, definitions of link-time constants (see below), and function proto-
types. The implementation, however, is given wide latitude in the definition of
the named objects. For example, the following definitions for the MPI object
used to describe data layouts (MPI Datatype) are used by four common imple-
mentations:

Implementation Datatype Definition
IBM typedef int MPI_Datatype;

LAM typedef struct _dtype *MPI_Datatype;

MPICH typedef int MPI_Datatype;

SGI typedef unsigned int MPI_Datatype;

While no implementation appears to use a struct rather than an int or pointer,
nothing in the MPI standard precludes doing so.
The MPI standard also requires each routine to be available with both MPI

and PMPI prefixes. For example, both MPI Send and PMPI Send are required.
This is called the profiling interface. The intent of the PMPI versions is to allow a
tool to replace the implementations of the MPI routines with code that provides
added functionality (such as collecting performance data); the routine can then
use the PMPI version to perform the MPI operation. This is a powerful feature
that can be exploited in many applications and tools, such as the performance
visualization tools Jumpshot [7] and Vampir [5].
One solution, mentioned above, creates a new binding for MPI that speci-

fies all of the values and types. A “user” implementation of this binding could
make use of the profiling interface. In order to use this new binding, however,
applications must be rewritten. This solution will be described in another paper.

2 A Generic MPI Header

An alternative solution to a new MPI binding is to find a common version of the
header file ‘mpi.h’ that can be used by multiple implementations. This solution
is less general than the generic binding but has the advantage of requiring fewer
changes to existing codes. The approach here is to replace compile-time con-
stants with runtime constants by finding a common data representation for MPI
objects. There are some drawbacks in this approach that are discussed below.
However, the advantages are that it requires few changes to existing code and
most operations directly call the specific MPI routines (with no overhead).
The approach is as follows: Define a new header file that replaces most

compile-time values with runtime values. These values are then set when the
initialization of MPI takes place. In most cases, this can be accomplished at
link time by selecting a particular library, described below, that contains the
necessary symbols.
The header file ‘mpi.h’ contains the following items that must be handled:

Compile-time values. These include the constants defining error classes
(e.g., MPI ERR TRUNCATE) and special values for parameters (e.g.,
MPI ANY SOURCE). These can be replaced with runtime values that are ini-
tialized by GMPI Init.
A special case are the null objects such as MPI COMM NULL. Most implementa-
tions define all null objects the same way (either zero or ¡1). The MPICH-2
implementation, however, encodes the object type in each object handle, in-
cluding the null object handles. Thus, these terms must cannot be defined
at compiletime.

Compile-time values used in declarations. These include constants defin-
ing maximum string sizes (e.g., MPI MAX ERROR STRING). In many cases, these
can be replace by either the maximum or the minimum over the supported
implementations, for example,

Implementation Size of MPI_MAX_ERROR_STRING

SGI 256
IBM 128
LAM 256
MPICH 512

Defining MPI MAX ERROR STRING as 512 is adequate for all of these MPI-1
implementations, since this value is used only to declare strings that are used
as output parameters. Other values describe the sizes of input arrays, such
as MPI MAX INFO KEY. In this case, the minimum value should be used. While
this might seem like a limitation, a truly portable code would need to limit
itself to the minimum value used in any supported MPI implementation, so
this is not a limitation in practice.

Init-time constants. MPI defines a number of items that are constant between
MPI Init and MPI Finalize, rather than compile-time constants. The pre-
defined MPI datatypes such as MPI INT belong to this category. For most
users, the difference isn’t apparent; it comes up only when users try to use
one of these in a place where compile-time constants are required by the
language (such as case labels in a switch statement). Init-time constants are
actually easier to implement than compile-time constants because it is cor-
rect to define them as values that are initialized at run time. Fortunately,
in most implementations, these are implemented either as compile-time con-
stants or link-time constants (such as addresses of structures) and require
no code to be executed to initialize them. Thus, we do not need a special
MPI Init routine to handle this case.

Opaque objects. These are both the easiest and the most difficult. In practice,
most implementations define these as objects of a particular size, and further,
most implementations choose to either ints or pointers to represent these
objects. On many platforms, ints and pointers are the same size. For such
platforms, we can simply pick one form (such as int) and use that.
If the size of these objects is different among different implementations,
then there is no easy solution. We cannot pick the largest size because
some MPI operations use arrays of opaque objects (e.g., MPI Waitsome or
MPI Type struct). The solution described here does not handle this case,
though an approach that follows the technique used for MPI Status, shown
below, may be used.
One additional complication is the handle conversion functions introduced
in MPI-2. These convert between the C and Fortran representations of the
handles. For many implementations, these are simply cast operations, and
the MPI standard allows them to be implemented as macros. However, for
greatest flexibility, the generic header described here implements them as
functions, permitting more complex implementations.

Defined objects (status). The most difficult case is MPI Status. MPI defines
this as a struct with some defined members such as MPI TAG. An implemen-
tation is allowed to add its own members to this structure. Hence, the size of
MPI Status and the layout of the members may be (and is) different in each
implementation. The only solution to this problem is to provide routines to
allocate and free MPI Status objects and to provide separate routines to
access all of the elements. For example, instead of

MPI_Status status;

...

MPI_Recv(..., &status);

if (status.MPI_TAG == 10 || status.MPI_SOURCE == 3) ...

one must use special routines such as

MPI_Status *status_p = GMPI_Status_create(1);

MPI_Recv(..., status_p);

if (GMPI_Status_get_tag(status_p) == 10 ||

GMPI_Status_get_source(status_p)) ...

GMPI_Status_free(status_p, 1);

Fortunately, many MPI programs don’t need or use status. These programs
should use the MPI-2 values MPI_STATUS_NULL or MPI STATUSES NULL.

Defined pointers. MPI also defines a few constant pointers such as
MPI BOTTOM and MPI STATUS NULL. For many implementations, these are just
(void *)0. Like the most of the other constants, these can be set at initial-
ization time.
MPI STATUS NULL is a special case. This is not part of MPI-1 but was added
to MPI-2. If an MPI implementation does not define it, a dummy MPI_-

Status may be used instead. This will not work for the corresponding MPI_-

STATUSES_NULL, which is used for arguments that require an array of MPI_-

Status, but is sufficient for most uses.

The complete list of functions that must be used for accessing information
in MPI_Status is as follows:

/* Create and free one or more MPI_Status objects */

MPI_Status *GMPI_Status_create(int n);

void GMPI_Status_free(MPI_Status *p);

/* Access the fields in MPI_Status */

int GMPI_Status_get_tag(MPI_Status *p, int idx);

int GMPI_Status_get_source(MPI_Status *p, int idx);

int GMPI_Status_get_error(MPI_Status *p, int idx);

int GMPI_Status_get_count(MPI_Status *p, MPI_Datatype dtype,

int idx, int *count);

For MPI-2, it is also necessary to add

void GMPI_Status_set_error(MPI_Status *p, int idx, int errcode);

To reduce the number of function calls, one could also define a routine that
returns the tag, source, and count, given a status array and index. The routines
shown above are all that are required, however, and permit simple, automated
replacement in MPI programs.
These routines, as well as definitions of the runtime values of the various

compile- and init-time constants, are compiled into a library with the name
libgmpitoname, where name is the name of the MPI implementation. For ex-
ample, a cluster may have libgmpitompich and libgmpitolam. The definitions
of the runtime values are extracted from the ‘mpi.h’ header of each supported
MPI implementation; special tools have been developed to automate much of
this process.
Most C++ and Fortran bindings for MPI are based on wrappers around the

C routines that implementations use to implement MPI. Thus, for C++ and
Fortran, a variation of the “generic component” or new MPI binding mentioned
above can be used. For those objects and items that are defined as constants,
the same approach of using variables can be used.
Fortran shares the same issues about MPI Status as C does. For Fortran

90, we can use a similar solution, returning a dynamically allocated array of
MPI Status elements and providing a similar set of functions to access the ele-
ments of MPI Status.

3 Using the Generic Header

Applications are compiled in the same way as other MPI programs, using the
header file ‘mpi.h’. Linking is almost the same, except one additional library is
needed: the implementation of the GMPI routines in terms of a particular MPI
implementation. For example, consider an application that uses GMPI and a
library component that is also built with GMPI. The link line looks something
like the following:

Independent of MPI implementation (generic mpi.h in /usr/local/gmpi)

cc -c myprog.c -I/usr/local/gmpi/include

cc -c mylib.c -I/usr/local/gmpi/include

ar cr libmylib.a mylib.o

ranlib libmylib.a

For MPICH

/usr/local/mpich/bin/mpicc -o myprog myprog.o -lmylib \

-L/usr/local/gmpi/lib -lgmpitompich

For LAM/MPI

/usr/local/lammpi/bin/mpicc -o myprog myprog.o -lmylib \

-L/usr/local/gmpi/lib -lgmpitolam

With this approach, only one compiled version of each library or object file is re-
quired. In addition, for each MPI implementation, a single library implementing
GMPI in terms of that implementation is required.
As an illustration, shown below is a simple library that can be used, in

compiled form, with two different MPI implementations on a Beowulf cluster.

This simple library provides two versions of a numerical inner product: one
that uses MPI_Allreduce and is fast and one that preserves evaluation order
for the allreduce operation (unlike real numbers, floating-point arithmetic is not
associative, so the order of evaluation can affect the final result), at a cost in
performance. The code for the library routine is as follows:

#include "mpi.h"

double parallel_dot(const double u[], const double v[], int n,

int ordered, MPI_Comm comm)

{

int rank, size, i;

double temp = 0, result;

if (ordered) {

MPI_Comm tempcomm;

/* A good implementation would cache the duplicated communicator */

MPI_Comm_dup(comm, &tempcomm);

MPI_Comm_rank(tempcomm, &rank);

MPI_Comm_size(tempcomm, &size);

if (rank != 0)

MPI_Recv(&temp, 1, MPI_DOUBLE, rank-1, 0, tempcomm,

MPI_STATUS_NULL);

for (i=0; i<n; i++)

temp += u[i] * v[i];

if (rank != size-1)

MPI_Send(&temp, 1, MPI_DOUBLE, rank+1, 0, tempcomm);

MPI_Bcast(&temp, 1, MPI_DOUBLE, size-1, tempcomm);

MPI_Comm_free(&tempcomm);

result = temp;

}

else {

for (i=0; i<n; i++)

temp += u[i] * v[i];

MPI_Allreduce(&temp, &result, 1, MPI_DOUBLE, MPI_SUM, comm);

}

return result;

}

This code uses the communicator that is passed into the routine. The fol-
lowing shell commands show how easy it is to build this library so that it may
be used by either MPICH or LAM/MPI. The main program is in myprog and
includes the call to MPI_Init and MPI_Finalize.

% cc -c -I/usr/local/gmpi/include dot.c

% ar cr libmydot.a dot.o

% ranlib libmydot.a

% cc -c -I/usr/local/gmpi/include myprog.c

% /usr/local/mpich/bin/mpicc -o myprog myprog.o \

-lmydot -L/usr/local/gmpi/lib -lgmpitompich

% /usr/local/mpich/bin/mpirun -np 4 myprog

% /usr/local/lammpi/bin/mpicc -o myproc myprog.o \

-lmydot -L/usr/local/gmpi/lib -lgmpitolam

% /usr/local/lammpi/bin/mpirun -np 4 myprog

This example has been run as shown with an implementation of the libraries
libgmpitompich and libgmpitolam built for an IA32 cluster.

4 Conclusion

This paper has outlined an approach that allows libraries and object files to
use several different MPI implementations without requiring recompilation and
without requiring significant changes in the source for those components. In fact,
some applications will require no changes at all. An implementation of this ap-
proach for MPICH and LAM/MPI on IA32 platforms has been constructed and
demonstrated. In addition, source code transformation tools have been developed
that aid in constructing the libgmpitoname library for other MPI implementa-
tions. These tools and libraries will be available at
http://www.mcs.anl.gov/mpi/tools/genericmpi.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Computational and Technology
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

References

1. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
International Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

2. Message Passing Interface Forum. MPI2: A Message Passing Interface standard.
International Journal of High Performance Computing Applications, 12(1–2):1–299,
1998.

3. List of papers that use MPI. http://www.mcs.anl.gov/mpi/mpiarticles.
4. MPI implementations. http://www.mcs.anl.gov/mpi/implementations.html.
5. Vampir 2.0 – Visualization and Analysis of MPI Programs.

http://www.pallas.de/pages/vampir.htm.
6. R. Reussner, P. Sanders, L. Prechelt, and M Müller. SKaMPI: A detailed, accurate
MPI benchmark. In Vassuk Alexandrov and Jack Dongarra, editors, Recent advances
in Parallel Virtual Machine and Message Passing Interface, volume 1497 of Lecture
Notes in Computer Science, pages 52–59. Springer, 1998.

7. Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable per-
formance visualization with Jumpshot. High Performance Computing Applications,
13(2):277–288, Fall 1999.

