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Abstract. Communication subsystems are used in high-performance
parallel computing systems to abstract the lower network layer. By us-
ing a communication subsystem, an upper middleware library or runtime
system can be more easily ported to different interconnects. However by
abstracting the network layer, the designer will typically make the com-
munication subsystem more specialized for that particular middleware
library, and less general, making it ineffective for supporting middle-
ware for other programming models. In previous work we analyzed the
requirements of various programming model middleware and the commu-
nication subsystems that support them. We found that although the are
no mutually exclusive requirements, none of the existing communication
subsystems could efficiently support the programming model middleware
we considered. In this paper, we describe our design of a common com-
munication subsystem, called CCS, that can efficiently support various
programming model middleware.

1 Introduction

Communication subsystems are used in high-performance parallel computing
systems to abstract the lower network layer. By using a communication subsys-
tem, an upper middleware library or runtime system can be more easily ported
to different interconnects. However by abstracting the network layer, the de-
signer will typically make the communication subsystem less general and more
specialized for that particular middleware library. For example, a communica-
tion subsystem for a message passing middleware might have been optimized for
transferring data located anywhere in a process’ address space, whereas a com-
munication subsystem for a global address space (GAS) language might have
been better optimized for transferring small data objects located in a specially
allocated region of memory. So the communication subsystem designed for a
GAS language cannot efficiently support the message passing middleware, be-
cause, for example, it cannot efficiently transfer data that is located on the stack,
or in dynamically allocated memory.

Despite their differences, communication subsystems have many common fea-
tures, such as bootstrapping, remote memory access (RMA) operations, etc.. In
1] we analyzed the requirements of various programming model middleware
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and the communication subsystems that support them. We found that although
the are no mutually exclusive requirements, none of the existing communication
subsystems could efficiently support the programming model middleware we
considered. In this paper, we describe our design of a common communication
subsystem, called CCS, that can efficiently support various programming model
middleware. We specifically targeted CCS to efficiently support the requirements
of MPICH2 [2I3], the Global Arrays (GA) toolkit, [4/5] and the Berkeley UPC
runtime [6/7], however we believe that CCS is general enough to efficiently sup-
port any message passing, global address space or remote memory middleware.

The rest of this paper is organized as follows. In Section 2l we briefly describe
the critical design issues necessary to support the various programming models.
In Section [B] we present our design for a common communication subsystem. In
Section [4] we show performance results from our preliminary implementation of
CCS. Finally, we conclude and present future work in Section [B

2 Design Issues for Communication Subsystems

In this section, we briefly describe the important issues for designing a common
communication subsystem. These design issues are covered in more detail in
[1]. We break up the design issues into required features and desired features.
A required feature is a feature that if it is lacking in a communication subsys-
tem, the communication subsystem would not be able to effectively support a
particular programming model. Desired features are features which, when imple-
menting a programming model on top of the communication subsystem, make
the implementation simpler, or more efficient.

2.1 Required Features

Remote Memory Access Operations. RMA operations allow a process to
transfer data between its local memory and the local memory of remote pro-
cess without active participation of the remote process. RMA operations are
important for global address space and remote memory programming models,
as well as for message passing applications which have irregular communication
patterns.

In order to allow better overlap of communication and computation, non-
blocking RMA operations should be provided. A mechanism is then needed to
check whether the operation has completed.

MPI-2 RMA support. In order to support MPI-2 [§] active-mode RMA oper-
ations, the communication subsystem must be able to perform RMA operations
between any memory location in the process’ address space. In order to support
passive-mode RMA operations, the communication subsystem need only be able
to perform RMA operations on memory that has been dynamically allocated
using a special allocation function.

GAS language and remote memory model support. GAS language and
remote memory model runtime systems need to be able to perform concurrent
conflicting RMA operations to the same memory region. Similarly, they require



the ability to perform local load/store operations concurrently with RMA opera-
tions, possibly to the same memory location. While the result of such conflicting
operations may be undefined, the communication subsystem must not consider
it an error to perform them. RMA operations also must be very lightweight,
since typical RMA operations in these programming models are single word
operations.

Efficient Transfer of Large MPI Two-Sided Messages. MPI and other
message passing interfaces provide two-sided message passing, where the sending
process specifies the source buffer, and the receiving process specifies the desti-
nation buffer. Typically, in message passing middleware, large data is transfered
using a rendezvous protocol, where one process sends the address of its buffer
to the other process, so that one process has the location of both the source
and destination buffers. Once one process has the location of both buffers, it
can use RMA operations to transfer the data. In MPI, the source and destina-
tion buffers can be located anywhere in the process’ address space. In order to
support transferring large two-sided messages in this way, the communication
subsystem must be able to perform RMA operations on any memory location in
the process’ address space.

2.2 Desired Features

Active Messages. Active messages [9] allow the sender to specify a handler
function which is executed at the receiver when the message is received. This
function can be used, for example, to match an incoming message with a pre-
posted receive in MPI, or perform an accumulate operation in Global Arrays.

In order to support multiple middleware libraries at the same time, it is
necessary to keep active messages from one middleware library from interfering
with another middleware library. This can be done by ensuring that each library
can uniquely specify its own handlers.

In-Order Message Delivery. In-order message delivery is a requirement for
many message passing programming models. If the communication subsystem
provides this feature, the middleware doesn’t have to deal with re-ordering mes-
sages. However, in other programming models, such as GAS languages, message
ordering is not required, and in some cases performance can be improved by re-
ordering or coalescing messages. A common communication subsystem should
be able to provide FIFO ordering when it is required, and allow messages to be
re-ordered otherwise.

Noncontiguous Data. Programming model instances such as MPI and Global
Arrays have operations for specifying the transfer of non-contiguous data. Fur-
thermore, modern interconnects, such as InfiniBand (IBA) [I0], support non-
contiguous data transfer. So a common communication subsystem needs support
the transfer of non-contiguous data in order to take advantage of such function-
ality.



Table 1. Feature summary of the communication subsystems.
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2.3 Feature Support by Current Communication Subsystems

In [I] we examined several communication subsystems, and evaluated how well
each addresses the features described above. Table [[] summarizes the results. We
evaluated ARMCI [11], GASNet [12], LAPI [13], Portals [14] and MPI-2 [§] as
communication subsystems. We can see from this table that none of the commu-
nication subsystems we studied supports all of the features necessary for message
passing, remote memory, and GAS language programming models. In the next
section we will describe the design of our proposed common communication
subsystem.

3 Proposed Communication Subsystem

In this section we describe our design for a common communication subsystem,
called CCS, which addresses the issues identified in the previous section. The
CCS communication subsystem is based on non-blocking RMA operations, with
active messages used to provide for control and remote invocation of operations.
Active messages could be used to implement an operation to deliver the message
in message passing middleware or to perform an accumulate operation in remote
memory middleware.

3.1 Remote Memory Access Operations

CCS provides non-blocking RMA operations. It is intended that RMA operations
would be implemented using the interconnect’s native RMA operations in order
to maximize performance. If an interconnect does not natively provide all or
some of the required RMA operations, active messages can be used to implement
the missing RMA operations. For example, if an interconnect has a native Put
operation, but not a Get operation, the Get can be implemented with an active
message in which the handler performs a Put operation.



CCS uses a callback mechanism to indicate the completion of RMA opera-
tions. A callback function pointer is specified by the upper layer as a parameter
to the RMA function. Then, when an RMA operation completes remotely, CCS
calls the callback function. This can be used to implement fence and global fence
operations.

Because the user-level communication libraries of most interconnects require
memory to be registered before RMA operations can be performed on that mem-
ory, CCS also requires memory registration. The upper layer is responsible for
ensuring that any dynamically allocated memory is deregistered before it is freed.
The current design is to limit the amount of memory that a process can register
to the amount that can be registered with the interconnect. A future design is
to lift this restriction. If the upper layer registers more memory with CCS than
the interconnect can register, CCS would handle deregistering and re-registering
memory with the interconnect as needed. A mechanism similar to the firehose [15]
mechanism used in GASNet could be employed.

CCS RMA operations can access all of the process’ memory, and have no
restrictions on concurrent access to memory. While this feature makes it easy
to implement upper layers on CCS, it can have an impact on performance on
machines which are not cache coherent, and on interconnects which do not have
byte granularity for their RMA operations. In these cases, CCS will have to
handle the RMA operations in software taking care of cache coherence and data
transfer.

3.2 Efficient Transfer of Large MPI Two-Sided Messages

CCS non-blocking RMA operations are to be used for transferring large mes-
sages. CCS RMA operations are intended to be implemented using native in-
terconnect RMA operations which should maximize throughput. Because the
operations are non-blocking the communication can be overlapped with compu-
tation.

As described in the previous section, large MPI messages are typically trans-
fered using a rendezvous operation. In CCS, the rendezvous operation can be
performed using active messages. Once the exchange of buffer locations has been
done, the data can be transfered using RMA operations. When the RMA oper-
ation has completed, another active message would be sent to notify the other
side of completion.

A future design is to implement a large data active message operation which
would function similar to the LAPI active messages using the header handler.
The large data active message would be non-blocking. The sender would specify
an active message handler and a local completion handler. The active message
handler would be executed at the receiver before any data has been transfered.
The handler would specify the receive buffer and its local completion handler.
Once the data has been transfered the completion handlers on the sender and
receiver would be called. A mechanism would be needed for the receiver to abort
or delay the operation in the active message handler, if it’s not ready to receive
the data yet.

3.3 Active Messages

We are including active messages in CCS because of the flexibility they provide
to upper layer developers. In our design, active messages are intended to be



used for small message sizes, so the implementation should be optimized for low
latency.

When an active message is received and the handler is executed, the handler
gets a pointer to a temporary buffer where the received data resides. It is the
handlers responsibility for copying the data out of the buffer. Noncontiguous
source data will be packed contiguously into the temporary buffer. If the final
data layout is to be noncontiguous, the message handler will have to unpack the
data.

Depending on the implementation, the active message handlers will be called
either asynchronously or from within another CCS function. CCS provides locks
which are appropriate to be called from within the handler, and a mechanism
to prevent a handler from interrupting a thread.

In order to allow multiple upper layer libraries to use CCS at the same
time, we introduce the notion of a context. Each separate upper layer library, or
module, allocates its own context. Active message handlers are registered with
a particular context. When an active message handler is registered, the upper
layer provides the handler function pointer along with an ID number, and the
context. The ID number must be unique within that context. Then when an
active message is sent, the context is specified along with the handler ID to
uniquely identify the active message handler at the remote side.

3.4 In-Order Message Delivery

In order to support the message passing programming model, CCS will guarantee
in-order delivery of active messages. However, RMA operations are not guaran-
teed to be completed in order. This allows CCS, or the underlying interconnect,
to reorder messages to improve performance.

3.5 Noncontiguous Data

CCS supports noncontiguous data in active messages and RMA operations. CCS
uses datadescs to describe the layout of noncontiguous data. Datadescs are sim-
ilar to MPI datatypes and are, in fact, implemented using the same mechanism
that MPICH2 uses for datatypes [16]. Datadescs are defined recursively like
MPI datatypes, however datadescs do not store information about the native
datatype, e.g., double, or int, of the data. Because datadescs do not keep track
of native datatypes, datadescs CCS cannot be used on heterogeneous systems,
where byte-order translation would need to be done. This is left for future work.

While datadescs are defined recursively, they need not be implemented re-
cursively. In the implementation the datadesc can be unrolled into a set of com-
ponent loops, rather than use recursive procedure calls which would affect per-
formance. These unrolled representations can be used to efficiently and concisely
describe common data layouts such as ARMCI strided layouts.

MPI datatypes can be implemented using datadescs by having the upper
layer keep track of the native datatypes of the data. I/O vector and strided data
layouts in LAPI and ARMCI can also be represented with datadescs. An im-
plementation optimization would be to include specialized operations to create
datadescs quickly from the commonly used I/O vector and strided representa-
tions in LAPI and ARMCI.



3.6 Summary of Proposed Communication Subsystem

Our proposed communication subsystem addresses all of the issues raised in
the previous section. Active messages can be used by GAS language and re-
mote memory copy middleware for remote memory allocation, and locking op-
erations, and by message passing middleware for message matching. Because
CCS supports multiple contexts for active messages, it can be used for hybrid
programming models, e.g, where an application uses both MPI-2 and UPC.

CCS provides RMA operations which are compatible with MPI-2 RMA op-
erations, as well as GAS language and remote memory copy RMA operations.
CCS has primitives that can be used to implement fence and global fence op-
erations. With the addition of a symmetric allocation function, GAS language
and remote memory copy RMA support can be implemented very efficiently.
The CCS RMA operations can also be used for transferring large messages in
message passing middleware.

CCS also provides in-order message delivery for active messages, but does
not force RMA operations to be in order. This feature allows active messages
to be used for MPI-2 message passing, while allowing RMA operations to be
reordered for efficiency.

CCS supports transfer of noncontiguous data. The data layout is described
in a recursive manner, but can be internally represented compactly and effi-
ciently. CCS’s datadescs are compatible with MPI-2 datatypes. Strided and IOV
data descriptions used in Global Arrays can also be efficiently represented with
datadescs.

Our design of using RMA operations with active messages was inspired by
LAPT and GASNet. But, as we showed in [I], LAPT and GASNet do not support
all of the key features necessary to efficiently support all of the programming
models we targeted. LAPI does not guarantee in-order message delivery, only
supports I/O vector style of noncontiguous data and is not portable. GASNet
does not support MPI-2 active-mode RMA operations, the efficient transfer of
large MPI messages, in-order message delivery or non-contiguous data.

We note that the lack of some of the features we described does not necessarily
mean that a middleware cannot be implemented over a particular communication
subsystem. In fact, MPI has been implemented over LAPI[I7], UPC has been
implemented over MPI[7], and MPI-2 has been implemented over GASNet[2].
But the lack of these features makes these implementations less efficient, and
makes the implementation more difficult. By implementing all of the key features,
CCS can efficiently support all of the programming model middleware.

Figure [l shows some sample code using CCS. The code sends an active
message, using CCS_amrequest (), to another node with no data, but with the
pointer and length to its local buffer as parameters to the message handler. The
message handler on the receiving side calls CCS_get () to get the data stored in
the buffer specified by the sender. When the Get operation completes CCS will
call the callback function get_callback() specified in the call to CCS_get ().

4 Preliminary Performance Results

In this section we present performance results for our preliminary implementa-
tion of CCS over GM2 [18]. We performed latency and bandwidth tests on two



void get_callback() {
++gets_completed;
}

#define NEW_MSG_HANDLER_ID O
void new_msg_handler (CCS_token_t token, void *buffer, unsigned buf_len,
void *remote_buf, int remote_buflen) {
int sender;
CCS_sender_rank (token, &sender);
CCS_get (sender, remote_buf, remote_buflen, CCS_DATA8, buf, buflen,
CCS_DATA8, get_callback);

int main (int argc, char **argv) {
CCS_init();
CCS_new_context (&context);
CCS_register_handler (context, NEW_MSG_HANDLER_ID, new_msg_handler);
buf = malloc (buflen);
CCS_register_mem (buf, buflen);
CCS_barrier();

CCS_amrequest (context, other_node, NULL, O, CCS_DATA_NULL,
NEW_MSG_HANDLER_ID, 2, buf, buflen);

CCS_finalize();

Fig. 1. Sample CCS code
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dual 2 GHz Xeon nodes running Linux 2.4.18 and connected with a Myrinet2000
network [19] using Myricom M3F-PCI64C-2 NICs through a 16 port switch.

Figure Pl shows the latency results for CCS as well as for GASNet 1.3 and
ARMCI 1.2B. For CCS and GASNet, we performed the test using active mes-
sages. Because ARMCI only supports RMA operations, we performed the test
using Put. The results are averaged over 1,000 iterations. The 4 byte latency for
GASNet is 8.8 us, for CCS is 9.6 us, and for ARMCI is 10.8 us. We see from
these numbers and Figure [2] that CCS performs better than ARMCI, but not as
well as GASNet.

Figure Bl shows the bandwidth results. We used non-blocking Put operations
to perform the test. In this test, for each message size, we performed 10,000
Put operations then waited for the operations to complete. We see that CCS
performs better than ARMCI for all message sizes, and better than GASNet for
messages larger than 4 KB. For messages smaller than 4 KB, CCS performs only
slightly worse than GASNet. The maximum bandwidth for CCS was 244 MBps,
for GASNet was 242 MBps, and for ARMCI was 238 MBps.



The performance of CCS is comparable to the other communication sub-
systems. The additional functionality of CCS does not have a large impact on
performance. We have not yet tuned the CCS source code for performance and
expect that that with some performance tuning, we can further improve the
performance of CCS.

We note that ARMCI over GM is implemented using a server thread on each
node. In ARMCI, RMA operations from remote processes are performed by the
server thread. While using a server thread may affect performance, compared to
CCS and GASNet, it does allow RMA operation to complete asynchronously,
independent of what the application thread is doing. We intend to evaluate such
functionality for CCS in the future.

5 Discussion and Future Work

In this paper we have presented our design for a common communication sub-
system, CCS. CCS is designed to support the middleware libraries and runtime
systems of various programming models efficiently by taking advantage of the
high performance features of modern interconnects. We evaluated a preliminary
implementation of CCS and found the performance to be comparable to that of
ARMCI and GASNet.

In the future, we intend to address thread safety, RMA Accumulate oper-
ations, and collective communication operations. We also intend to implement
atomic remote memory operations, such as compare-and-swap, fetch-and-add, as
well as more complex operations like an indexed Put, where the address of a Put
operation is specified by a pointer at the destination process, and the pointer is
incremented after the Put completes. Such operations can be used to efficiently
implement remote queues on shared memory architectures.

We are also investigating using CCS to support a hybrid UPC/MPI program-
ming model. In such a hybrid programming environment, a process can perform
both UPC and MPI operations. By porting both the Berkeley UPC runtime and
MPICH2 over CCS, CCS would perform the communication operations for both
paradigms, allowing both paradigms to benefit from CCS’s high performance
implementation.

In remote memory model and GAS language middleware, when a process ac-
cesses a remote portion of a shared object distributed across different processes,
the virtual address of that portion at the remote process needs to be computed.
This operation can be simplified by allocating shared memory regions symmetri-
cally across all processes, i.e., the address of the local portion of the shared object
is the same at each process. This also improves the scalability of the operation
because less information needs to be kept for each remote memory region. We
intend to address this issue, perhaps by including a special symmetric allocation
function.
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