
Issues in Developing a
Thread-Safe MPI
Implementation

William Gropp
Rajeev Thakur

Mathematics and Computer
Science Division

2
Argonne National

Laboratory

MPI and Threads

MPI describes parallelism between processes

MPI-1 (the specification) is thread-safe

– This means that the design of MPI has (almost) no global state or

other features that prevent an MPI implementation from allowing

multiple threads to make MPI calls

– An example is the convenient concept of a “current message” or

“current buffer”

• MPI’s datatype pack/unpack routines provide a thread-safe

alternative

Thread parallelism provides a shared-memory model within a

process

MPI specifies that MPI calls can only block their thread

OpenMP and POSIX threads (pthreads) are common

– OpenMP provides convenient features for loop-level parallelism

3
Argonne National

Laboratory

MPI-2 Thread Modes

MPI-2 introduced 4 modes:

– MPI_THREAD_SINGLE — One thread (MPI_Init)

– MPI_THREAD_FUNNELED — One thread making MPI calls

– MPI_THREAD_SERIALIZED — One thread at a time making

MPI calls

– MPI_THREAD_MULTIPLE — Free for all

Use with MPI_INIT_THREAD(argc,argv,required,&provided)

Not all MPI implementations are thread-safe

– Thread-safety is not free

– If it was, there would be no xlf_r etc.

Most MPI-1 implementations provide MPI_THREAD_FUNNELLED

when linked with other thread libraries (e.g., thread-safe mallocs).

Coexist with compiler (thread) parallelism for SMPs

MPI could have defined the same modes on a communicator basis

(more natural, and MPICH2 may do this through attributes)

4
Argonne National

Laboratory

Making an MPI Implementation Thread-
safe

Can you lock around each routine (synchronized in Java terms)?

– No. Consider a single MPI process with two threads

T0: MPI_Ssend(itself)

T1: MPI_Recv(itself)

– The MPI spec says that this program must work, but if each

routine holds a lock, the program will deadlock

5
Argonne National

Laboratory

Can you lock around just the
communication routines?

That is, can you implement something like this:

– MPI_Recv(…)

… various setup stuff

lock(communication)

 if communication would block, release lock and require once communication completes

before proceeding

unlock(communication)

… various finishing stuff

Not in general. Replace the MPI_Recv with MPI_Irecv:

– MPI_Irecv(…, datatype, …, communicator, &request)

… various setup stuff

lock(communication)

 release if necessary

unlock(communication)

… various finishing stuff

The problem is with the datatype and communicator. If the MPI_Irecv did not match

the message, then it left a “posted” receive in a queue that will be matched later by an

arriving message

– Processing this message requires using the datatype and communicator

– MPI uses reference count semantics on these objects, implicitly incrementing the reference

count in the MPI_Irecv

– This ref count must be atomically updated (as in the first thread example)

6
Argonne National

Laboratory

What you can do

Coarse Grain

– Use the one-big-lock approach, but be sure to release/re-acquire

it around any blocking operation

– Don’t forget to use the lock around any update of data that might

be shared

Fine Grain

– Identify the shared items and ensure that updates are atomic

– Benefit: You may be able to avoid using locks

– Cost: There is more the think about and there can be “dining

philosopher” deadlocks if more than one critical section must be

acquired at a time

– What are the items for MPI?

• We’ve looked at the ~305 functions and MPI and found the

following classes:

7
Argonne National

Laboratory

Thread Safety Needs of MPI Functions

None: The function has no thread-safety issues

Examples: MPI_Address, MPI_Wtick

Access Only: The function accesses fixed data for an MPI object,

such as the size of a communicator. This case differs from the

``None'' case because an erroneous MPI program could free the

object in a race with a function that accesses the read-only data.

Examples: MPI_Comm_Rank, MPI_Get_count.

Allocate: The function allocates an MPI object (may also need

memory allocation such as with malloc).

Examples: MPI_Send_init, MPI_Keyval_create.

Own: The function has its own thread-safety management.

Examples: MPI_Buffer_attach, MPI_Cart_create.

Other: Special cases. Examples: MPI_Abort and MPI_Finalize.

8
Argonne National

Laboratory

Thread Safety Needs of MPI Functions

Update Ref: The function updates the reference count of an MPI

object.

Examples: MPI_Comm_group, MPI_File_get_view

Comm/IO: The function needs to access the communication or I/O

system in a thread-safe way. This is a very coarse-grained category

but is sufficient to provide thread safety.

Examples: MPI_Send, MPI_File_read

Collective: The function is collective. MPI requires that the user not

call collective functions on the same communicator in different

threads in a way that may make the order of invocation depend on

thread timing (race). The communication part of the collective

function is assumed to be handled separately through the

communication thread locks.

Examples: MPI_Bcast, MPI_Comm_spawn

9
Argonne National

Laboratory

Thread Safety Needs of MPI Functions

Read List: The function returns an element from a list of items, such

as an attribute or info value.

Examples: MPI_Info_get, MPI_Comm_get_attr.

Update List: The function updates a list of items that may also be

read. Multiple threads are allowed to simultaneously update the list,

so the update implementation must be thread safe.

Examples: MPI_Info_set, MPI_Type_delete_attr.

10
Argonne National

Laboratory

Other Issues

Thread-Private Memory

– Values that are global to a thread but private to that thread are

sometimes needed. In MPICH2, these are used to implement a

“nesting” level (used to ensure that the correct error handling

routine is called if the routine is used in a nested fashion within

the MPI implementation) and for performance and debugging

statistics.

Memory consistency

– When heavy-weight thread lock/unlocks (and related critical

sections or monitors) are not used, the implementation must

ensure that the necessary write ordering is enforced and that

values that the compiler may leave in register are marked volatile

Thread failure

– A major problem with any lock-based thread-safety model is

defining what happens when a thread fails or is canceled (e.g.,

with pthread_cancel).

11
Argonne National

Laboratory

Other Issues con’t

Performance and code complexity

– The advantage of the “one big lock” is its (relative) simplicity

– It serializes MPI function execution among threads, potentially

impacting performance.

– Fine grain locks avoid (much of) the serialization, but at added

complexity. In addition, they can be more costly if a routine must

acquire multiple fine grain locks rather than a single coarse grain

lock

Thread scheduling

– Should a thread busy wait or let the OS (or another thread)

schedule it? Can condition variables be used? A problem is not

all events may wake up a thread, particularly when low-latency

shared memory is being used between processes.

What level of thread support should an MPI implementation provide?

– Performance matters…

12
Argonne National

Laboratory

Performance Issues with Threads

MPI_THREAD_SINGLE

– No thread-shared data structures in program. All operations proceed

without locks

MPI_THREAD_FUNNELLED

– MPI data structures do not need locks, but other operations (e.g.,

system calls) must use thread-safe versions.

MPI_THREAD_SERIALIZED

– Almost like MPI_THREAD_FUNNELLED, except some MPI operations

may need to be completed before changing the thread that makes MPI

calls

MPI_THREAD_MULTIPLE

– All MPI data structures need locks or other atomic access methods

What are the performance consequences of these thread levels? Just how

much does THREAD_MULTIPLE cost?

13
Argonne National

Laboratory

Thread Overhead in MPICH2

Three versions of MPICH2, configured

with –enable-threads=

– multiple

• Always

MPI_THREAD_MULTIPLE

– single

• Always MPI_THREAD_SINGLE

– runtime

• Thread level is

MPI_THREAD_FUNNELLED

unless THREAD_MULTIPLE is

explicitly selected with

MPI_Thread_init

– Ch3:sock (sockets communication

only, using TCP, on a single SMP

(OS can optimize communication

– Mpptest (ping-pong latency test)

14
Argonne National

Laboratory

What you’ve forgotten

Collective communications operations

– Performed on a group of processes described by a

communicator

In a typical MPI implementation, all processes in a communicator

share a context id, typically implemented as an integer value. All

processes must agree on this value

– (Other implementations are possible, but this is the easiest, most

scalable choice)

Determining this context id requires an agreement among the

processes

15
Argonne National

Laboratory

Consider MPI_Comm_dup

Comm_dup simply creates a copy of a communicator with a new

context id

– Used to guarantee message separation between modules

– All processes in the input communicator must call (and follow

collective semantics)

A simple algorithm (for the single threaded case):

– Each process duplicates the data structure representing the

group of processes (shallow dup; increment reference count)

– All participating processes perform and MPI_Allreduce on a bit

mask of available context id values, using MPI_BAND (bitwise

AND), using the original (input) communicator

16
Argonne National

Laboratory

What can go wrong in the
multithreaded case

Consider this case with two processes, each with two threads, each

doing an MPI_Comm_dup on two communicators

T0

get mask

Allreduce(C0)

pick id

update mask

T1

get mask

Allreduce(C1)

pick id

update mask

P0 P1

T1

get mask

Allreduce(C1)

pick id

update mask

T0

get mask

Allreduce(C0)

pick id

update mask

All four threads (both new communicators) get the same context id.

We clearly need to atomically update the mask.

17
Argonne National

Laboratory

What can go wrong in the
multithreaded case

Consider this case with two processes, each with two threads:

T0

lock()

Allreduce(C0)

T1

wait

on

lock

T0

wait

on

lock

T1

lock()

Allreduce(C1)

P0 P1

Deadlock — Neither Allreduce will complete, so the lock will never be

released

18
Argonne National

Laboratory

An efficient algorithm

Definition of efficient

– Requires no more communication between processes than the

single-threaded algorithm in the common case (only one thread

on each process creating a new communicator)

Speculative approach

– Try to succeed and have a backup plan on failure

– RISC systems use this approach instead of atomic memory

updates (load-link, store-conditional and similar names)

19
Argonne National

Laboratory

The Idea

Atomically

– Keep track that the mask is in use

– If mask was not in use,

• make a copy of the mask

– Else

• Use all zero bits for mask

MPI_Allreduce(mask) (the regular algorithm)

If found a value (no process had all zeros)

– Atomically

• Remove selected bit from mask

• Clear in-use

– Return context value

Else

– Try again

20
Argonne National

Laboratory

What happens in the typical case?

A single thread from each process is trying to get a new context id

– Gets mask (all processes get mask, none get zero masks)

– Allreduce finds a free bit

– All processes remove the same bit from their mask

– Context id returned

Same communication cost as single-threaded algorithm

Only two thread locks, an increment, test, decrement in addition to

single-threaded algorithm

21
Argonne National

Laboratory

What happens when there are
competing threads?

How do we avoid this case:

– Each process has 2 threads, call them A and B

– On some processes, thread A call MPI_Comm_dup first, on

others thread B calls MPI_Comm_dup first.

– As a result, some thread calling MPI_Allreduce always provides a

zero-mask because the other thread got to the mask first

– This is live lock (as opposed to dead lock) because the threads

never stop working. They just never get anywhere…

22
Argonne National

Laboratory

Avoiding Live Lock

When multiple threads discover that they are contending for the

same resource, they need to ensure that they can make progress.

– One way to do this is to order the threads so that the group of

threads (e.g., the “A” threads) is guaranteed to get access to the

resource (the context id mask in our case)

– We need a way to sort the threads that gives the same ordering

for threads on different processes

Use the context id of the input communicator

– All processes have the same context id value for the same

communicator

– Let the thread with the minimum context id value take the mask

– Repeat that test each iteration (in case a new thread arrives)

23
Argonne National

Laboratory

A Fast, Thread-Safe Context-Id Algorithm
/* global variables (shared among threads of a process) */
mask /* bit mask of context ids in use by a process */
mask_in_use /* flag; initialized to 0 */
lowestContextId /* initialized to MAXINT */

/* local variables (not shared among threads) */
local_mask /* local copy of mask */
i_own_the_mask /* flag */
context_id /* new context id; initialized to 0 */

while (context_id == 0) {
 Mutex_lock()
 if (mask_in_use || MyComm->contextid > lowestContextId) {
 local_mask = 0 ; i_own_the_mask = 0

 lowestContextId = min(lowestContexId,MyComm->contextid)
 }
 else {
 local_mask = mask ; mask_in_use = 1 ; i_own_the_mask = 1
 lowestContextId = MyComm->contextid
 }
 Mutex_unlock()
 MPI_Allreduce(local_mask, MPI_BAND, MyComm)
 if (i_own_the_mask) {
 Mutex_lock()

 if (local_mask != 0) {
 context_id = location of first set bit in local_mask
 update mask
 if (lowestContextId == MyComm->contextid) {
 lowestContextId = MAXINT;
 }
 }
 mask_in_use = 0
 Mutex_unlock()
 }
}
return context_id

24
Argonne National

Laboratory

Conclusions

MPI (the specification) is thread-safe

MPI (an implementation) can be made thread-safe but there are

some subtle issues

We can also say something about threads as a programming model

– Yuk!

– Locks are bad (state)

• Action at a distance - the same sort of coordination problem

that causes trouble with message-passing

• Even worse because it is global (no modularity)

• (not counting memory consistency issues)

– Formal methods for checking correctness would help

