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Fig. 1. One volumetric flow data set interacts with our WYSIWYG volume visualization system. Starting from an initial rendering of
the raw volume on the left, the user selects corresponding tools and applies strokes on top of the rendered image: ®—®, remove
the outer and intermediate parts of the volume with the volume eraser tool; @—®, paint the volume with the colorization tool; ®—®,
enhance the contrast of the rendered volume; ®—®, increase the brightness of the top part of the volume; ®—®, add silhouettes to
the rendered volume; ®—@, increase the opacity of the outer part of the volume; ®—®, increase the fuzziness of the outer features;
®—©, colorize fuzzy matter with the rainbow tool; @—®, recover the previously removed volume materials with the peeling tool.

Abstract—In this paper, we propose a volume visualization system that accepts direct manipulation through a sketch-based What You
See Is What You Get (WYSIWYG) approach. Similar to the operations in painting applications for 2D images, in our system, a full set
of tools have been developed to enable direct volume rendering manipulation of color, transparency, contrast, brightness, and other
optical properties by brushing a few strokes on top of the rendered volume image. To be able to smartly identify the targeted features
of the volume, our system matches the sparse sketching input with the clustered features both in image space and volume space.
To achieve interactivity, both special algorithms to accelerate the input identification and feature matching have been developed and
implemented in our system. Without resorting to tuning transfer function parameters, our proposed system accepts sparse stroke

inputs and provides users with intuitive, flexible and effective interaction during volume data exploration and visualization.

Index Terms—Volume rendering, Sketching input, Human-computer interaction, Transfer functions, Feature space.

1 INTRODUCTION

Direct volume rendering has been widely applied in various domains,
from medical diagnoses to atmospheric simulations, as one of the most
effective ways to visualize volumetric data. However, the difficul-
ties of setting proper mapping functions to convert original volumetric
data to renderable color and opacity values limited the application of
volume rendering. In the process of volume rendering, transfer func-
tions [23] are designed to map the raw volume data values to colors and
transparencies, before composite images are constructed. Obtaining
appropriate transfer functions is critical to comprehend and analyze
the complicated structures of volume data by reducing occlusions on
undesired features and highlighting important objects in the volume.
The main obstacle related to transfer function design comes from
the non-intuitive interface in the current design practice. The most
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common transfer function design interface is to directly assign opac-
ity and color value to each volume density value by adjusting curves,
which define the mapping. However, It is non-trivial for non-expert
users to generate informative and clear visualization results with such
a design paradigm. Users have to understand how different density
values are mapped to the rendered image features, and establish these
connections in their brain during the transfer function design. For ex-
ample, in medical CT data visualization, if users want to hide the skins
and reveal the structure of the bones, they have to first recognize that
skin has lower intensity values, and then reduce the opacities of the
corresponding values in the feature space. Sometimes, small changes
in the transfer function may result in dramatic differences in render-
ing appearance. Due to the perspective projection and compositing
effects, there is no one-to-one mapping between the color effects in
the transfer function curves and the final rendered appearance. This
steep learning curve makes volume rendering not easily accessible to
layman users. Even with the latest development in volume visualiza-
tion research, with which users can modify the occlusion or other color
properties of certain features, the detachment between the image space
(the target image of volume rendering) and parameter space (the pa-
rameters that users can operate and modify) makes transfer function
specification still cumbersome.

In this paper, we propose a WYSIWYG (What You See Is What
You Get) volume visualization system that accepts direct sketch and



paint manipulations from the user and enables goal-oriented opera-
tion on volume exploration and visualization. With the proposed sys-
tem, users can directly change the appearances of the volume rendered
images with desirable visual effects through sketching and painting.
Painting different colors, changing opacities, erasing volume struc-
tures, modifying contrast and brightness, adding silhouettes, peeling
volume feature layers and other operations can be directly applied to
the volume rendered images by different painting tools. Real-time ani-
mated visual feedback enables the user to adjust the input interactively
to achieve satisfying results. Without the need for switching back and
forth between the parameter space (transfer functions) and the image
space, an intuitive, goal oriented volume exploration and transfer func-
tion design paradigm has been established in our system. The system
lets the users focus on the spatial and finer structures of the volume
and make desirable modifications without interrupting the observation
process or compromising the effectiveness of volume comprehension.

The WYSIWYG concept, which is very intuitive and effective for
various tasks, has been widely applied in much 2D image editing soft-
ware like Adobe Photoshop. Instant and real-time results are fed back
to users during the painting process in our tool, just like the tools in
Photoshop. In addition to image editing tools, there have been a few
attempts at direct operation on volume data. For example, the volume
catcher [27] and volume cutout [38] enable efficient volume segmen-
tation by applying strokes to the volume rendered images. Multiple
features in distinct rendered images can be fused into a comprehensive
one by adding or deleting features with strokes [37]. More recently,
Ropinski et al. [33] proposed the stroke-based transfer function. Fea-
tures are extracted and selected based on the user defined strokes in-
dicating foreground and background, and then classified as layers of
transfer functions, which can be further composed to new results by
tuning opacities of each layer. In our work, we make volume visu-
alization and exploration more flexible by introducing several simple
sketching and painting primitives on the rendered image space. Un-
like the operations in Photoshop, our tool takes effects on the global
visualization results based on transfer functions, instead of localized
operations. Compared to the prior works on volume visualization, our
method only relies on the current rendered result and the user input,
without explicit specifications of foreground and background, feature
layers, or pre-prepared images with specific features. The real-time
feedback also allows users to suspend operations when the rendered
image is satisfying.

The contribution of this paper is two-fold. First, we present a novel
WYSIWYG volume visualization system, which accepts user sketch
input with a full function set and gives real-time feedback. Second,
a series of algorithms, including fast user intention inference and se-
mantic realization are proposed to facilitate the interactive data explo-
ration.

The remainder of this paper is organized as follows. We summarize
the related work in Section 2, and then give an overview of the system
in Section 3. The user interactions, algorithms and implementation
details are described in Section 4 and Section 5. We briefly present the
implementation and performance in Section 6. Results are shown in
Section 7 and the limitation of the method are discussed in Section 8,
before the conclusions are drawn in Section 9.

2 RELATED WORK

Transfer function design is the central topic in direct volume render-
ing. Generally speaking, transfer functions can be categorized into
two major types, namely image-based and data-centric methods [29].
Image-based transfer methods, which are goal-oriented, utilize images
as the input. For example, transfer functions can be generated using
genetic algorithms, which are guided and optimized by user selection
on the rendered images in the thumbnails [16]. The rendered images
with different transfer functions can also be organized and presented
in Design Galleries for user selection [26]. Transfer functions can also
be defined as a sequence of 3D image processing procedures, which
allows users to achieve optimal visualization results [12]. Our method
also utilizes the rendered image space for feature inference, in order to
give image feedback to users with new results interactively.

Unlike image-based methods, data-centric transfer function design
focuses more on the volume data itself and its derivative properties.
For example, 1D transfer functions, map the scalar sample values into
optical properties, thus classifying the volume data for direct volume
rendering [2]. Better classification results can be obtained with multi-
dimensional transfer functions by utilizing derivative properties of the
volume data, e.g. first and second order gradient magnitudes [23, 19],
which aid in displaying surface information. Usually, features that are
not distinguishable in 1D feature space can be better shown by lever-
aging proper multi-dimensional transfer functions. In order to obtain
better feature separation results with multi-dimensional transfer func-
tions, many other derivative properties have been taken into consider-
ation. For example, Kindlmann et al. [20] take advantage of curva-
tures to assist the transfer function design. LH histogram [34] makes
it easier to find boundaries, by accounting for local extremas that are
derived from every voxels. Local statistical properties are also used to
find sophisticated features [28]. The approximated relative size [5] of
the objects in volume data helps in finding features with certain sizes.
The occlusion spectrum [6] reveals the occlusion relationships among
spatial patterns. Visibility-driven transfer functions [7] provide a feed-
back mechanism that highlights the visibility of features from a given
viewpoint. In our work, we take advantage of derivative properties,
e.g. the visibility [7] for data analysis.

Although the community has contributed a variety of methods for
transfer function design, it is still a cumbersome and non-trivial work
for untrained non-expert domain users to design transfer functions for
volume visualization, because transfer function design is very unintu-
itive. Several methods have been proposed to make transfer functions
more intuitive. For example, users can change the appearance of the
visualization results by semantics based transfer functions [32, 30].

It is noticeable that sketch-based user interfaces are widely used
in various applications, from image editing to 3D modeling, and from
NPR effect design to volume segmentation, as one of the most methods
for the tasks, because it is very intuitive for users to achieve desired re-
sults. For example, 2D gray images can be colorized by painting a few
colored strokes on the image [22]. A sketch-based user interface also
help users during 3D modeling. The models can be interactively de-
signed by drawing silhouettes of objects on the 2D canvas [17]. With
WYSIWYG NPR [18], designers can directly annotate strokes on a 3D
model with strokes to stylize non-photorealistic effects for objects. In
addition to image and model design, it is also quite effective to utilize
a sketch-based user interface for volumetric data manipulation. Direct
volume editing [4] allows users to edit the volume data by interactive
sketching. Users can also perform volume segmentation by sketching
on the image [38, 27].

A few frameworks have been proposed for facilitating transfer
function design by leveraging sketch-based interfaces. For exam-
ple, users can sketch the volume slices to assign color and trans-
parency [36, 35], then artificial neural network based algorithms de-
fine the high-dimensional transfer function for rendering. Later, Wu
and Qu [37] proposed a method for users to sketch on the rendered
images to fuse multiple features in distinct rendering results into a
comprehensive one, by adding or deleting features with strokes. Guo
et al. [14] utilized sketch-based input to facilitate multi-dimensional
transfer function design. Sketch queries are accepted by the system
and then the corresponding component of the transfer function is high-
lighted in the design interface. Ropinski et al. [33] proposed a stroke-
based user interface for 1D transfer function design. Layers are ex-
tracted according to the inputted strokes, which defines foreground and
background, then the transfer functions are further refined by adjust-
ing the colors and transparencies of each layer. In our work, real-time
feedback is given to users, which is flexible enough for users to stop at
any intermediate result when satisfied. Compared to the work by Wu
and Qu [37], our work does not rely on pre-defined images with differ-
ent features, but only depend on the current rendered image and user
input. Compared to the work by Ropinski et al. [33], users do not need
to explicitly define either foreground and background, nor the layers
of volume data.

It is a difficult problem to map image space features to the objects in
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Fig. 2. The pipeline of the system. From user sketch input, the intentional features are derived by image space analysis and data space analysis.
The new rendering parameters are determined according to the user tool type, before the new rendering result is fed back to users in real time.

volume data, which is the key for any sketch-based volume exploration
tool. In general, sketch-based user interaction systems infer user in-
tentions according to sketch inputs, and then take effect on the results.
Kohlmann et al. [21] proposed a solution, which analyzes the ray pro-
file and finds the best match from the contextual meta information in
the knowledge database. In Volume Cutout [38], the objects of in-
terest are located by the optimization with stroke and over-segmented
volume segmentation. Malik et al. [25] proposed a framework of ray
profile analysis, which locates the transition points by slope thresh-
olds. Ropinski et al. [33] identify desired features by comparing the
ray profiles of both foreground and background stroke specifications,
and then decide the intentional depths by histogram analysis.

In addition to transfer function design, other techniques such as il-
lustrative visualization methods [10] can further enhance effects and
convey more details informatively by non-photorealistic rendering
techniques. For example, contours and silhouettes can visualize the
boundaries in volumes effectively [9]. Transfer functions for render-
ing styles can also be utilized in illustrative volume rendering [31]. In
VolumeShop [3], a dynamic volume illustration environment is intro-
duced for interactive visualization. In this work, we also show exam-
ples of how to define styles by sketching in volume rendering.

3 SYSTEM OVERVIEW

The main objective of our system is to supply the user with intuitive
and goal-oriented interaction on volume data through a WYSIWYG
user interface. Users can select various semantics to change the visual
effects of the visualization result, by indicating the desired features
with direct sketch. The pipeline of the system (Fig. 2) starts from the
initial rendering result and the user sketch input, and gives real-time
image feedback, which allow users to iteratively tune the rendered im-
age using various tools. Several intermediate steps are key to the whole
pipeline. User inputs are first converted to foreground and background
patches by image space analysis, and then the corresponding feature
clusters (intentional features) in the volume data are derived accord-
ing to image analysis results via data space analysis. The new transfer
functions are generated according to the intentional features and the
current tool type, before the rendered image is updated.

Various tools are developed based on the WYSIWYG concept,
which allows the user to directly change visual appearances and ex-
plore the features in the volume data by sketching, without accounting
for the parameter space. Specifically, color, transparency, as well as
complicated effects like fuzziness, silhouette, and contrast can be ad-
justed and refined by direct sketch with the corresponding tool. Data
navigation with the peeling tool further allows the user to explore the
features in the volume rendered images without explicit layer defini-
tion.

4 USER INTERACTION

Similar to operations in popular image editing software, we provide
a full set of tools for direct manipulation on the direct volume ren-
dered image. Real-time results are fed back to users while brushing

Fig. 3. The animation sequence of the eraser operation. The mouse is
pressed in (a), and then it is moved along the dashed line in (b) and (c).
The skin gradually disappears as the mouse moves.

(©)

Fig. 4. The peeling slider for layer exploration. After clicking on a seed
point on the image, users can explore the automatically extracted outer
features by sliding on the widget. The appearance of different feature
layers are shown in each slice of the pie.

on the image with various tools. For example, the visual objects will
be gradually erased when brushing on the image with the eraser tool
(Fig. 3). There are eight types of visual effects for the direct changing
of appearances in our tool set, which are introduced here:

Colorization This tool gradually changes the color of the selected
feature.

Eraser Users can increase or decrease the visibility of desired ob-
jects in the rendered image.

Boundary Fuzziness This operation allows users to make the de-
sired boundary fuzzy.

Silhouette Boundaries are enhanced with a silhouette effect. Sil-
houette provides exaggerated boundary information using NPR (non-
photorealistic rendering) styles.

Brightness The luminance of features can be directly changed
without explicitly changing colors.

Structure Contrast The contrast of the structures that are sketched
upon is automatically enhanced by indirectly changing the color satu-
ration and lighting configurations.

Rainbow This tool forces the maximum color differences for the
features that are sketched on. The features are colorized as gradient
colors, which are either preset or user-defined.

Layer Exploration In addition to appearance changing, a peeling
slider (Fig. 4), which is a pie-like widget, contains several sectors rep-



resenting the appearance of different automatically extracted layers.
Layers can be toggled by clicking a small red button. During the in-
teraction, the corresponding layers will be shown in the main image.

5 ALGORITHMS

The algorithms of the proposed system consist of two major proce-
dures, the feature inference and the semantic realization. The feature
inference process converts the image space input into the correspond-
ing distribution functions that are defined on the parameter space, and
then the semantic realization process takes effect on the rendering re-
sult by changing the rendering parameters according to feature infer-
ence results in real-time.

5.1 Fundamentals

In this section, we briefly define and formularize several important
concepts in volume visualization for convenience. Without loss of
generality, we assume that the appearance of the volume rendered
image is only related to transfer functions, giving identical camera
configurations. The shading effects of different features can also be
defined by similar visual mappings.

Feature space is generally defined as a m-dimensional parameter
space, whose dimensionality m is determined by the number of prop-
erties of the volume data. For example, a 1D feature space can be
defined in the range of the intensity value of the CT scan. The feature
space can also be multidimensional when accounting for derivative di-
mensions e.g. gradient magnitudes.

Referring to the work by Rezk-Salama et al. [32], transfer functions
can be generalized as a set of parameters based on the primitives in the
feature space, regardless of the representation of transfer functions.
For example, the simplest primitive for a 1D transfer function is a
1D lookup table. Denote the primitives of the feature space as F =
{f1,f2,...,£,}7, then the transfer functions can be defined upon the
primitives:

n
TF =Y cfi=C'F, 1)
i=1

where c; is the tuple of the color and opacity values, and where CT
is a n x 4 matrix, which consists of ¢;. We utilize the CIE L*a*b*
as the color space plus alpha channel for convenience, although the
actual storage of color is in RGBA space. Except as otherwise noted,
transfer functions in following sections are defined in 1D, and they
are commonly stored as a lookup table in memory. Approaches for
multidimensional and more complicated transfer functions can also be
developed by reasonable extensions to the above definitions.

5.2 Feature Inference

Feature inference, which aims to determine the features to act on ac-
cording to the user input, is the key of the system (Fig. 5). This prob-
lem is very different from picking up opaque objects in common scene
rendering, where picking positions can be determined by referencing
the depth buffer. There are multiple problems that present themselves
when attempting to map from the image space objects to the feature
space distribution in volume rendering. First, volume rendered im-
ages often contain visual features that are fuzzy, semi-transparent and
multi-layered. In such an environment, it is hard to determine the
depths and positions of the corresponding objects. Secondly, even if
the intended positions in the 3D space can be determined, mapping
such information to the feature space is still a problem. The third
problem is ambiguity. We need to exclude the obvious interferences
although users tend to avoid ambiguity when operating on the images.

To solve these problems, we propose a method for inferring the user
intended features according to the sketches on the volume rendered
image. The algorithm consists of two steps (Fig. 2): first, finding out
the most likely region in the image space; second, determining the dis-
tribution of the feature in the data space and the feature space. One of
the major challenges with the system is performance. Since real-time
feedback is required during the user interaction, several data reduction
and acceleration techniques are utilized.

Fig. 5. The result of the feature inference by a user stroke.

5.2.1

The first step of feature inference is to find the most significant visual
objects in the 2D image space, which can be achieved by segmenting
the image into foreground and background patches according to the
user input. The appearance of the foreground patch should be closer
to the pixels that are highlighted by user strokes. After image segmen-
tation, the corresponding data are collected by ray traversal from the
pixels for further feature inference. To accelerate the whole pipeline,
we only consider the image in the local region. In practice, the win-
dow size of the local image is set to 30 x 30. If the window size is too
small to cover enough features, further data space analysis may not
exclude ambiguity as desired. On the other hand, the time and storage
complexity of image segmentation and further data space analysis will
prevent the pipeline working in real time.

We utilize the Graph Cut algorithm [13], which combines high
performance with good segmentation quality for extracting the fore-
ground and the background of the local image. Since we only have
foreground constraints for the image segmentation, we further employ
a two-pass method [38] to generate the background seeds before the
second pass of the standard Graph Cut process.

Suppose the image is a graph 4 (¥, &), where nodes ¥ are the pix-
els in the image, and edges & are the relationships between the neigh-
borhoods. Each node i in ¥ will be labeled as /; = 0 or 1 (background
or foreground), by optimizing the energy function:

E()=u) R(L)+Y B 1)), @
i i,j

Image Space Analysis

where R is the likelihood function, and B presents the boundary prop-
erties. In the general Graph Cut algorithm, it requires the initial seed
set of the foreground G and Gy, and then the likelihood function can
be written as:

R(lizl):O R(ll—O):OO iEGf,

Ri=1)=oo R(lj=0)=0 i € G,

dr d? .
R(li=1)=—In(zzr) R(i=0)=—In(g ) otherwise.
(3)

The distance le and dlB are evaluated as the minimal distance be-
tween the pixel and any clusters in Gy or G;,. The clustering is per-
formed by K-means algorithm. However, in our problem, we only
have the initial foreground G available. The two-pass Graph Cut al-
gorithm is used to decide G, in the first pass with a modified R, and
then run in the second pass with G and G, using Eq. 3. The modified
R in the first pass is:

R(li=1)=0
{ R(li=1) = —In(-% )

R(l;=0) =
R(l; =0) = —In(

i € Gy,
otherwise.

4
where K is a constant, which is the estimation of the distance diB in
Eq. 3. The second term of the energy function 2 is the boundary
property:

K
K+df )

IGi—CilI?

B(G;,C;j) = atexp(— 752

) (&)
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Fig. 6. The two pass Graph Cut: (a) the input seed stroke as Gy in the
first pass; (b) the G, generated by the first pass (black portion); (c) the
final result of the segmentation; (d) the segmentation result, where the
foreground is in color and bounded by red lines, the background in gray.
The final foreground mask is the approximation of the bone structure,
and the background mask contains irrelevant and mixed features.

where the distance ||C; — C;|| is the difference of pixels in the color
space. ¢ and o are pre-defined parameters. The result of the two-pass
Graph Cut algorithm on the local image is illustrated in Fig. 6. The
final foreground patch presents the approximation of the bone struc-
ture, where it is less occluded by outer skin. The classification results
on image space are the seed for further data space analysis, which ex-
tracts the corresponding distribution on the feature space.

5.2.2 Data Space Analysis

Data space analysis aims to infer feature clusters from the data space
based on the result of the image segmentation results. The data values,
as well as their visual properties are collected by ray traversal, and then
they are classified into clusters. A synthesized score is calculated for
each cluster, as the result of data space analysis. In further processes in
the pipeline, most of the algorithms only need to consider the cluster
with the maximum score, while some of the algorithms account for
multiple clusters (e.g. contrast enhancement, etc.)

In the ray traversal process, there are four properties collected at
each sample point, including the depth, visibility, opacity, as well as
the data value. The depth values can be directly calculated according
to ray configurations. The data value and opacity value are looked
up from both volume data and the transfer function. In addition, the
visibility value, which is the contribution of a sample to the final im-
age [7, 8], is formalized as:

V(x) = (1-0(x))a(s(x)), (6)

where O(x) is the current attenuation value of the ray, and s(x) is the
sample value at position x.

The input of the clustering algorithm is the multivariate data sam-
ples collected from the ray traversal, which are visualized in Fig. 7(a).
Typically, the amount of the input samples can reach 10°. To han-
dle the multivariate samples with such size, K-means, which is a light
weight clustering tool is exploited before further processing. The per-
formance of the K-means is further boosted by accelerated GPU im-
plementation for real-time interaction. The distance metric of the mul-
tivariate samples is weighted Euclidean distance. As we observed in
the experiments, the change of the weights only slightly affects the
clustering result, if reasonable weights are given to the data value and
visibility properties. The choice of the centroid number K is based
on the estimation of how many different features (both visual and nu-
merical) are behind the local image region. A higher centroid number
will significantly increase both time and storage complexities. Typi-
cally, K is set to 10, and this number can be modified depending on
the complexity of the dataset.

The above ray traversal and clustering process are applied on both
foreground and background image patches that are generated from im-
age space analysis. Thus, we obtain the foreground clusters {F ji} and

the background clusters {Fé}. The background clusters help in the ex-
clusion of ambiguity, since features that appear in both the foreground
and the background are not likely to be the desired ones.

The score for each cluster needs to consider several aspects, includ-
ing the visual significance (visibility), the depths, as well as the ambi-
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Fig. 7. The clustering result of data space analysis: (a) visualization
of the multivariate samples with parallel coordinates, presenting four
numerical properties and the cluster membership information; (b) the
corresponding features of the clusters.
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Fig. 8. Dependency relationships of the semantic realization algorithm.
The realization algorithm of higher level semantics is built upon the basic
ones.

guity. Among the above factors, the principle property is the visibility.
Hence we can define the score of the i-th cluster as

S@i) =V, M

where V; is the average visibility of the i-th cluster. More factors
should be considered, when the visibility of the clusters is similar, or
serious ambiguity exists. So we amend the score function by adding
two auxiliary items:

S(i) = Vi + BiDi + Bad)”, (8)

where D; is the centroid value of depth of the i-th cluster, and df ® is the
minimum distance between the centroid and all centroids in the back-
ground clusters Fj,, which measures the ambiguity. The coefficients
Bi and B, are the weights, which makes the amended items smaller
than V;. Based on our experiments and observation, typical values for
B; and B, are around 10~* and 1073, Greater values of §; and J,
may hide the principle property V;, but ignoring the influence of the
two factors may make the selection undesirable. For faster user inter-
action, P, can be set to 0, since only the data behind the foreground
image patch needs to be calculated.

5.3 Semantic Realization

Semantic realization converts the feature inference result into new
transfer functions, thus updating the volume rendered image gradu-
ally during the interaction. In our tool set, color, transparency and



Fig. 9. The colorization operation: (a) the initial status; (b) the skin
painted with red color; (c) the bone painted with yellow color; (d) the
bone painted with red color; (e) the skin colorized with yellow. The
black curves illustrate how the results can be achieved by painting on
the image.

Fig. 10. The eraser operation: (a) the opacity of the skin portion is
increased; (b) the initial status; (c) the opacity of the skin portion is
decreased.

shading changes are the most basic semantics, and higher level seman-
tics are built upon the basic semantics by decompositing the semantics
into lower level ones. For example, changing the brightness indirectly
changes the color, and contrast enhancement indirectly changes the
brightness. The semantic realization can be denoted as an Incremental
Transfer Function (ITF), which is the incremental modification of the
current TF, and can in turn be generated by compositing a new color
and transparency matrix C’:

ATF = C'TF. )

In most cases, such as for color and transparency change, only the
cluster with the maximum score is considered. For multi-feature oper-
ations, e.g. contrast enhancement and layer navigation, multiple fea-
tures are considered.

In order to control the speed of feedback during the interaction
(Fig. 3), we define the time rate A to control the speed of incremental
changes. The time rate A can be either manually assigned by users or
be automatically adjusted according to the difference of consecutive
images. By default, A equals to the reciprocal of the current frame
rate. On each time step ¢, the new TF; is the sum of the TF on the
previous time step and the ITF weighted by the time rate A:

TF :=TF_, & AATF, (10)

where operation & is the alpha blending of two colors.

5.3.1

Color and transparency are among the most important factors affecting
the visualization results. Higher level semantics like fuzziness, bright-
ness and contrast are also based upon color and transparency changes.
All the row vectors in the color matrix C’ of the ITF are set to be the
destination color. The visual effect of color and transparency changes
is shown in Fig. 9 and Fig. 11.

Color and Transparency Changes

Fig. 11. The brightness operation: (a) the brightness of the bone is
increased; (b) the initial status; (c) the brightness of the bone is de-
creased.

Fig. 12. Rainbow operation: (a) before operation; (b) after operation.
The color strip in (b) is the user selected rainbow for the effect.

Fig. 13. Boundary fuzziness: (a) before operation; (b) after operation.

5.3.2 Brightness Change

The lightening and darkening semantics aim to adjust the luminance of
the features. They can be generalized as changing the luminance com-
ponent of the colors in the CIE L*a*b* color space. The object color
C’ can be transformed from the original color in the transfer function:
C' =diag(1+2,1,1,1)C, (11)
where the diagonal matrix only transforms the luminance compo-
nent of the original color. The color can be further converted into RGB
space for rendering.

5.3.3 Rainbow

As we described in Section 4, the rainbow effect encodes the desired
features into different colors, according to the data distribution. We
perform a histogram equalization for the desired feature, before map-
ping the colors to the transfer functions.

5.3.4 Boundary Fuzziness

The fuzziness semantic makes the boundary of the visual feature more
fuzzy by making the local TF more smooth. This process is done by
a feature space anisotropic diffusion equation, whose conductivity is
inversely proportional to the data histogram H (F):

9€ Al ac—o.

or  "H(F) 12)



Fig. 14. Contrast enhancement: (a) before operation; (b) after opera-
tion.

where AC is calculated by differencing the neighborhood opacity val-
ues, and each scalar g; in the conductivity vector A equals to O or 1,
depending on whether the feature primitive f; is in the selected feature
cluster. After a few steps of iterations, the modified color matrix C can
be obtained for the transparency transform. During the diffusion, the
color is also blended with neighborhood features.

5.3.5 Contrast Enhancement

The contrast enhancement is based upon color changes. In image pro-
cessing, contrast enhancement can be done by histogram equalization.
Since transfer functions indirectly take effect on the image contrast in
volume rendering, we need an alternative way to achieve the goal. In
our work, the image contrast is enhanced by increasing the contrast of
the features in the volume. By utilizing the feature inference result Fy,
a discrete histogram equalization is conducted.

Denote f; as the clusters in Fy, and [, as the luminance contribu-
tion of feature fy, which is the sum of the luminance of the samples
weighted by the visibility values. Firstly, the normalized accumulated
histogram of the features is calculated after sorting:

i

Ci = Zli.

J

13)

We would like to create a transform to make the accumulated his-
togram c; linear, i.e. ¢; = iM, for a constant M. The final objective
luminance of each feature  is

l]l< = Ci(lmax - lmin) + bnin.- (14)

After the histogram equalization, the contrast enhancement is de-
composed into several brightness operations.

5.3.6 Layer Navigation

The layer navigation aims to help users find hidden features along the
ray. Similar to contrast enhancement, it is also a multi-layer operation,
which is composited as the sum of transparency changes. The weight
of each layer is defined by users with the peeling slider (Fig. 4). When
the ratio of each layer is changed, a new transfer function is generated.

6 IMPLEMENTATION AND PERFORMANCE

The system was implemented in C++ and GLSL. A standard ray-
casting volume rendering engine with a pre-integrated transfer func-
tion [11] is utilized. Currently the feature space is 1D. The silhou-
ette rendering is also based on a pre-integration technique. Various
GPU acceleration techniques for user interactions are exploited, e.g.
K-means clustering, etc. The feature inference and the volume render-
ing engine are executed in separate threads asynchronously, in order
to hide the lags during the interaction. During the user interaction, the
feature inference is invoked when any new stroke point is inputted.
Meanwhile, the rendering thread keeps on updating the image result.
When the feature inference is faster than the rendering, it runs multiple
cycles before the next frame is completed, thus reducing the rendering
overhead.

Data Set Size T, T; Ty T, T
Head 256x256x225 824 08 176 46 230
Visible Human (Part) ~ 512x512x512 2193 1.1 497 42 550
Vorticity 128x128x128 30.9 0.7 6.6 46 119
Engine Block 256x256x110 62.4 08 307 42 358
Isabel 500x500x100 1174 08 227 46 282

Table 1. The average timings of the system. 7,, T;, T;, T; are the tim-
ings (in milliseconds) of rendering, image space analysis, data space
analysis, semantic realization; T is the total time of feature inference.

Fig. 15. The final result and intermediate steps of exploring engine data

The performance of the proposed system was tested on a Dell
T3400 workstation, with a 2.66GHz CPU, 4GB memory, and an
NVidia GTX 470 graphics card with 1280MB video memory. The
timings of the test data are listed in Table 1. The steps size is 0.5
voxel, and the rendered image resolution is 800x800. Full shading
with silhouette style, which is controlled by shading transfer function,
is performed during the rendering. In addition to the step size and im-
age size, other factors also influence the performance, e.g. the window
size for local image analysis, which indirectly decides the amount of
the samples in data space analysis.

In addition to the standard PC environment, touchable devices, e.g.
iPad are also supported for users. The proposed WYSIWYG system
provides a greater advantage to portable devices, since it is extremely
inconvenient and inaccurate to design transfer functions with fingers
on limited screen spaces with traditional tools. It also shows conve-
nience for volume data navigation on the iPad with multi-touch sup-
port. Gestures can be mapped to take the place of auxiliary key oper-
ations. Multiple users can not only share but also collaborate on the
same volume data at the same time. Due to the limited computational
resources on the iPad, a remote system is implemented. In our system,
an iPad acts as the client, and a workstation acts as the server. The
touch signals are transferred to the server, and then the server trans-
fers the updated volume rendered images back to the iPad. The aver-
age bandwidth of the compressed transmission is about 200kb/s in a
WLAN environment. The image quality can be dynamically changed
according to the frame rate.

7 RESULTS

In this section, we demonstrate several cases of volume data explo-
ration with our WYSIWYG data exploration tool.

In Fig. 15, we demonstrate how to explore an engine block CT scan
with our system in a few steps. In the very beginning, the image is
rendered with the linear ramp transfer function. After removing the
outer materials, the core part of the block is revealed. This part can
be further colorized as orange. The boundary of the outer part can
be recovered by utilizing the peeling slider. Then a fine visualization
result can be achieved.

For medical data, which contains many implicit layers with rich se-
mantics, it is more straightforward to explore the features of the data
during 3D navigation. Fig. 16 presents intermediate and final ren-
dering results of the Visible Male data set. Domain knowledge can be
better integrated into the whole exploration process. Users can quickly



Fig. 16. The final result and intermediate steps of exploring partial visi-
ble male data.

-
-

Fig. 17. The possible process in the exploration of Hurricane Isabel data

¢y

identify the meaningful features and layers, and then make them high-
lighted in different appearances.

Our system is also capable of navigating atmospheric simulation
data (Fig. 17). We choose the wind speed channel of the Hurricane
Isabel data set for demonstration. By eraser and rainbow tools, sev-
eral major structures are revealed in the result. Users can interactively
explore and understand the data with our tool. The visual effect can
be further improved by contrast enhancement, etc. Compared to tra-
ditional transfer function design tools, our tool is more intuitive and
natural for scientific data exploration.

Based on user feedback from several users, especially from users
new to volume rendering, the proposed method is more intuitive than
traditional transfer function design. It is natural and direct to operate in
image space, without the trial-and-error process necessary with feature
space. The goal-oriented data exploration process also makes direct
volume rendering more usable and accessible for users. In the future,
we plan to perform a formal user study to thoroughly investigate the
system.

Fig. 18. lllustration of the global operation limitation: (a) user sketch on
the air bladder of the CT carp data with colorization tool; (b) both the air
bladder and the skin, which are with the same properties, are turned to
green.

) (b)

Fig. 19. Relationships between the quality of ambiguity exclusion and
the window size of local image analysis: (a) the window size is too small
to distinguish the semantic foreground (green materials) and the back-
ground (yellow materials), which leads to high ambiguity; (b) the window
size is enough to ensure the green materials are the intended feature.

8 LIMITATIONS AND KNOWN ISSUES

There are a few limitations and known issues of the proposed system.
First, all the operations on the rendered image are global, instead of lo-
cal operations. During the interaction, effects are taken on all features
with the same properties as the user sketches on the image. In Fig. 18,
we demonstrate how the user failed to change the color of the surface
of the air bladder, while leaving the other parts unchanged. However,
since the surface of the air bladder and the skin of the carp are within
the same range of intensity values, they are not able to be distinguished
by the classification of 1D transfer functions.

Second, the exclusion of ambiguity may be unsatisfactory when the
visibility and depths of overlapped transparent materials are too close.
Meanwhile, the footprint of these materials on the image are much
larger than the window size of local image analysis (c.f. Section 5.2.1).
In Fig. 19, the visibility of both yellow and green materials are very
close, leading to high ambiguity. This problem could be fixed by en-
larging the window size (Fig. 19(b)), but this would be at the cost of
sacrificing more computation time.

Third, the initial parameter configurations may influence the explo-
ration process, e.g. initial transfer functions, the viewpoints, etc. In
addition, the frame rate of the direct volume rendering also has a big
impact on the visual effect. If the frame rate is too low, the interactivity
of the system is significantly reduced.

9 CONCLUSIONS AND FUTURE WORKS

In this work, we present a novel WYSIWYG volume visualization sys-
tem that accepts direct sketch on the rendered images. Users can ex-



plore and change the appearance of the direct volume rendered images
by sketching on the volume rendered image with various tools, and
the system gives real-time feedback for users during the interaction.
To achieve this goal, several algorithms are utilized for the interactive
operations, including image and data space analysis, and the semantic
realization process. The proposed system is flexible and intuitive for
volume data exploration and visualization.

A few extensions and applications for this work can be developed in
the future. More NPR effects other than silhouette can be added into
the current system to make it available for sketch-based illustrative vi-
sualization design. For the intention inference algorithm, we would
like to further develop specific strategies for interval volume render-
ing [1], which provide a wider spectrum of visual classification. We
would also like to extend the current system to facilitate multidimen-
sional and multivariate transfer function design for more applications.
Furthermore, it is noticeable that local transfer functions [24] and two-
level volume rendering [15] with segmentation information provides
better classification for local structures of the data, instead of global
mapping, but the parameter space is even more complicated.
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