
Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D

Complex-Valued Superconductor Simulation Data

Hanqi Guo, Carolyn L. Phillips, Tom Peterka, Dmitry Karpeyev, and Andreas Glatz

#13

#3

#0 #14
#16 #19

#18

#17
#15

#8
#14

#12#15
#9

#3
#10

#2
#6

#7

#8
#13

#12#0
#9

#3
#10

#2
#6

#7
#5

Frames 101~187

(e)

(d)

Frames 188~229Material
Inclusions

0

0 1200200

187 230238

400 600 800 1000

2

4 ×10-4

Voltage

Time

#13

#0

Vortex Surface
(Backward)

Vortex Surface
(Forward)

#14

#15

Frame 238 Frame 239

Frame 230

Split

Frame 231

#15

#16 #17

Recombine#3

#19

#18

#16Recombine
Slow-Moving

#6

#10

#5

#7

#5

Bx x
y z

(a) (b) (c)

Fig. 1. Visualization of a superconductor in a periodic dissipative state (Unstable BX dataset) based on vortex extraction and
tracking results: (a) vortex lines at frame 187; (backward) vortex surfaces showing the trajectories of vortex lines from frame 101-187;
(b) vortices #0 and #13 recombine into #14 and #15 at frame 188; (forward) vortex surfaces showing the trajectories from frame
188-229; (c) splitting and recombination events at frames 231 and 239; (d) event diagram; (e) voltage chart. The arrows on the vortex
lines indicate their chiralities.

Abstract—We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured
and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued
order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents
each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and
time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We
then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics
and macroscale superconductor behavior in greater detail than previously possible.

Index Terms—Superconductor, Vortex extraction, Feature tracking, Unstructured grid.

1 INTRODUCTION

Superconductors, materials that can conduct current without any loss,
are used in applications ranging from MRI machines to particle ac-
celerators. Materials scientists are interested in understanding and
controlling the complex dynamic properties of superconductors. De-
signing superconductors that can sustain higher lossless, or critical,
currents at higher temperatures could lead to technological advances

• Hanqi Guo is with the Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, IL 60439, USA. E-mail:

hguo@anl.gov.

• Carolyn L. Phillips is with the Mathematics and Computer Science

Division, Argonne National Laboratory, Argonne, IL 60439, USA. E-mail:

cphillips@anl.gov.

• Tom Peterka is with the Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, IL 60439, USA. E-mail:

tpeterka@mcs.anl.gov.

• Dmitry Karpeyev is with the Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, IL 60439, USA. E-mail:

karpeev@mcs.anl.gov.

• Andreas Galtz is with the Materials Science Division, Argonne National

Laboratory, Argonne, IL 60439, USA. E-mail: glatz@anl.gov.

affecting low-cost power transmission in the electrical grid, computing
technology, and improved electromagnets.

In the Ginzburg-Landau theory for superconductivity, the supercon-
ducting properties of the material can be expressed in terms of the or-
der parameter ψ (ψ ∈ C), which is a complex-valued scalar field.
The value of ψ is related to the density of superconducting compo-
nents. Singularities of ψ correspond to an extremely important feature
of the superconductor, magnetic flux vortices. The dynamics of the
vortices fundamentally determine the electromagnetic response of the
material. Above a critical level, an externally applied magnetic field
penetrates a type-II superconductor in the form of flexible flux tubes.
The magnetic flux in the vortex core is surrounded by a circular super-
current. When the vortices move, the system becomes dissipative; and
a finite voltage drop across the system, corresponding to resistance, is
observed. Thus, the behavior of the vortices is an important determi-
nant of the performance of the material. Material defects, or so-called
inclusions, distributed through the type-II superconductor can trap the
vortices, pinning them in place and allowing the material to sustain a
higher current.

Extracting, tracking, and visualizing the vortex dynamics in large-
scale time-dependent Ginzburg-Landau (TDGL) superconductor sim-
ulation data are needed in order to understand the dissipative material
behavior and the impact of adding material inclusions. Until recently,

numerical simulations have been limited to 2D [7, 18] or small-scale
3D [9] domains. Now, large-scale 3D simulations have been imple-
mented [28, 12] in which macroscale phenomena can be observed, in-
cluding collective dynamics of many vortices. Materials and computa-
tional scientists have developed two TDGL models for structured and
unstructured meshes, respectively.In order to determine how vortex
dynamics relate to the macroscopically observable system behaviors
in large-scale TDGL simulations, however, new methods are required
for extracting and visualizing complex vortex motions. In our work,
we demonstrate how the vortex extraction and tracking algorithms, to-
gether with visualization applications, can elucidate the details of a
periodic dissipative vortex state that emerges under certain field and
material sample conditions.

The core part of this work is vortex extraction and tracking in
3D time-varying, complex-valued scalar fields. We define extrac-
tion to mean detecting features in a single time frame and tracking
to mean correlating and connecting the features over time. In a recent
study [25], a vortex extraction algorithm was proposed for a single
time frame, yet challenges remain for tracking vortices over time. This
topic is related to but fundamentally different from vortex extraction in
fluid flow. Although much studied in flow visualization [26, 16], vor-
tices in 3D vector fields are not well defined and have multiple criteria,
for example, local extrema of vorticity magnitude [39], and λ2 [14].
In contrast, the vortex line in the complex-valued scalar field of a su-
perconductor is well defined and is the locus of singularity points that
satisfy

|ψ| = 0 and −

∮
C

∇θ · dl = 2nπ, (1)

where |ψ| and θ are the magnitude and phase angle, respectively, of the
order parameter ψ, and C is a simple closed contour in R

3 encircling
a vortex, which is small enough to avoid any other singularities of ψ.
The nonzero integer n, which is usually ±1, is defined as the chirality
of the vortex line with respect to the contour C. In the rest of the
paper, the term vortex means a singularity line in a complex-valued
scalar field, unless otherwise noted.

We propose a vortex extraction algorithm for both structured and
unstructured mesh TDGL simulations. We generalize the previous
work in [25] to extract vorticies in both structured and unstructred
mesh data. Singularity points are detected on mesh faces on either
a tetrahedron or a hexahedron, and they are further transformed into
vortex lines based on mesh connectivities.

We develop a vortex tracking algorithm for identifying the same
vortex lines over time. Spatial faces of 3D hexahedral or tetrahedral
cells are extruded to space-time virtual prisms that are then checked
for intersection by vortices, which indicate the movement of vortices.
By exploiting the face connectivities of prisms, the singularities in
adjacent time frames can be related. Vortex lines in adjacent frames
are thereby sewn together, unless a topological event such as a split,
merge, or recombination occurs. In the tracking algorithm, the only
assumption is that the simulation output varies smoothly over time. A
rigorous proof of correctness of our tracking method is provided, and
the experimental results demonstrate the effectiveness and robustness
of the proposed algorithm. Compared with other feature tracking al-
gorithms in general, our method is parameter free and guarantees the
correctness of the results within the accuracy of the output data. While
our method is related to earlier studies on tracking critical points in 2D
time-varying vector [36] and tensor fields [35], significant challenges
arise in our 3D TDGL data. In vector fields, critical points can be
located by searching where velocity vanishes, but vortices in super-
conductors are localized by checking the phase jump of the contour
integral (Eq. 1). The higher dimensionality of the 3D mesh is more
complex than in 2D cases. Gauge invariance (discussed in Section 3)
also needs to be incorporated in the algorithms for numerical reasons.

In addition, based on the vortex extraction and tracking results, we
further apply and develop visualization techniques for interactive data
exploration. An event diagram is provided to scientiststhat explains the
changes in vortex topology. It also enables locating interesting features
over time. The visual design is inspired by Storylines [32]. Important

measurements such as voltage are also overlaid in the view as line
charts, in order to show the relationship between the vortex events and
macroscopic system behaviors. A prototype system is implemented
that contains both 3D visualization and event diagrams.

To summarize, the contributions of this paper are as follows:

• A vortex detection algorithm for both structured and unstruc-
tured mesh TDGL simulations;

• A vortex tracking algorithm for visualizing and analyzing vortex
dynamics and events in the datasets;

• Application of various visualization techniques for analyzing and
understanding the results of the vortex detection and tracking.

The remainder of this paper is organized as follows. We summarize
related work in Section 2 and then introduce our particular scientific
problem and its corresponding simulation data in Section 3. Vortex
extraction and tracking algorithms are detailed in Section 4. The vi-
sualization tool is presented in Section 5. Results and performance
are evaluated in Section 6, followed by discussions in Section 7. In
Section 8, we summarize our conclusions and briefly discuss future
work.

2 RELATED WORK

We summarize related work on complex-valued scalar field visualiza-
tion and vortex visualization in fluid flow.

2.1 Complex-valued scalar field visualization

0.0 1.0
|ψ|

(b)

|ψ|=0.6 |ψ|=0.2
(a)

Inclusions

Fig. 2. (a) Isosurface and (b) volume
rendering of the order parameter magni-
tude |ψ|. Fine vortex features are usually
blurred in the rendering results.

In general, a complex-
valued scalar field
ψ : Rn → C associates
a complex scalar with
every point in the
space (usually R

2 or
R

3). Complex fields
are found in various
science and engineering
domains, for example,
quantum mechanics,
superconductivity,
superfluidity, string
theory, acoustics, and
optics. Relatively little
research, however, has
been done to visualize
and extract features
from such fields. We
categorize complex field
visualization into two
categories: direct and
feature/topology-based visualization methods.

Direct visualization approaches map data values into visual prop-
erties so that they can be directly interpreted.Pseudocolor plots, iso-
surfaces, and contours have been used to visualize quantum physics
data [13]. 2D vector field visualization methods, such as arrow
plots and line integral convolution (LIC) [6], can be used to visual-
ize complex fields, but their extension to 3D creates occlusion prob-
lems. Production tools such as the Application Visualization System
(AVS) [23], ParaView [1], and VisIt [8] have been used to facilitate
such visualizations. In previous studies of TDGL simulations [18, 12],
vortices have been visualized by heat maps or isosurfaces of the mag-
nitude |ψ|. These methods are problematic, however, as the datasets
become larger and contain more features. Isosurfaces and volume ren-
dering, as in Fig. 2, usually blur the fine features of a vortex and merge
when two vortices are in close proximity. Additionally, |ψ| usually is
suppressed within inclusions such that vortices cannot be visualized
inside them.

An alternative is to use feature- and topology-based visualization to
extract important structures and regions in the datasets, for example,
valleys and ridges in complex-valued acoustical fields [20]. Vortices
correspond to singularities in ψ, isolated points and lines in 2D and

3D, respectively. The extraction of singularity points has been stud-
ied in complex optical fields [10, 21]. For TDGL datasets, Phillips et
al. [25] proposed a method to extract singularity lines from structured
Cartesian grid TDGL simulation data. By interpreting the data as a
graph, individual singularity points are connected to form lines. We
extend this work with a tracking algorithm for both structured and un-
structured mesh data. This algorithm is also related to 2D vector field
and tensor field singularity tracking [36, 35, 37], where 2D faces are
extended to space-time prisms in order to check whether the features
pass through the boundaries. In our work, however, we must account
for application-specific mesh and feature complexities that are present
in 3D TDGL simulations such as vortex chirality, gauge transforma-
tions, and a 3D mesh complex, as well as the large data scales of our
application’s datasets.

2.2 Vortex visualization in fluid flow

Vortex visualization is a well-studied topic in flow visualization, and
a comprehensive literature review on this topic can be found in [16]
and [26]. In general, vortices are characterized by swirling motion
centers in fluid flow; however, this process can be mathematically de-
fined in various ways. Several definitions have been proposed, such
as extrema of λ2 [14, 30], vorticity magnitude [39], and acceleration
magnitude [17].

The two main vortex extraction approaches in fluid flow are re-
gion based and line based, which extract the vortices as regions and
core lines, respectively. In region-based methods, vortices are located
by thresholding the aforementioned characteristic scalar fields. Using
related ideas, Jiang et al. [15] proposed a swirling region detection
method based on combinatorial topology, and Otto and Theisel [22]
introduced uncertain vortex regions. In comparison, in line-based
methods, the center of vortical motions are extracted as lines. Most
line-based approaches can be generalized as extracting parallel vec-
tor descriptors from a dataset [24]. For example, a vortex core line
can be defined by a locus of points, where velocity is parallel to vor-
ticity [27, 31], or as the extrema lines of pressures, where pressure
gradient is parallel to vorticity [2]. Alternatively, predictor-corrector
methods [3] can be used to locate vortex lines in an iterative manner.

Vortex tracking is necessary in order to analyze unsteady flow fields.
For vortex regions, the same techniques used in scalar field feature
tracking can be used, such as scale-space methods [4] and connected
regions [29]. For vortex core lines, Theisel et al. [33] proposed paral-
lel vector surfaces to track them in space-time, which is built on the
feature flow fields (FFF) framework [34]. Similar techniques are used
to track the vortices as cores of swirling motions [38].

An essential difference exists between fluid flow vortices and vor-
tices in a superconductor. The former are a classical mechanics phe-
nomenon, while the latter are an emergent quantum physics phe-
nomenon. Vortices in fluid flow are usually extracted by a local oper-
ator (e.g., extrema or parallel vectors), but vortices in superconductors
are localized by the contour integral (Eq. 1), which is a non-local op-
erator. Unlike fluid flow, we cannot determine whether a point is on
a vortex line by merely checking whether |ψ| = 0. Thus, local op-
erator based vortex extraction and tracking frameworks in fluid flow,
such as parallel vectors [24] and FFF [34], cannot be directly used for
our problem. In this paper, we extract vortices and their movements
by examining phase jumps over mesh faces and space-time edges and
then connect them with a graph-based algorithm.

3 TDGL SUPERCONDUCTOR SIMULATION DATA

In this section we introduce the properties of TDGL superconductor
simulation data. The notation used in this paper is listed in Table 1.

The input data in our study comes from two TDGL implementa-
tions, GLGPU and Condor. The differences between the two simu-
lation models are listed in Table 2. GLGPU is based on a structured
rectangular grid, using general-purpose graphics hardware. Currently,
the spatial size of problem that can be modeled with GLGPU is limited
by the amount of GPU memory; however, the total amount of the time-
varying output data can be arbitrarily large. The output of GLGPU is

Table 1. Table of notation.
Symbol Meaning

ψ Complex-valued order parameter field

|ψ|, θ Magnitude and phase angle of ψ

A Magnetic vector potential

B Magnetic field (curl of A, B = ∇×A)

∇ Gradient operator in 3D,∇ = (∂
∂x
, ∂
∂y
, ∂
∂z

)T

∇̂ Gradient operator in 4D, ∇̂ = (∂
∂x
, ∂
∂y
, ∂
∂z
, ∂
∂t

)T

E,F, C Sets of mesh edges, faces, and cells

Lee, Lef , Lff Edge-edge, edge-face, and face-face links in mesh graphs

Fi
p Set of punctured faces in time frame i

Ei,i+1
p Set of intersected edges between time frame i and i+ 1

Fp Set of Fi
p for all time frames

Ep Set of Ei,i+1
p for all time frames

Vi = {V i
k} Set of vortex graphs in time frame i

V(k) = {V i
(k)} Tracked vortex graphs with the global ID k over time

Si0;i1 = {S
i0;i1
k

} Set of vortex sheet graphs from time frame i0 to i1

Table 2. Comparison between GLGPU and Condor simulation models.

GLGPU Condor

Mesh 2D/3D Regular Cartesian 3D Unstructured

Mesh elements Hexahedra Tetrahedra

Discretization Finite-difference Finite-element

Parallelism GPU MPI & libMesh on CPUs

Data format BDAT ExodusII

Magnetic vector potential Analytically defined Vertex values

(a) (b)

(c) (d)
Fig. 3. Examples of gauge transformation: (a) magnitude |ψ|, (b) phase
field θ in the input data, (c) gauge-transformed phase field θ̃, (d) another
gauge-transformed phase field θ̃′.

custom-formatted binary files (BDAT). Condor is based on an unstruc-
tured mesh, using MPI-based parallelism in supercomputers. It is built
on the libMesh [19] finite-element library, and tetrahedra are the basic
mesh elements in the grid. The mesh as well as the Condor solution
data is stored in the ExodusII1 format. LibMesh provides a high-level
API to load mesh and solutions into memory.

The discretizations of the GLGPU and Condor grids are finite dif-
ference and finite element, respectively. In GLGPU data, values inside
the mesh elements are estimated by trilinear interpolation. In Condor,
piecewise linear approximation is used in the finite-element simula-
tion.

In general, the numerical solution of TDGL models is the tuple
(ψ,A), where ψ is the order parameter, and A is the magnetic vector
potential. Both variables are used in our analysis. The tuple (ψ,A) is
not a unique description of the state of the superconductor but rather
one of an infinite set of tuples that constitute the gauge freedom of
the solution. Any property of the data needs to be measured in a
gauge-invariant way or calculated in a way that is not dependent on
which specific tuple is used. For example, while the magnitude of ψ
(Fig. 3(a)) is gauge invariant, the phase of ψ (Fig. 3(b)) is not. The
two phase maps shown in Fig. 3(c) and 3(d) are equally legitimate.
In order to calculate the phase change around a closed contour in a
gauge-invariant manner [25], the calculation should be transformed as
follows:

∫
L

∇θ · dl =

∫
L

(∇θ −A) · dl+

∫
L

A · dl, (2)

where L is the integral path, θ is the phase angle of the order param-
eter ψ, and A is the magnetic vector potential. When L is a closed

1http://sourceforge.net/projects/exodusii/

(d) cell

(b) edge

v0

v1

(a) vertex

v0

f3(v0, v3, v7, v4)

f4(v1, v0, v4, v5)

f5(v5, v6, v7, v4)

v0
4, v5)

v0
4

f3ff (v(vff

v4
v5

v6

v7

v1

v2

v3

f0(v0, v1, v2, v3)

f1(v1, v2, v6, v5)

f2(v2, v3, v7, v6)

f0(v2, v1, v0)

f1(v0, v1, v3)

f3(v2, v0, v3)

f2(v1, v2, v3)

v1

v0 v2

v3
(c) face

v0

e0 e1

e2

v1

v2
v0

v1

v3

v2

e0 e2

e1

e3

Fig. 4. Mesh elements in TDGL simulations. For convenience, the face
normals always point outward. The vertices in each face follow a coun-
terclockwise order.

curve, the Stokes theorem allows the contour integral of A to be cal-
culated as the flux of magnetic field B, that is,

∫
B ·da. For the finite-

element-based Condor code, however, the magnetic flux is nontrivial
to compute because there are multiple gradients of A on vertices and
edges in the mesh element. Hence, the contour integral is calculated
directly instead.

While both codes currently assume a uniform magnetic field (B)
in the domain, the value of magnetic vector potential (A) is provided
in different ways. For the GLGPU code, the magnetic vector poten-
tial is analytically defined. For Condor, in contrast, A is stored as a
value on each vertex in the data file. The latter is in anticipation of
implementing nonuniform magnetic fields in the future.

System status and parameters such as voltage V and external cur-
rent Jext are stored for each time frame. Also, simulation configu-
rations need to be handled correctly in the visualization and analysis.
(See [12] for details.) In addition, the locations of material inclu-
sions embedded in the field are also available if they are used in the
simulations. Fig. 1 shows the geometries of inclusions as transparent
spheres.

For convenience, we define four types of mesh elements in Fig. 4
based on the dimensionality: cells, faces, edges, and vertices. Cells are
basic units in the mesh that contain several vertices; they are tetrahedra
or hexahedra in our data. Faces are sides of cells, and edges are sides
of faces. In the data structures of the next section, edges and faces
each are stored just once. Based on the ordering of vertices describing
the element, each edge has an implicit direction, and each face has a
winding direction determined by the right-hand rule.

4 GRAPH-BASED VORTEX EXTRACTION AND TRACKING

FuturePast

Vortex
Line

Vortex
Surface

Vortex
Sheet
Graph

Vortex
Graph

f
f
f

f
f
f

f
f
f

e
e

e
e
e

f
f
f

Fig. 5. Vortex line and its vortex sur-
face. The surface is the trajectory of
the vortex line over time.

The vortex extraction algo-
rithm locates the vortex lines
at individual time frames, and
the vortex tracking algorithm
correlates these lines across
time frames with consistent and
unique IDs. Formally, each
vortex line is an ordered locus
of singularity points defined by
Equation 1. The tracking re-
sults are essentially vortex sur-
faces that contain a locus of
vortex lines at different times,
as illustrated in Fig. 5. In our graph-based algorithms, vortex lines
and vortex surfaces are represented as vortex graphs and (vortex) sheet
graphs, respectively.

The pipeline of the extraction and tracking algorithms is illustrated
in Fig. 6. Both algorithms are based on the mesh discretization used
in the simulations. The mesh is presumed to be fine enough to capture

t0

t1

t0

t1

t0

t1

t0

t1

(a)

(b)

Case I: Moving through Case II: Moving out Case III: Moving in

Case IV: Staying inside Case V: Spatial Link

Faces

Space-time edges

Vortex lines

Intersections of
vortex & face/edge

e1,23

t0 t1 t2 t3

e0,10

e0,11

e0,12

e0,13 e0,14

e0,15

e0,16

e0,17f00

f01

f02

f03

f04

f10

f11

f12

f13

f14

f20

f21

f22

f23

f24

e1,20

e1,21

e1,22

f30

f31

f32

f33

e2,30

e2,31

e2,32

V10 V20

V21

V30

V31

V00
S0;10 S1;20

S0;30
S2;30

Fp0 Ep0,1 Ep1,2 Ep2,3Fp1 Fp2 Fp3

Fig. 7. (a) Illustration of the vortex sheet graph and (b) five types of links
in the vortex sheet graph (b).

all important physical phenomena of the TDGL model, and the simula-
tion output is assumed to be continuous between grid points over space
and time. A moving (or stationary) singularity is detected by examin-
ing mesh elements over time. Specifically, vortices are detected and
tracked by examining spatial faces and space-time edges as follows.
At a given time frame, vortices are located by checking each mesh
face to see whether it is punctured by a vortex line. The movement
of a vortex line is detected by checking each space-time edge to see
whether it is intersected at an intermediate time between two adjacent
time frames. The punctured (space) faces and intersected (space-time)
edges are stored in Fp and Ep, respectively, for further analysis.

The key part of the pipeline is the construction of vortex graphs and
sheet graphs, which are graph-based discretizations of vortex lines and
vortex surfaces. A vortex graph V i

k connects a subset of punctured
faces F i

p in time frame i. A set of punctured faces (usually two) are
connected if they belong to the same mesh cell. This presumption is
based on Lemma 1 (see the Appendix) that a closed volume (a cell in
this case) in R

3 has an equal number of vortex entry and exit points.
Based on this principle, vortex lines are generated by tracing the con-

nected nodes in a vortex graph. A vortex sheet S
i0,i1
k connects all

punctured faces ∪i1
i0
F i

p and intersected edges ∪i1−1
i0

Ei,i+1
p in time pe-

riod i0 to i1 (Fig. 7(a)). Two elements are connected if they are in the
same space-time prism, which is a space-time extension of a spatial
face f . A connection indicates that a vortex line has intersected the
face f over the time interval by moving in, out, or through, or staying
inside the face (Fig. 7(b)). Events can be further detected based on the
extraction results.

Our analysis is based on the mesh graph G in Fig. 8, whose nodes
include all edges and faces in the mesh and whose links are their con-
nections.2 The following subsections present detailed descriptions of

2To avoid ambiguity, we use the terms “links” instead of “edges” and

“nodes” instead of “vertices” in graphs.

Mesh Graph Punctured
Spatial Faces

Intersected
Space-Time Edges

Vortex Graph Vortex Sheet
Graph

Vortex Lines Events Interactive
Visualization

Structured/
Unstructured

TDGL
Simulations

Preprocessing
Face

Detection
Edge

Detection
Vortex

Extraction
Vortex

Tracking
Line

Tracing
Event

Detection
Rendering

e3 f4f0

f3

e4 e7f2 e8e1

f1 e2

f6

e5

e0

f5

e6
f0

f1

f2

f3

f20

f21

f22

f30

f31

e2,30

e2,31

e2,32

Fig. 6. Pipeline of the graph-based vortex extraction and tracking algorithms. The mesh graph is constructed from the input data, and then
punctured faces and intersected edges are extracted. Vortex graphs and vortex sheet graphs are constructed, which are further transformed into
vortex lines with global IDs over time. The vortex lines and the events are further interactively visualized.

(a) (b)

f5

f0

f3
e0 e4

e1

e6
e8

e7

c0 c1

f4

f3
e4

f0ff
f1

e2

f2

e5

e3

f5ff

ee8
f4

f2f2

ee5

e3

f6

e3 f4f0

f3

e4 e7f2 e8e1

f1 e2

f6

e5

e0

f5

e6Face-face:

Face-edge:

agreement=+1

agreement=-1

Edge-edge:

e3

e2

e5

e7

e8

e6

e4

e1

e0

f2 f0f4

f5

f6

f3

f1

Fig. 8. Illustration of the mesh graph G : (a) an unstructured mesh with
two tetrahedra; (b) node-link diagram for Lee, Lef , Lff .

the construction of a mesh graph, detection of punctured faces and
intersected edges, and the construction of a vortex graphs and vortex
sheet graphs.

4.1 Mesh graph construction

A mesh graph is the basic data structure in our graph-based vortex
extraction and tracking algorithms. Fig. 8 illustrates an example of
the mesh graph for a tetrahedral mesh consisting of two tetrahedra.
Formally, a mesh graph is the undirected and edge-weighted graph
G = (N ,L). The set of nodes N = {E ,F} is the set of all mesh
edges E and mesh faces F . The set of links L = {Lee,Lef ,Lff}
is the set of all edge-edge links Lee, edge-face links Lef , and face-
face links Lff . Two edges are linked if they belong to the same face;
an edge is linked to a face if the edge belongs to face, and two faces
are linked if they belong to the same cell. Edges and faces each are
stored with an implicit direction. Each link in L has a weight of
+1 or −1 indicating directional agreement or disagreement between
two connected elements. Directional agreement between faces, for
example, means their winding directions both point in or out of the
cell. For example, in Fig. 8, the link between edge e1 and face f1 has
the weight of +1, but the link between edge e7 and face f6 has the
weight of −1.

The mesh graph G is stored as adjacency lists. Each edge keeps
lists of sibling edge ids and parent face ids. Their di-
rectional agreements are stored in sibling edge agreement

and parent face agreement, respectively. Similarly, each
face keeps lists of child edge ids, child edge agreement,
sibling face ids, and sibling face agreement.

The explicit construction of the mesh graph is necessary only for
unstructured meshes. For structured Cartesian meshes, the regular
pattern of the mesh makes these data structures implicit and trivial to
generate on the fly. For unstructured meshes, however, finite-element
libraries such as libMesh provide explicit access only to cells. If iterat-
ing over all cells, faces and edges will be repeatedly accessed, leading
to an inefficient use of computation resources. Therefore, we first pre-
process the mesh and construct the mesh graph. In this way, the parent,
child, and sibling mesh element relationships are established once and
reused.

4.2 Punctured faces and intersected space-time edges de-
tection

The calculation of closed contour integrals can locate the singulari-
ties in the complex field defined over space and time. We use the paths
around mesh faces and space-time edges as contours to detect singular-
ities. If and only if a face is intersected by a vortex line in a single time
frame, the edges of the face encircle a singularity. Similarly, if and
only if a vortex line intersects an edge at an intermediate time between
two time frames, a time contour can be constructed that also encircles
a singularity. The time contour comprises the edge in space at the two
time frames and two edges in time created by extending the end points
of the space edge through time. An approximate intersection point or
intersection time can be further solved by using interpolation.

To locate intersection points for both faces and space-time edges,
we extend Equation 1 to 4D as follows,

n = −
1

2π

∮
C

∇̂θ · d̂l, (3)

where C is a space-time contour, ∇̂ is the gradient operator, and d̂l is
the infinitesimal line segment of C. Notice that Equation 3 is equiva-
lent to Equation 1 when the time dimension of C is constant. If n is
a nonzero integer (usually ±1 in our study), the contour C encircles a
singularity point. The sign of n is the chiral direction of the singularity
with respect to the normal of the contour.

In the discrete case, where contour C is formed by m connected
line segments, the contour integral in Equation 3 is broken into a sum
of line integrals, which are further converted to the sum of phase shift
on each line segment of C:

n = −
1

2π

m−1∑
i=0

∫
Li,j

∇̂θ · d̂l = −
1

2π

m−1∑
i=0

∆θi,j , (4)

where j = (i+ 1) mod m.

∆θi,j = mod (θj − θi + π, 2π)− π, (5)

where θi is the phase angle of ψ on the ith vertex of C. The modulo
operation maps θi,j into the range of [−π, π). In the TDGL model,
for numerical reasons, a gauge transformation (Equation 2) needs to
be performed along the contour in order to compute the phase shift
between two arbitrary locations in the same time frame. If the time is
constant for path Li,j , Equation 5 is transformed to

∆θi,j = mod (θj−θi−

∫
Li,j

A·dl+π, 2π)+

∫
Li,j

A·dl−π. (6)

In the TDGL equations implemented on a mesh, values along a mesh
edge can be estimated by linear interpolation, so we use

∫
Li,j

A ·dl =
Ai+Aj

2
· (xj − xi), where xi and xj are coordinates of vertices i

and j, respectively. Ai and Aj are the values of the magnetic vector
potential, which are known at every mesh vertex.

f2

f3ff3333ff

f2ff

f1

(a)

f4

(b)

f3
f2

(d)

(c)

f1 f2 f3 f4
+1 -1 -1

-1 +1 -1 -1

f4

f1

f1 f2 f3 f4

Fig. 9. Illustration of vortex extraction algorithm: (a) punctured cells in
the mesh, (b) punctured faces in the mesh, (c) the vortex graph, (d) the
vortex line.

...

...

...

...
f0

f1

f2

f3
...

...

...

...
f0

f1

f2

f3

(a) (b) (c)

f0f0

f1

f2

f3

Fig. 10. Rare case creating ambiguity in vortex extraction: (a) two vor-
tices puncture the same cell; (b) the vortex graph of the vortices; (c) the
vortex graph is split into four separate lines.

Algorithm 1 The graph-based vortex graph (left) and vortex sheet
graph (right) construction

Vi ← ∅

Nl ← F
p
ti

Ll ← Lff

while not Nl.empty() do

v ← an arbitrary element in

Vl
V ← BFS(Nl,Ll, v)

Vi.add(V)

Nl ← Nl \ V

end while

Si0;i1 ← ∅

Ns ← {∪
i1−1
i0
Ei,i+1
p ,∪

i1
i0
Fi

p}

Ls ← {Lee,Lef ,Lff}

while not Ns.empty() do

v ← an arbitrary element in Ns

S ← BFS(Ns, ADJs , v)

Si0;i1 .add(S)

Ns ← Ns \ S

end while

Once a singularity is located on a face or space-time edge, the lo-
cation where |ψ| = 0 can be approximated by solving a system
where the real part ℜ(ψ) and imaginary part ℑ(ψ) simultaneously
equal zero. For a linearly interpolated triangular face, the punctured
point can be located by solving a linear system; for a bilinearly approx-
imated quadrilateral face, we employ a generalized eigensolver to find
the zero point [25]. The sets of intersected faces Fp and intersected
space-time edges Ep are retained for further analysis.

4.3 Vortex extraction

The vortex extraction algorithm constructs the vortex graph V i
k , and

then the vortex lines are subgraphs of G . Formally, a vortex graph V i
k

is one of the connected components in the graph Vi(F i
p,Lff), where

the nodes F i
p are the punctured faces in time frame i and Lff is the

set of face-face links in the mesh graph G .
The graph we construct here is the edge-to-vertex dual graph of

the graph constructed in [25] to simplify certain data structures for un-
structured meshes. Thus the meaning of a node and link in our graph is
different from that in [25]. The pseudocode of vortex graph construc-
tion is listed in Algorithm 1 (left), and the algorithm is illustrated in
Fig. 9. The connected components are extracted by either breadth-first
search (BFS) or depth-first search (DFS). The time complexity for the
search is O(|F i

p|+ |Lff |).
The rationale for the vortex line construction is based on Lemma 1

and Lemma 2. For any cell in the mesh, which is a closed volume
in R

3, there must be equal numbers of entry and exit points if it is
punctured by a vortex line. Our simulation models contain at most
one puncture point per face. The likelihood that a puncture point falls
exactly on an edge is negligible. Thus, there are always equal num-
bers of faces of a cell whose outward normals have a positive or neg-
ative dot product relative to the chiral direction of the vortex. In most
cases, our data has no more than two punctured faces with opposite
dot products in a punctured cell, thus ensuring that the two puncture

Algorithm 2 Find adjacent nodes in a vortex sheet graph.

Fp = {F0
p ,F

1
p , . . . ,F

n−1
p }, Ep = {E0,1p , E1,2p , En−2,n−1

p }

function ADJS (Fp, Ep,G , v))

A← ∅

if v ∈ Ep then e′i,i+1 ← v ⊲ v is an intersected edge

for all e ∈ Lee(e
′i,i+1) do

if e ∈ Ei,i+1
p thenA.add(ei,i+1) ⊲ Case I eg. e

0,1
0 → e

0,1
1

end if

end for

for all f ∈ Lef (e
′i,i+1) do

if f ∈ Fi
p thenA.add(fi) ⊲ Case II eg. e

0,1
0 → f0

0

else if f ∈ Fi+1
p thenA.add(fi+1) ⊲ Case III eg. e

0,1
7 → f1

0

end if

end for

elsef ′i ← v ⊲ v is a punctured face

for all e ∈ Lef (f
′i) do

if e ∈ Ei,i+1
p thenA.add(ei,i+1) ⊲ Case II eg. f1

0 → e
1,2
0

else if e ∈ Ei−1,i
p thenA.add(ei,i−1) ⊲ Case III eg. f1

0 → e
0,1
7

end if

end for

for all f ∈ Lff (f
′i) do

if f ∈ Fi−1
p thenA.add(fi−1) ⊲ Case IV eg. f2

3 → f1
3

else if f ∈ Fi
p thenA.add(fi) ⊲ Case V eg. f2

3 → f2
4

else if f ∈ Fi+1
p thenA.add(fi+1) ⊲ Case IV eg. f2

3 → f3
2

end if

end for

end if

returnA

end function

points belong to the same vortex line. In rare cases (40 out of 9.7 mil-
lion cells in Unstable BX dataset for all frames), a cell has multiple
pairs of single-punctured faces (Fig. 10). Physically this corresponds
to two vortices in close proximity, but we cannot distinguish the two
vortices from the data. We treat them with the same vortex graph in
the algorithm instead.

Vortex lines are constructed by connecting the puncture points, or
nodes, in the graph. The order of traced nodes follows the chiral di-
rection of the vortex, following links that connect “ins” (negative dot
products) to “outs” (positive dot products). When a cell has more than
two puncture points, the traced path from a node can have more than
one link to follow. We break the vortex line into multiple lines at this
node, but we group all the lines associated with the multiple puncture
points of the cell as belonging to the same vortex ID.

4.4 Vortex tracking

Vortex tracking is based on the construction of vortex sheets over

time. Formally, a vortex sheet S
i0;i1
k is a connected component in

the graph Si0;i1({∪i1
i0
F i

p,∪
i1−1
i0

Ei
p}, {Lee,Lef ,Lff}). The nodes in

this graph are punctured faces f i ∈ F i
p and intersected edges ei ∈ Ei

p

in the time period i0 ≤ i ≤ i1. Additional rules apply for the links in
this graph, which are detailed in Algorithm 2.

The pseudocode for the construction of a vortex sheet appears in
Algorithm 1 (right). The basic idea is to partition the elements in Fp

and Ep into a set of connected components and label them with dif-
ferent IDs for further processing. We do so by finding each connected
component in the graph Si0;i1 by BFS. The time complexity of vortex

sheet construction is O(
∑i1

i0
|F i

p|+
∑i1−1

i0
|Ei,i+1

p |).
The correctness of the vortex sheet construction algorithm is

founded on Lemma 3 and Lemma 4. Similar to a volume in R
3, a

space-time volume in R
2 × R will also have two punctured “faces.”

The faces in the prism can be faces in the two time frames, or the “vir-
tual faces,” that is, space-time edges. A 2nπ phase jump in a virtual
face means that the vortex line intersected the edge at an intermediate
time between two time frames.

Detecting punctured faces and intersected edges results in five
types of links in our graph model, corresponding to the five cases in
Fig. 7(b). If an intersected edge ei,i+1 has a link to another edge in
Ei,i+1
p , then a vortex line passes through the parent face of the both

V0
0

V1
0

V2
0

V0
2

V1
2

V0
3

V1
3

V0
6

V1
6

V0
1

V1
1

V2
1

V0
4

V1
4

V2
4

V0
5

V1
5

V2
5

V0
7

V1
7

V2
7

V0
8

V1
8

V2
8

V0
9

V1
9

V2
9

V0
10

V1
10

1 3

2

4 5 6

Fig. 11. Vortex graph and events: ➀ merging, ➁ splitting, ➂ birth, ➃

death, ➄ recombination/crossing, and ➅ compound.

edges without intersecting the face in either time frame (Case I). If an
intersected edge ei,i+1 connects to a punctured face, then the intersec-
tion of the vortex line has moved in or out of the face (Cases II and
III). If a face f i links to the same face in adjacent time frames (f i−1

or f i+1), then the intersection of the vortex line remains inside this
face (Case IV). Case V corresponds to the link between two faces in
the same time frame. These links are identical to those generated by
vortex extraction in Section 4.3 except that they are undirected.

The construction of a vortex sheet generates a simple interpreta-
tion of the continuity of a vortex line across time frames. If for each

i, (i0 ≤ i ≤ i1) there exists exactly one ki such that V i
ki

⊂ S
i0,i1
k ,

then the set of vortex graphs {V i
ki
} describes the same vortex line over

this time period. The tracked vortices are denoted as V(k) = {V (k)i},
where k is the unique ID of the vortex over time. Some event must
have occurred if these criteria are not met. Various types of events,
interpreted from changes in the topology of the vortex sheets, are ex-
plained in the following subsection.

In practice, instead of loading all time frames and generating the
sheet graphs S0;n−1 for all n, we need only to compute sheet graphs
Si,i+1 for adjacent time frames. Thus, our out-of-core implementation
requires only two adjacent time frames in memory.

4.5 Event Detection

The vortex tracking algorithm generates vortex sheets and labels the
vortex lines with unique IDs if a group of lines have no topological
changes over the time. Otherwise, an event must have occurred. We
describe here a graph-based event detection method to help scientists
understand the changing topology of vortex lines.

The event detection is based on the vortex event graph illustrated
in Fig. 11. Formally, the event graph is defined as Ge = ({V i

k},Le),
where the nodes are the vortex graphs in all time frames and the links,
connecting one vortex graph to another, Le are indirectly defined by
vortex sheets. Le(V

i
k , V

i+1
k′) exists if and only if for i0 ≤ i ≤ i1 − 1,

V i
k ⊂ S

i0,i1
k′′ and V i+1

k′ ⊂ S
i0,i1
k′′ . In other words, two vortex graphs in

adjacent time frames are connected if and only if both vortex graphs
are subsets of the same vortex sheet. To minimize the memory foot-
print, we use vortex sheets of only two adjacent time frames in our
implementation. Le is stored as a series of adjacency matrices for
each such time interval.

We define several basic types of events: birth, death, splitting,
merging, and recombining/crossing, as exemplified in Fig. 11. No-
tice that the term recombination could also be called bifurcation, yet
recombination is more frequently used in the study of superconduc-
tors [5]. If an event is none of the above five types, we call it a com-
pound event. A compound event occurs if multiple splitting and merg-
ing events are in the same time interval. Technically, we cannot recon-
struct the sequence of “subevents” in the compound event using the
graph-based definition. Reconstructing the subevents requires a finer
time discretization.

5 VISUALIZATION TOOL

A visualization tool is implemented for scientists to explore TDGL
datasets. The tool has two design goals: to enable users to see how
vortices are distributed in space and vary over time, and to investigate
how vortex dynamics (events) and energy dissipation (voltages) are
related. Hence, we designed the tool with two components (shown in
Fig. 1): the spatial view and the event view. The former provides the
interactive 3D visualization for vortices, and the latter visualizes the
events and voltages in a 2D view.

x

0 200 400 600 800

y

(a) (b)

Time

Fig. 12. 2D test data: (a) vortex cores of the first time frame (b) the
vortex tracking results. The lines are the trajectories of the vortices.

5.1 Spatial View

The spatial view provides a full set of functionalities for 3D interac-
tive visualization of both raw data and extracted vorticies. For the raw
TDGL data, the order parameter magnitude can be visualized with
volume rendering and isosurfaces, and the data slices can be rendered
with pseudo colors. Vortices and their trajectories are visualized with
tubes and surfaces, respectively. Arrows rendered on vortex lines in-
dicate the chirality of the vorticies. Vortex surfaces are constructed by
triangulating discrete points on vortex lines in adjacent frames. To-
gether with the event diagram described in the next section, the spatial
view can help scientists explore and discover key features in TDGL
simulation data.

5.2 Event View

A storyline presentation [32] of the vortex event graph is provided in
the event view, as shown in Fig. 1(d). Together with the line chart
showing the voltages, the visualization provides an overview of vortex
dynamics and their correlation with the energy dissipation. In the event
view, each colored line represents a tracked vortex. The length of the
line encodes the duration of the vortex. Short gray lines connect a
group of vortices if they are involved in an event. Zooming allows
users to browse details in a long time sequence.

The graph layout is based on the dot algorithm in the Graphviz li-
brary [11]. Rendering is based on Scalable Vector Graphics (SVG).
The event graph Ge = ({V i

k},Le) is transferred to dot and then
transformed into a layout. Graphviz ensures the minimum numbers
of crossings in the layout. Nodes in the same time frames are set to the
same rank in dot input in order to align the nodes to time frames.
To keep long vortices as straight as possible in the layout, we as-
sign higher weights to their corresponding links in the graph. Color
schemes are automatically generated in order to avoid ambiguities in
both the graph and 3D visualizations according to two constraints: (1)
vortices in the same time frame cannot have the same colors, and (2)
vortices involved in the same event cannot have the same colors. The
graph layout and the color schemes are transformed into the SVG for-
mat, which can be easily rendered in the event view.

6 RESULTS

We present three application cases of our algorithms. The specifica-
tions of the datasets and the performance are listed in Table 3. The
timings are tested on a workstation with a Intel Xeon E5620 CPU
(2.40 GHz) and 12 GB main memory. The implementation is C++.
The code simultaneously supports the analysis of both structured and
unstructured TDGL output data. The libMesh library [19] is used to
manage the mesh and data I/O for the Condor unstructured TDGL
simulation output. Because the same underlying finite-element frame-
work is used for both the simulation and analysis, our implementation
is compatible with future in situ parallel execution. The intermedi-
ate data products in the pipeline—mesh graphs, punctured faces, and
intersected edges—are serialized and stored in files for data reuse in
further analysis.

Table 3. Data specifications and the timings. nt is the number of time frames. nv , |E|, |F|, |C| are numbers of edges, faces and cells, respectively.
|Lee|, |Lef |, and |Lff | are the number of links in the mesh graph. |Fp| and |Ep| are the total numbers of punctured faces and intersected edges
in all time frames, respectively. Tpre, Tio, Tpe, Tpf , and Tg are the timings for preprocessing, I/O, punctured face detection, intersected edge
detection, and vortex/sheet graph construction, respectively. I/O takes longer for tslab data because of the extra overhead in libMesh.

Name Mesh Resolution nt Size nv |E| |F| |C| |Lee| |Lef | |Lff | |Fp| |Ep| Tpre Tio Tpf Tpe Tg

Test2D 2D Cartesian 1282 1K 128MB 16.4K 32.8K 16.4K 16.4K 98.4K 16.4K N/A 64.9K 5.6K N/A 1.5s 42.4s 53.6s 0.4s

Unstable BX 3D Cartesian 256× 128× 32 3K 24GB 1.0M 3.1M 3.1M 1.0M 18.6M 6.2M 15.5M 9.7M 0.6M N/A 24.1s 3.3hr 2.1hr 236.7s

tslab 3D Unstructred N/A 1K 40GB 0.5M 3.7M 6.3M 3.6M 9.5M 9.5M 18.9M 3.4M 0.2M 183s 1.9hr 1.9hr 1.1hr 10.9s

6.1 2D structured mesh data

A 2D structured mesh dataset, Test2D (Fig. 12), was generated with
the GLGPU simulation for testing the vortex tracking algorithm. 2D
vortices are points. In the simulation, the external current increases
over time; thus, the vortices are moving downward in an accelerating
manner. The data has periodic boundary conditions in both the x and
y direction. When a vortex crosses a periodic boundary, it reappears
on the opposite side of the box. In each time frame, 65 vortices are
detected, and no events occur over the time sequence. The rendering
results and the supplementary video show that each vortex is consis-
tently tracked over time.

6.2 3D structured mesh data

In Fig. 1 and the supplementary videos, we visualize the vortex dy-
namics of a superconductor in a periodic dissipative state created by
aligning the magnetic field and current in a superconductor with in-
clusions (dataset Unstable BX). From the event diagram and the
voltage chart, we observe a strong correlation between the occurrence
of events and the energy dissipation. The system oscillates between a
slowly evolving, nearly stable state and a rapidly rearranging, unstable
state.

Vortices are stretched in the direction of the magnetic field. At-
tracted to material inclusions, vortices bend to pin themselves on a
nearby inclusion. If the vortices were perfectly straight in the x-
direction, the external current applied along the x-axis would impose
no force on them. The bending of the vortices induces a slight Lorentz
force from the current, pushing the vortex along the y-axis. In frames
101 to 187, the bent part of each vortex slowly deforms in the y-
direction (see vortex surfaces of #5, #6, #7, and #10 in frames 101
to 187). At frame 187, vortices #0 and #3 swap parts to create two
new vortices #14 and #15 at frame 188. The motions before and after
this event occur extremely fast, as shown by the vortex surfaces.

In addition to the 3D visualization of vortices, scientists would also
like to see an overview of all events and investigate how these events
are related to voltage changes. From the event diagram, we can see
that the vortices rapidly topologically reconfigure after frame 230. At
frame 231, vortex #15 bends to the boundary and splits into two new
vortices #16 and #17, each attached to the boundary of the system.
The two ends of the vortex attached to the boundary are now pushed
helically around the system in opposite directions by the Lorentz force.
The two vortex ends travel along a cross-section of the system where
several inclusions are roughly aligned in the y-direction, and a series
of recombination events along this plane is observed in subsequent
frames. The two vortex ends meet and join again, and the system
relaxes back into a quiescent state after frame 330. The line chart
below the event diagram depicts the voltage spikes observed over the
cycle. The intense voltage spike occurs when the ends of the vortex
attach to the slab surface and are driven helically around the system.

6.3 3D unstructured mesh data

in Fig. 13 and the supplementary video, we show vortex extraction and
tracking for the tslab dataset generated from an unstructured mesh
consisting of 3.6M cells. The event diagram at the bottom of Fig. 13
begins shortly after the simulation is initialized, when the vortices are
still relaxing into a low-energy configuration, corresponding to many
events over the first 50 frames. The vortex surfaces shown in the upper
left of Fig. 13 correspond to a time period when no events occur. In the
upper right of Fig. 13, we show the vortices extracted at a particular
time step.

An event of particular interest to scientists is recombination, defined
by two vortices swapping parts. In the upper middle of Fig. 13, we
show in greater detail before and after the recombination event at time
frame 224. After the event, the lower and upper parts of vortex #39
become the lower and upper parts of #43 and #44, respectively, and
the upper and lower parts of vortex #40 become the upper and lower
parts of #43 and #44, respectively. The vortex surfaces on the left and
right side show how vortices deform before and after recombination.
To recombine, the vortices bend to a locally antiparallel configuration
that increases their attraction to each other. After the recombination,
the vortices, now parallel, rapidly repel each other.

7 DISCUSSION

Vortex extraction and tracking algorithms enable scientific exploration
and analysis of superconductor simulation data. Extraction of a vortex
allows precise interpretation of a vortex’s spatial features, regardless
of its proximity to another vortex or an inclusion. Tracking allows
each vortex to be identified over time and shows events that change
the topology of a vortex. Event diagrams provide a visual abstraction
of the events and facilitate interactive exploration. By visualizing the
events of the tracking algorithm, the user is provided a quick overview
of the entire time sequence. This allows subsequent investigation into
the relationship between vortex dynamics and macroscale measures
such as energy dissipation. Vortex tracking also enables precise char-
acterization and measurement of local vortex motions.

For a closed volume in R
3 (cells in our algorithms), if there are

one entrance point and one exit point, the two points belong to the
same vortex line unambiguously. Similarly, we observe how singu-
larity points move over time by calculating phase jumps over space-
time edges. Vortex graphs and vortex sheet graphs are constructed by
graph-based algorithms, and vortices are tracked over time and labeled
with global IDs. Events are detected if vortex lines have topological
changes over time.

In general, the robustness of the algorithms is limited only by the
resolution of the data. A space or time discretization that is too coarse
can generate various artifacts, and scientists would need to rerun the
simulation with finer discretization of the mesh in such cases. Since
phase changes can be correctly measured only if their magnitude is less
than π, if the mesh is too coarse, false positives or false negatives in
the punctured face and intersected edge detection will result. We also
require that no more than one vortex puncture each face. However,
if more than one vortex or vortex sheet punctures the same cell by
different faces (Fig. 10), we can handle the case by treating the vortices
as a compound object. Similarly, in event detection, if multiple events
occur involving the same set of vortices over a time increment, we
cannot reconstruct the subevents that create the compound event; but
we can identify the presence of a compound event. All the issues can
be resolved by increasing the data resolution. A puncture point exactly
intersecting a spatial edge of the mesh in a time frame, resulting in
zero, two, or three punctured faces instead of one, is a highly unlikely
occurrence that we have never observed.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a framework for vortex extraction and
tracking of both structured and unstructured complex-valued TDGL
simulation data. By checking singularities on mesh faces and space-
time edges, we have shown how to construct vortex graphs and vortex
sheet graphs that model the connectivities of singularity points in both
space and time at the finest scale the dataset supports. By applying

190

45
22

10

43
44

49

33

1 2

48

5

3

21

50

8

47

46
20

11
0

19
22

35 4
5
31

13
9

8
12

10

18
7

16
37

21
33

3

1
2

25

Time0 100 200 300 400

40 39 40 39 43 44 43 444343

(a) (b)

(d)

(c)

Fig. 13. Visualization results on the 3D unstructured mesh data: (a) vortex tracking results from frame 60 to 120; (b) vortex recombination event at
frame 224; (c) vortex extraction results on frame 500; (d) the event diagram. The arrows on the vortex lines indicate their chiralities.

various visualization techniques, we have demonstrated how we can
explore the analysis results and help scientists understand vortex dy-
namics and macroscale superconductor behaviors.

Future work will entail supporting in situ analysis and improv-
ing performance by exploiting the inherent parallelism in our algo-
rithm. Because both the Condor simulation and our code use the same
libMesh library, our framework can be integrated into TDGL simu-
lations for in situ analysis. Currently, the most time-consuming part
of the pipeline is detecting the punctured faces and intersected edges.
However, this part of the algorithm should parallelize easily. Addition-
ally, the vortex extraction and tracking framework may be extended to
more complicated meshes, for example, adaptive mesh refinement. In
event visualization, challenges remain to effectively visualize compli-
cated events for very long time sequences, which could be addressed
by new visual analysis technologies.

The framework developed here is applicable to any scientific appli-
cation investigating topological defects in complex scalar fields dis-
cretized over time and space. For example, the proposed methods
could be used for analyzing other complex-valued Ginzburg-Landau
simulations such as superfluidity, Bose-Einstein condensation, strings
in field theory, topological defects in liquid crystals, and complicated
nonlinear fluid dynamics.

A PROPERTIES OF VORTEX SETS AND DETECTION LEMMAS

In this appendix we discuss several fundamental properties of the
vortex sets of solutions ψ of Ginzburg-Landau equations (GL) on a
smooth compact domain D ⊂ R

3. These properties follow from the
behavior of the complex parameter ψ that can be derived from the gen-
eral theory of GL equations but whose proof is outside the scope of this
discussion. In particular, we assume that ψ is sufficiently smooth as a
simultaneous function of space and time and that for a nontrivial mag-
netic field at any given time ψ vanishes at most on subsets of D of
topological dimension 1, roughly speaking, on curves. By definition
vortices are precisely the branch curves for θ, where θ = Arg(ψ), and
the relevant techniques for reasoning about vortices are analogous to
analytic continuation of functions of complex variable. In particular,
the phase is single valued on any simply connected domain outside the
vortex set but multi-valued on any domain that links3 a subset of the
branch points of θ. This multivaluedness is equivalent to a nontrivial
increment of the phase along a closed contour γ linking the branch
point set: ∆θ =

∫
γ
∇θ · dx. These phase integrals are topological

invariants: their value does not change as long the underlying contour
is deformed without changing its linking relationship with the vortex

3SetA links setB if closed contours are lying inA that cannot be deformed

to a point without cutting B.

(i.e., branching) set. We summarize these properties as the following
lemma:

Lemma 1. Singularities (vortices) of the order parameter ψ are the
branching curves of its phase θ = Arg(ψ). These curves either are
closed or terminate on the boundary of D.

Because vortices are extended lines that do not terminate in the in-
terior of D, they must “puncture” any generic (i.e., up to an arbitrarily
small perturbation of the mesh), smooth compact surface an even num-
ber of times: if the line “enters,” it must “exit” the surface. That is, if
we assume that a compact smooth surface S bounding an open set in-
tersects the vortex line transversely (i.e., not tangentially) away from
a branch point, we can state the following vortex conservation law,
where the puncture points are signed by the chirality (direction) of the
vortex curve:

Lemma 2. The sum of signed puncture points on a generic S is zero.

Because ψ is sufficiently smooth as a function of both space and
time, the space-time branching curve C ⊂ R

2 ×R in 3D space-time is
precisely the set of spatial branch points parameterized by time. That
is, each time slice C∩R

2×{t0} is the set of branch points of ψ at time
t0. Similarly, the space-time branch surface S ⊂ R

3×R in 4D space-
time is composed exactly of the spatial branch curves at different
times. It immediately follows that the values of phase integrals along
contours in space-time do not depend on the contour orientation—
whether the contour is confined to a fixed time-slice t = t0 (horizon-
tal) or crosses time slices (has a vertical component); the integral value
depends only on the contour’s linking relationship with the branch set.
Therefore, we have the following lemmas.

Lemma 3. The line integral over a space-time face is 2πnwith n 6= 0,
iff there is a vortex line intersecting the corresponding spatial edge in
an intermediate time t0 ≤ t ≤ t1.

Lemma 4. The phase integral over any contour inside a space-time
face over a spatial edge vanishes iff at no intermediate time does a
puncture point cross the edge.

An illustration of how a moving vortex leads to Lemmas 3 and 4
as well as a longer discussion of the behavior of phase integrals and
branch sets is provided in the supplemental material.

ACKNOWLEDGMENTS

We thank Chunhui Liu for useful discussions. This material is based
upon work supported by the U.S. Department of Energy, Office of Sci-
ence, under contract number DE-AC02-06CH11357. This work is also
supported by the U.S. Department of Energy, Office of Advanced Sci-
entific Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program.

REFERENCES

[1] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large

data visualization. In C. D. Hansen and C. R. Johnson, editors, The Visu-

alization Handbook. Elsevier, 2005.

[2] D. C. Banks and B. A. Singer. Vortex tubes in turbulent flows: Identifi-

cation, representation, reconstruction. In Proc. IEEE Visualization ’94,

pages 132–139, 1994.

[3] D. C. Banks and B. A. Singer. A predictor-corrector technique for visu-

alizing unsteady flow. IEEE Trans. Vis. Comput. Graph., 1(2):151–163,

1995.

[4] D. Bauer and R. Peikert. Vortex tracking in scale-space. In VisSym’02:

Proc. Symp. Data Visualization, pages 233–240, 2002.

[5] M. Bou-Diab, M. J. W. Dodgson, and G. Blatter. Vortex collisions: Cross-

ing or recombination? Phys. Rev. Lett., 86(22):5132–5135, 2001.

[6] B. Cabral and L. C. Leedom. Imaging vector fields using line integral

convolution. In Proc. SIGGRAPH ’93, pages 263–270, 1993.

[7] X. H. Chao, B. Y. Zhu, A. V. Silhanek, and V. V. Moshchalkov. Current-

induced giant vortex and asymmetric vortex confinement in microstruc-

tured superconductors. Physics Review B, 80(054506):1–6, 2009.

[8] H. R. Childs, E. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller,

B. Whitlock, and N. Max. A contract based system for large data vi-

sualization. In Proc. IEEE Visualization ’05, pages 191–198, 2005.

[9] Q. Du. Numerical approximations of the Ginzburg-Landau models for

superconductivity. Journal of Mathematical Physics, 46(095109):1–22,

2005.

[10] R. Dndliker, I. Mrki, M. Salt, and A. Nesci. Measuring optical phase

singularities at subwavelength resolution. Journal of Optics A: Pure and

Applied Optics, 6(5):S189–S196, 2004.

[11] E. R. Gansner and S. C. North. An open graph visualization system and its

applications to software engineering. Software: Practice and Experience,

30(11):1203–1233, 2000.

[12] A. Glatz, H. L. L. Roberts, I. S. Aranson, and K. Levin. Nucleation

of spontaneous vortices in trapped Fermi gases undergoing a BCS-BEC

crossover. Physics Review B, 180501(84):1–4, 2011.

[13] H.-C. Hege, M. Koppitz, F. Marquardt, C. McDonald, and C. Mielack. Vi-

sual analysis of quantum physics data. In A. D. Bandrauk and M. Ivanov,

editors, Quantum Dynamic Imaging, pages 71–87. Springer, 2011.

[14] J. Jeong and F. Hussain. On the identification of a vortex. Journal of

Fluid Mechanics, 285:69–94, 1995.

[15] M. Jiang, R. Machiraju, and D. Thompson. A novel approach to vortex

core region detection. In VisSym’02: Proc. Symp. Data Visualization,

pages 217–225, 2002.

[16] M. Jiang, R. Machiraju, and D. Thompson. Detection and visualization

of vortices. In C. D. Hansen and C. R. Johnson, editors, The Visualization

Handbook. Elsevier, 2005.

[17] J. Kasten, J. Reininghaus, I. Hotz, and H.-C. Hege. Two-dimensional

time-dependent vortex regions based on the acceleration magnitude.

IEEE Trans. Vis. Comput. Graph., 17(12):2080–2087, 2011.

[18] S. Kim, C.-R. Hu, and M. J. Andrews. Steady-state and equilibrium vor-

tex configurations, transitions, and evolution in a mesoscopic supercon-

ducting cylinder. Physics Review B, 69(094521):1–18, 2004.

[19] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh:

A C++ library for parallel adaptive mesh refinement/coarsening simula-

tions. Engineering with Computers, 22(3–4):237–254, 2006.

[20] H. Obermaier, J. Mohring, E. Deines, M. Hering-Bertram, and H. Ha-

gen. On mesh-free valley surface extraction with application to low fre-

quency sound simulation. IEEE Trans. Vis. Comput. Graph., 18(2):270–

282, 2012.

[21] K. O’Holleran, F. Flossmann, M. R. Dennis, and M. J. Padgett. Methodol-

ogy for imaging the 3D structure of singularities in scalar and vector opti-

cal fields. Journal of Optics A: Pure and Applied Optics, 11(094020):1–7,

2009.

[22] M. Otto and H. Theisel. Vortex analysis in uncertain vector fields. Com-

put. Graph. Forum, 31(3):1035–1044, 2012.

[23] J. Pauschenwein and B. Thaller. Visualizing quantum-mechanical

wave functions in three dimensions with AVS. Computers in Physics,

10(6):558–566, 1996.

[24] R. Peikert and M. Roth. The “parallel vectors” operator - a vector field

visualization primitive. In Proc. of IEEE Visualization ’99, pages 263–

270, 1999.

[25] C. L. Phillips, T. Peterka, D. Karpeyev, and A. Glatz. Detecting vortices

in superconductors: Extracting one-dimensional topological singularities

from a discretized complex scalar field. Physics Review E, 91(023311):1–

12, 2015.

[26] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The

state of the art in flow visualisation: Feature extraction and tracking.

Comput. Graph. Forum, 22(4):1–17, 2003.

[27] M. Roth and R. Peikert. Flow visualization for turbomachinery design.

In Proc. IEEE Visualization ’96, pages 381–384, 1996.

[28] I. A. Sadovskyy, A. E. Koshelev, C. L. Phillips, D. A. Karpeev, and

A. Glatz. Stable large-scale solver for Ginzburg-Landau equations for

superconductors. arXiv: 1409.8340 [cond-mat.supr-con], 2014.

[29] D. Silver and X. Wang. Tracking scalar features in unstructured datasets.

In Proc. IEEE Visualization ’98, pages 79–86, 1998.

[30] S. Stegmaier and T. Ertl. A graphics hardware-based vortex detection and

visualization system. In Proc. IEEE Visualization ’04, pages 195–202,

2004.

[31] D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector

fields. Technical Report AIAA-95-1715, American Institute of Aeronau-

tics and Astronautics, 1995.

[32] Y. Tanahashi and K. Ma. Design considerations for optimizing story-

line visualizations. IEEE Trans. Vis. Comput. Graph., 18(12):2679–2688,

2012.

[33] H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Ex-

traction of parallel vector surfaces in 3D time-dependent fields and ap-

plication to vortex core line tracking. In Proc. IEEE Visualization ’05,

page 80, 2005.

[34] H. Theisel and H.-P. Seidel. Feature flow fields. In VisSym’03: Proc.

Symp. Data Visualization, pages 141–148, 2003.

[35] X. Tricoche, G. Scheuermann, and H. Hagen. Tensor topology tracking:

A visualization method for time-dependent 2D symmetric tensor fields.

Comput. Graph. Forum, 20(3):461–470, 2001.

[36] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen. Topology

tracking for the visualization of time-dependent two-dimensional flows.

Computers & Graphics, 26(2):249–257, 2002.

[37] B. Wang, P. Rosen, P. Skraba, H. Bhatia, and V. Pascucci. Visualizing

robustness of critical points for 2D time-varying vector fields. Comput.

Graph. Forum, 32(3):221–230, 2013.

[38] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege. Cores of swirling

particle motion in unsteady flows. IEEE Trans. Vis. Comput. Graph.,

13(6):1759–1766, 2007.

[39] N. J. Zabusky, O. N. Boratav, R. B. Pelz, M. Gao, D. Silver, and S. P.

Cooper. Emergence of coherent patterns of vortex stretching during re-

connection: A scattering paradigm. Phys. Rev. Lett., 67(18):2469–2472,

1991.

	Introduction
	Related Work
	Complex-valued scalar field visualization
	Vortex visualization in fluid flow

	TDGL Superconductor Simulation Data
	Graph-Based Vortex Extraction and Tracking
	Mesh graph construction
	Punctured faces and intersected space-time edges detection
	Vortex extraction
	Vortex tracking
	Event Detection

	Visualization Tool
	Spatial View
	Event View

	Results
	2D structured mesh data
	3D structured mesh data
	3D unstructured mesh data

	Discussion
	Conclusions and Future Work
	Properties of vortex sets and detection lemmas

