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Figure 1: Volume visualization of multivariate data (Hurricane Isabel) with our proposed interface of transfer function design. (a) Multidimensional
scaling plots are embedded in the parallel coordinates to facilitate feature selection without context switching. (b) Corresponding rendering result

with the TF specified in (a).

ABSTRACT

In this paper, we present an effective transfer function (TF) design
for multivariate volume, providing tightly coupled views of paral-
lel coordinates plot (PCP), MDS-based dimension projection plots,
and volume rendered image space. In our design, the PCP show-
ing the data distribution of each variate dimension and the MDS
showing reduced dimensional features are integrated seamlessly to
provide flexible feature classification for the user without context
switching between different data presentations. Our proposed inter-
face enables users to identify interested clusters and assign optical
properties with lassos, magic wand and other tools. Furthermore,
sketching directly on the volume rendered images has been imple-
mented to probe and edit features. To achieve interactivity, octree
partitioning with Gaussian Mixture Model (GMM), and other data
reduction techniques are applied. Our experiments show that the
proposed method is effective for multidimensional TF design and
data exploration.

Keywords: Multivariate volume rendering, transfer function, par-
allel coordinates, dimension projection, user interface design.

Index Terms: [.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms 1.4.10 [Image Processing and
Computer Vision]: Image Representation—Multidimensional
H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Graphical user interfaces (GUI)

1 INTRODUCTION

Transfer function (TF), which maps voxel values to colors and
opacities, is the key to obtain informative and insightful visualiza-
tion of volumetric data. Starting from the beginning of volume vi-
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sualization, the community has contributed numerous works on TF
design. With recent advances in methods, multidimensional TF de-
sign is more and more important. For scalar volumetric data, e.g.
CT scan, adding derivative dimensions into TF design can enhance
the classification results [18]. Features of interest can be selected
by various widgets in 1D, 2D or even 3D feature space by trial-and-
error [17, 18].

Multidimensional TFs are also necessary for multivariate volume
data. From meteorological simulations to fMRI medical scans, do-
main experts need to take consideration of multiple dimensions and
modalities. TFs of such multivariate volume data demand the power
to explore correlation and identify features in high dimensional data
space. However, the corresponding feature space is inaccessible to
users without effective high dimensional feature space exploration
tools.

For discrete multidimensional data, there are many well stud-
ied visualization and interactive exploration techniques in the do-
main of information visualization, including parallel coordinates
plots (PCP), dimension embedding and reduction, and others.
PCP [13, 14] transforms points from high dimensional space to 2D
space in the form of polylines, keeping the information on each
individual dimension, while simultaneously visualizing the corre-
lations between the neighborhood axes. Dimension projection and
reduction algorithms directly map high dimensional points into 2D.
Among the dimension reduction techniques, Multi-Dimensional
Scaling (MDS) [35], which keeps the distance metric of the high
dimensional space, is widely applied for cluster identification and
selection.

Many multidimensional TF designs have utilized traditional vi-
sualization methods, especially PCP [1, 2, 4, 39] and dimension
projection [28, 9]. However, the direct extensions have limitations
and drawbacks on TF design. For example, when PCP is used as
TF design interface, users have to repeatedly adjust parameters on
each dimension axis on the PCP alone. Additionally, some compli-
cated features are not clear enough to be observed on the PCP. It
seems to be easier to define a feature on the MDS plot according to



the local density of point clouds. However, it is hard to tell physical
meanings from the clusters in a MDS plot, due to the information
loss during the dimension embedding.

Inspired by SPPC (Scattering points into parallel coordi-
nates) [36], which smoothly embeds MDS plots into PCP for multi-
dimensional data visualization, we present a new multidimensional
TF design leveraging the combined power of PCP and MDS. The
proposed design flexibly integrates multiple interactive exploration
space, including tone-mapped continuous PCP, weights-adjustable
MDS plots, volume rendering view with sketch feedback, and more.
TFs can be defined and modified in different views by various inter-
actions, and all changes are reflected in other linked views. Com-
pared with previous work, there are some significant differences.
Zhao and Kaufman [39] utilized PCP for TF design, and show the
classification result on the LLE projection plot in the same time.
In our framework, we further closely integrate the linked view the
PCP and MDS.

In our framework, we achieve high performance on multidimen-
sional visualization for PCP, by exploiting various techniques. For
example, octree decomposition, which reduces the data scale for
real-time interaction and computation on the PCP and the MDS.
Meanwhile, continuous PCP [11], which is superior to discrete PCP
when dealing with volume data, can be generated very fast by lever-
aging octree representation of the volume data.

The contributions of this paper are two-fold. First, we present an
efficient multidimensional TF design with tightly linked views of
continuous PCP, metric adjustable MDS plots, and volume render-
ing view with feedback. Second, the adaptive rendering of hybrid
continuous PCP and discrete MDS method is proposed.

The remainder of this paper is organized as follows. We sum-
marize related works in Section 2, and the overview of the system
in Section 3. Then we describe detailed algorithms in Section 4.
Sample usage of the tool and the corresponding results are shown
in Section 5. Conclusions are drawn in Section 6.

2 RELATED WORKS

Multi-dimensional TF design has become increasingly im-
portant in various applications [25]. For multi-modal volume data,
one single meaningful rendering result can be obtained by multi-
dimensional TF, instead of navigating the results of all the dimen-
sions. A number of approaches have been proposed for better clas-
sification results by bringing derivative dimensions for TF design.
For example, gradient magnitude can enhance the boundary infor-
mation [20]. Similarly, curvatures [16], relative size [6], and ambi-
ent occlusion [7] can also be exploited to visualize more specific
features. Statistical properties can also be extracted as new di-
mensions for TF design [24, 10]. By exploiting multi-dimensional
classifications to combine derivative dimensions, insightful volume
rendering results can be generated.

However, it is non-trivial to design multi-dimensional TFs with-
out effective user interfaces. Some widgets are designed for
1D, 2D or 3D TFs under the guidance of histograms in feature
space[17, 18]. For even higher dimensionality, the community has
developed many alternative methods, including cluster space-based
design, machine learning based algorithms, projection space-based
methods and PCP-based user interfaces.

Cluster space-based TF design interface [31] enables users to
work in cluster space, rather than in the TF space. Tzeng and
Ma [31] utilized ISODATA clustering to classify the feature space.
Furthermore, automatic TF design based on hierarchical cluster-
ing was proposed [27]. The cluster space-based method makes it
convenient to design multidimensional TFs, but their performance
relies heavily on the results of clustering, which involve very lim-
ited user participation. In addition to cluster space-based methods,
machine learning is considered as an important technique for TF
design [21]. Artificial Neural Networks (ANN) and Support Vector

Machine (SVM) algorithms are applied to the TF design for multi-
modal volume data sets [29, 30]. Sketches on volume slices act
as the sample input of the learning algorithms, and the output of
the algorithm is the complicated fitting of multidimensional feature
space. Although machine learning based methods are effective and
straightforward, it is difficult to tell the physical meaning of the
visualization results.

Dimension reduction and projection provide a similarity-
based layout for the data. The distance in high-dimensional space
is embedded into a lower-dimensional space. Utilizing dimension
reduction and projection for TF design has been investigated in pre-
vious works [28, 9, 39]. The results of the projection in the form
of point clouds are much easier to comprehend and select. The lo-
cal clustering of the point clouds are likely to represent the features
in the volume data. Various projection and dimension reduction
methods have been exploited to facilitate multidimensional TF de-
sign, including ICA [28], PCA [26], SOM [9], LLE [39] etc. In our
work, Pivot MDS is employed, which is very fast and stable, and it
is suitable for interactive exploration.

Parallel Coordinates is widely used to visualize multivariate
discrete data [13, 14], and some extensions on assisting TF design
were proposed in recent years [1, 2, 4, 39]. In previous works,
TFs are defined on the dimension axes by assigning numerical
ranges [1, 4]. PCP are also used for feature selection in particle
simulations [15], which is a similar process to TF design. Works
by Zhao and Kaufman [39] utilized PCP for TF design, meanwhile
showing the transferred voxel points on the dimension reduction
plot. In our design, users can also pick up features on the projection
plot, and reflect the TFs on the PCP, providing multiple linked ex-
plorative spaces for TF design. The simple integration of PCP and
MDS plots has been applied to colormap design of multi-modal re-
mote sensing images [38]. However, due to the inherent complexity
and the huge amount of voxel data, improvements in several aspects
are required before an extension to the TF design.

3 OVERVIEW
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Figure 2: Algorithm overview of the proposed TF design system for
multivariate volume data sets. A multivariate volumetric data set is
first preprocessed with level-of-detail representation before rendered
in the PCP and MDS plots. Users interact with the plots and classify
features of the volume data. TFs then can be constructed based on
the user clustering results. Further interaction can also be performed
on the rendered images, and fed back to the TF design.

The main design philosophy we employ in this system is to pro-
vide multiple flexible explorative spaces to assist users to perform
classification, while reducing context switching as much as possible



during the operation. Specifically, the proposed system facilitates
effective user interaction by providing closely integrated PCP and
MBDS plots for feature space exploration. Direct feedback from in-
teracting with rendered volume images further enables insightful
data investigation during the TF design.

The algorithm pipeline of our system is illustrated in Fig. 2. Af-
ter the pre-processing of the input multivariate volumetric data sets,
level-of-detail representation of the volumes is rendered as the con-
tinuous PCP with dimension projection plots. Based on the user
classified features (clusters), TFs are automatically reconstructed.
Meanwhile the classification results are also updated in all linked
views.

3.1 Transfer Function Widget

The TF widget (Fig. 1 (a)) is composed of a TF layer (in color) and
a PCP / MDS layer. In the top layer, the TFs are presented with
ribbon metaphors in an illustrative manner [23], which is spatially
more compact and informative. The illustrative PCP is also ex-
tended to the MDS plots, by linking the central points. Each ribbon
represents one component of the TF. Its center and range is encoded
by the position and the ribbon width. Users can adjust the ribbon
centers by dragging the corresponding control points, and tune the
width on each dimension directly. PCP and MDS plots are linked.
Operations on TFs in any view are reflected on other plots in real
time.

The bottom layer is the PCP embedded with MDS plots. Both
PCP and MDS plots provide data clustering and data distribution
information. Multiple MDS plots with different dimension weights
can be embedded between neighboring axes of the PCP, or on the
side of the PCP, visually linked by the curve bonds (Fig. 3). The
clusters can be visually traced between the MDS plots and the PCP,
without significant context switching.

(b)

Figure 3: Smooth linkages between the continuous PCP and the
MDS plots: (a) the linkage of the whole domain; (b) the local shape
of the linkage when a small set of samples is shown.

Various user interactions have been enabled in our TF widget.
On the PCP, traditional brushing such as axis brushing and angular
brushing are supported. Axis brushing helps select a certain range
on one dimension, and angular brushing is suitable for filtering fea-
tures with high correlations shown on the PCP by selecting line
segments with similar slopes between two neighboring axes. In the
MBDS plot, features can be selected either by the lasso tool or by
the magic wand tool, which picks up similar neighborhood features
from the given point.

3.2 Volume Rendering View

In addition to the operations of the TF widget, direct sketching in-
teractions are implemented on the volume rendering view (Fig. 4).
Users can pick the query tool from the pie menu, and then sketch
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Figure 4: User interactions on direct volume rendering view. The
green colored TF component is highlighted after a sketch on the ren-
dering view.

on the desired region of the rendered volume image. The corre-
sponding TF component then selected and highlighted on the TF
widget. The removal tool helps to quickly drop the component that
is sketched on. The sketch interaction in our system can give instant
feedbacks when reviewing the rendered results. Algorithm details
are described in the next section.

4 ALGORITHM DETAILS

In this section, we explain the key parts of the algorithms that sus-
tain our interactive TF design, including the generation of PCP and
MDS, the TF construction, and the feature selection on multiple
coupled views.

4.1 Adaptive Continuous Parallel Coordinates

Traditional PCP maps discrete multi-variate data points as polylines
intersecting parallel axes. However, for volumetric data which are
defined over a continuous domain, we may not obtain correct or
effective visualization if inappropriate sampling strategies are ap-
plied. The continuous PCP [11], which generates a dense presen-
tation of PCP, is suitable as a representation for volumetric data. It
gives users better insight into the multivariate volumetric data by
filling the blank regions in the discrete scatterplot. However, there
is no direct correspondence between the density map and the origi-
nal discretely stored data when users brush regions on the continu-
ous PCP. Other linked components in our framework, especially the
MBDS plots, still need discrete representation of the volume data. To
solve this problem, an hybrid strategy based on octree is applied to
generate continuous PCP, making it practical for operations in both
continuous and discrete spaces.

The adaptive hierarchical PCP rendering strategy is similar to the
adaptive continuous scatterplot rendering method [3]. The PCP is
generated by accumulating the height map from quadrilateral strip
primitives, and the rendering error is controllable. At the same time,
the hierarchical structure largely reduces the input data amount by
merging isotropic regions in the data set, which makes interactive
exploration pissible. The sample points are also used for the gen-
eration of MDS plots (Section 4.2), as well as for TF construction
(Section 4.5).

4.1.1 Hierarchical Data Partition and Adaptive Rendering of
the Continuous PCP

In our system, we utilize octree to partition the raw data. In each
octree leaf, the numerical properties can be seen as identical. When
users want to pay attention to the overall distributions only, fast vi-
sualization results with less details can be provided. When explor-
ing detailed features, more detailed sampling points can be added



on demand. Hierarchical data sampling strategies provides flexi-
bility and interactivity during data exploration with a controllable
error level.

There are two steps to generate the adaptive continuous PCP.
First, the octree leafs are filtered out according to the given er-
ror threshold during the traversal. Second, the filtered octree leafs
are splatted and then accumulated onto a 2D plane as quadrilateral
strips. The intensity of the quadrilaterals is decided by the vol-
ume of the corresponding octree leafs. The rendering error of the
method is controlled by choosing different thresholds (Fig. 5). If
the whole data is partitioned small enough, we can roughly expect
that the result closely approaches to the accurate continuous PCPs.
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Figure 5: The comparisons of the adaptive PCP rendering at different
error level: (a) 5%, (c) 10%, (e) 15%. The error images of (c) to (a),
(e) to (a) are shown in (d) and (f) respectively, with pseudo colormap

(b).

4.1.2 Tone-Mapping of the PCP

The accumulation result of the continuous PCP is a height map,
with float precisions and very high dynamic ranges. If we em-
ploy a naive linear mapping to quantify the height map to 256 lu-
minance levels for display on a scrren, many subtle yet important
features will lost in the final image. Similar situations often occur
in high dynamic range visualization applications [37]. To main-
tain and enhance the feature presentation on the PCP, a non-linear
tone-mapping operator (TMO) is applied on the PCP height map.
Because the range of the accumulated continuous PCP is always in
[0,1], we do not need to normalize the image before tone-mapping.
The logarithmic transform that we utilize can be written as:

1,:1_ln((l—e*‘)‘)l—kefa‘)7 )
-

Where I’ is the tone-mapped intensity, and I is the original in-
tensity. Users can interactively change the parameter & to achieve
different visual effects by scrolling the mouse wheel. The compar-
isons of linear and logarithmic tone-mapping are shown in Fig. 6.
In Fig. 6 (c), the data distribution on the lower half of the leftest
dimension is clearly visible, while such a cluster would be totally
invisible if linear mapping was applied, as shown in Fig. 6 (b). All
steps for adaptive rendering of continuous PCP are done with GPU
acceleration, including the accumulation and the tone-mapping.

4.2 The MDS plots

As we discussed in previous sections, the MDS plots facilitate fea-
ture identification and feature selection based on the local den-
sity of the point clouds. Furthermore, the distance metrics of the
MDS plots are adjustable. It enables the domain experts to define

()

Figure 6: Result comparisons with linear and logarithmic tone-
mapping: (a) pseudo color and the colormap on [0, 1]; (b) linear; (c)
logarithmic.
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the different importance factors of the dimensions, supporting sub-
dimensional space classification.

4.2.1 Pivot MDS Projection

An MDS algorithm with low storage and low computational com-
plexity called Pivot MDS [5] is utilized in our system. The method
of Pivot MDS is suitable for data sets with large amount of homo-
geneous items. We use the median values of each octree leaf as the
sample points for the projection. The Pivot MDS algorithm can be
summarized as follows:

e Randomly pick k& pivot item from input data set;

o Construct a double-centered dissimilarity matrix C(c;;) be-
tween pivot items and all input items, whose elements are de-
fined as

cij=—0.5(8%— Z

25,§+—Z): 2)

r*ls

e Calculate the eigenvalues and eigenvectors of the matrix CT C

e Pick up the largest d eigenvectors {v}, the low dimension em-
bedding is achieved by

xi=Cvi,ic{0, 1,2, ..., d} 3)

where k is the number of pivot points, and 7 is the total number of
data points. §;; stands for the dissimilarity of the ith item of input
data with the jth pivot item.

4.2.2 Rotation Correction for MDS Plots

Due to the numerical instability and random factors in Pivot MDS,
a rotation correction algorithm must be applied to ensure frame co-
herence during the tuning of the dimension weights. There are two
steps in the algorithm. First, the same set of the pivots is used when-
ever the MDS plot updates, in order to avoid random factors related
to the first step of the Pivot MDS algorithm. Secondly, a rigid trans-
formation is applied to every new result, in order to minimize the
rotations between the new result and the former one. We follow
the least-squares registration algorithm [32]. More specifically, we
search for the zoom factor ¢, rotation matrix R and translation vec-
tor t that satisfy following condition:

n
argminE = Y ||pj — (cRp; +t)| |, )

i=0

where {p}} and {p;} are the newly generated and the original
point cloud. Notice that we must use rigid transformation instead
of affine transformation, because non-rigid transformation cannot
keep the relative distances of the projected points. After finding the
parameters by optimization, the transformed points {p/ } are:
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Fig. 7 shows an example in which MDS plot in (b) and (c) flipped
randomly when the weights of one dimension varied from 30% to
35% and 40% respectively. Whe we apply our rotation correction
algorithm, the MDS plots are stable as shown in Fig. 7 (d) and (e).
The whole process, including the MDS and rotation correction, can
reach an interactive speed (Table 1).
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Figure 7: Rotation correction for the Pivot MDS results. The weight-
ings modify the distance metric of the MDS, thus adjusting the MDS
layout. The weighting of dimension “Temperature” is set to 30% in
(a), and then it rises to 35% in (b) and (d), 40% in (c) and (e). MDS
layout is flipped randomly with traditional methods as shown in (b)
and (c). Sequence (a), (d), (e) keeps coherence with our rotation
correction algorithm.

4.3 Embedding MDS Plots into PCP

SPPC [36] is adopted in our system, in order to keep visual con-
tinuity and avoid context jumps. We substitute the spline curves
from SPPC with the quadrilateral strips. In this way, the accumu-
lated intensity of the spline strips keeps coherence to the strips from
the PCP, so the data can be tracked continuously from axis to axis.
On PCP axes, the width of the spline strip of each octree leaf is
set to be the range on the specific dimension, as described in Sec-
tion 4.1.1. On the MDS plot, the strip length passing through the
corresponding point is set to zero. Cubic splines connect the upper
and lower boundaries on the axis to the projected point on the MDS
plots. Several cases of smooth linkages are enumerated in Figure 3.
Notice that the MDS plots can also be embedded on the side of
the PCP, which is better for occlusion reduction, but not intuitive
to present correlations. Users can freely decide and combine the
components.

The embedding of MDS plots into the PCP brings multiple ben-
efits. First, the combination provides strong visual hints of data
clusters [36, 12]. Furthermore, the tool supports coordinated selec-
tion between the PCP and the MDS plots without the cost of context
switching.

4.4 Feature Selection on the Linked Views

Our proposed framework provides several linked spaces for explo-
ration, including the PCP, the MDS plots, and the volume rendering
view. Each component has a distinctive way for feature selection.
The interactions on the PCP is similar to previous work, e.g. axis
brushing and angular brushing, so we mainly introduce here the
details for the MDS plot and the volume rendering view.

4.4.1 Interactions on MDS Plots

As we mentioned in Section 3, there are two interaction methods
available on the MDS plots, including the lasso and the magic wand
tool. The lasso tool picks up the sample points inside the specified
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Figure 8: Two methods of user selection on projection plot: (a) the
lasso tool, circling a group of points explicitly; (b) the magic wand tool,
clicking on a seed position, and the selection is made by automatic
diffusion based on the point cloud distribution as the corresponding
height map shown in (c).

polygon. The magic wand tool automatically selects the neighbor-
hood samples from a given seed point according to the local distri-
bution as illustrated in Fig. 8.

The computation of the magic wand selection is made up of two
phases, including the height map construction and the diffusion pro-
cess. The height map is essentially the construction of the feature
space [22], which can be generated by GMM fitting or point splat-
ting. A example result for height map construction is shown in
Figure 8(c). For the diffusion process, we first find the nearest data
point from the user defined position as the diffusion seed, and then
utilize a BFS (breadth-first search) process that spreads the selec-
tion from the seed point to the final selection set by searching the
neighborhoods. At every single step, the algorithm gives a fuzzy
weighting depending on the similarity value with the seed point.

4.4.2 Interactions on Volume Rendering View

One of the key issues of direct operations on the rendering view is
the intelligent speculation of user intention. In our design, users
can only pick up what they see from the results, which aims to find
out the closest Gaussian blob from the TF set. A ray can be traced
from a certain sketch point, and we can calculate the visibility of
each sample point along the ray. The visibility at position X can be
written as [8]:

V(x) = (1 -a(s(x)))0(x), ©)

where s(x) is the multidimensional sample at point X, and ¢ is
the opacity TF. O(x) is the occlusion value at x. We assume that
the user intention is very likely to fall on the local maxima of the
visibility. We can also derive the ambiguity of the visibility local
maxima A;. Finally, the Gaussian blob selection i is decided by
searching for the optimized value of A;V;. In order to accelerate the
ray traversal, the octree traversal along the ray is implemented.

4.5 Transfer Function Construction

The construction process converts user selected features and as-
signed colors and opacities into TFs. The major algorithm for the
construction in our system is the GMM, which approximates the
input features. A series of Ellipsoid Gaussian TFs [19, 33] are gen-
erated as the construction results.

Suppose that the numerical distribution in every octree leaf is
Gaussian. Ideally, we can then directly use the Gaussian blobs from
selected leafs as TFs. However, due to limited computational capa-
bility, the sum of huge numbers of Gaussian function values for
each sample point cannot be evaluated in real-time. We are able to
find more efficient fittings for the user desired feature space with
a relatively small numbers of mixtures, since many of the leafs se-
lected will have very similar numerical distributions. We employ
the GMM (Gaussian Mixture Model) to fit the feature space:
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where G;, m;, w; are the estimated Gaussian distribution of oc-
tree leaf i, the volume of the leaf, and the fuzzy selection coeffi-
cient, with the range of [0,1]. The left term of the equation is the
Gaussian mixture, where m is the number of Gaussian blobs, and
Uy is the weighting for the Gassian blob G;. The standard Expec-
tation Maximization (EM) algorithm determines the parameters of
the GMM model through iterations. The Gaussian mixtures can be
transformed to Gaussian TF [19] by multiplying the opacity value
Onax:
m
GTF (V) = Oax ¥, kG (¥), 8)
k=0

where v is the input data vector, and f, is the maximum opacity
value for scaling each Gaussian bolb, which is obtained in Eq. 7.
The final color C and the opacity o values are:

Y o;C;
C= Z;i’,a:Zai,ai:amui ©)
where C; and ¢; are the color and opacity of each Gaussian com-
ponent. Gaussian TFs are applied on-the-fly to each sample point
in the standard GPU volume raycasting process.

5 CASE STUDY AND ANALYSIS

In this section, we demonstrate the effectiveness of our multidimen-
sional TF interface design through applications to several represen-
tative data sets as listed in Table 1.

Data Set Size D ‘ Tpre ‘ Leafs ‘ Toroj ‘ T. ‘ T,
(s) (ms) (ms) (ms)
Isabel 500x500x 100 5 224.0 | 55273 150 725.0 233
Multifield 300x124x124 12 90.6 40321 148 1045.5 833
Combustion | 480x720x120 4 311.6 | 87176 230 188.8 227

Table 1: Data descriptions and timings. D is the number of dimen-
sions in use; Tpre, Tproj, Te, T, are timings of pre-processing, projec-
tion, TF construction and frame update time respectively.

5.1 Atmospheric data set (Hurricane Isabel)

Temperature Speed QUAPOR QcLoun
100 002368 000332

T & & GO

Figure 9: Different MDS layouts of Isabel data embedded in the PCP.
The impact of each dimension is indicated by the small round widget
at the bottom of each layout.

We apply the proposed TF design to an atmospheric data set from
IEEE Visualization contest 2004 !. In our test, five dimensions are
considered including pressure, temperature, wind speed, the water
vapor mixing ratio (QVAPOR), and the cloud moisture mixing ratio
(QCLOUD). The PCP and the MDS plots give several perspectives
of overview of the data clusters, which are easy to be identified
and selected by domain users. The MDS layouts can be adjusted

Uhttp://vis.computer.org/vis2004contest

Figure 10: Atmospheric data visualization results with decomposed
TFs in Figure 1(a). Each color represent a specific feature cluster.

by changing the dimension weightings, in order to strengthen or
weaken the influences of the specific dimensions. Sub-dimensional
space can also be navigated by selecting a small set of dimensions.
Color and opacity properties of TF can be assigned to the desired
features or clusters by brushing, lasso or magic wand tools on the
TF widget. After further tuning the Gaussian blobs in the PCP view,
insightful results can be generated. One rendering result of the Is-
abel data with our TF design is shown in Fig. 1. The TF consists of
4 TF components. Rendering results of each individual component
are shown in Fig. 10. The red part of the result is the side region of
the hurricane eye, where the pressure is low, and the values of wind
speed and QCLOUD are medium; The outside feature with yellow
color has a much higher pressure value but lower wind speed than
the eye region. We can also see how different features are mixed.
Many other patterns can be recognized from the visualization re-
sults.

5.2 Turbulent Combustion Simulation

The second data set is from a turbulent combustion simulation [2]
(Fig. 11). The four dimensions utilized in our case are stoichio-
metric mixture fraction (mixfrac), hydroperoxy radical (hr), dissi-
pation rate (chi), and vorticity magnitude respectively. The mixfrac
dimension depicts the mixture condition of two gases in the com-
bustion process, and the hr gives hints of burning stage. By magic
wand selection on the MDS plots, we exclude meaningless sample
points of air and burned gas from the data, and generate a TF show-
ing different parts and stages of the combustion. After adjusting
the range of clusters on different axes in the PCP, the direct volume
rendered image clearly shows meaningful surfaces in the region of
interest.

5.3 Multifield 3D Scalar data

The multifield 3D scalar data set is from IEEE Visualization contest
2008 [34], which aims at understanding the ionization front insta-
bility. We construct a 12 dimensional TF, taking consideration of
particle density, gas temperature, speed, vorticity magnitude, and
mass abundance of various ions. The visualization results (Fig. 12)
bring out some insights into the data. The green ionization front
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Figure 11: Combustion simulation data (4 dimensions): (a) the vol-
ume rendering result; (b) the corresponding TF.

has medium mass abundance of He and He™, where users can con-
clude that there are some transformation process from He to He™.
This region has higher density, medium speed and vorticities. In the
central area of the green region, there is a purple structure, where
a much more intense process is happening. Scientists can conve-
niently define more insightful features using our TF design inter-
face.

(®)

Figure 12: Multifield Data: (a) the volume rendering result; (b) the
corresponding TF.

5.4 Discussions

We tested our method on three different multivariate data sets, in-
cluding an atmospheric simulation, a combustion simulation and
multifield scalar data. From the above results, we can see that our
method is very flexible for multidimensional TF design. The data
distribution is well presented in the TF view in multiple ways with
insightful meanings. The Data distribution on each individual di-
mension can be tracked between the MDS plots and the PCP with-
out significant context switching. The proposed method is very suit-
able for higher dimensionalities, which is shown in Section 5.3. If
we use a traditional PCP-based TF design tool only, it is very hard
to define meaningful features by adjusting ranges on each individ-
ual dimension axis. By embedding the MDS plots into the PCP,
meaningful clusters can be quickly identified and highlighted only
by a few steps of operations.

5.5 Implementation and Performance

The TF design system is tested on a Dell T3400 workstation, with
a 2.66MHz CPU, 4GB Memory, and an Nvidia GTX 470 graph-
ics card with 1280MB video memory. The system is implemented
with OpenGL and the Cg shading language. The parameters of the
Gaussian TFs are transferred to the shader programs in the form of
textures. In the raycasting process, the values of Gaussian func-
tions can be looked up from a pre-computed 1D texture, which is
about 4 times faster than the on-the-fly evaluation of the exponen-
tial function. Now that the Pivot MDS and the TF construction
are performed on CPU, we believe that performance will be further
boosted by exploiting GPU acceleration for more sophisticated data
in the future. The timings for the algorithms and the rendering are
shown in Table 1. The raycasting step size used in the timing is 1
voxel. All the rendered image sizes are 640x480, and all the timings
are tested with 4 Gaussian blobs. Although the pre-processing takes
relatively longer time, it only requires running once. The run-time
performance of the system is fast for user interactions.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we present a novel user interface for multi-
dimensional TF design, which integrates multiple data exploratory
methods, including the PCP embedded with MDS plots, and the
volume rendering view. The proposed method takes advantage of
both PCP and MDS plots by providing numerical correlation and
cluster layout simultaneously. Besides the high performance of
the TF generation algorithms and other convenient user interaction
techniques, domain experts can quickly make feature selections on
any of the components, in order to generate insightful visualiza-
tion results by undertaking only a few steps, meanwhile becoming
aware of the distribution information about the data.

There are a few limitations in our work. First, a hybrid strategy
of continuous and discrete data processing is applied, instead of a
real continuous method. Continuous dimension projection is proba-
bly a future improvement, which would allow the data presentation
to be continuous. Second, our tool relies on manual selection on
features. More automatic feature detection techniques can be inte-
grated into the systems to generate meaningful results for the users.
Third, the illustrative presentation of Gaussian TFs cannot convey
the covariance of Gaussian blobs on the PCP.

A few applications and extensions for this work can be devel-
oped in the future. First, our system has the potential capabilities
on large scale time-variant data sets. Parallelism can largely boost
the efficiency and scalability of our algorithm for larger and more
complicated data in practice domain applications, by leveraging su-
per computing and parallel IO techniques. For time-varying data,
insightful results could be generated by exploiting some feature
tracking and interpolation algorithms. The TF construction can uti-
lize other base functions instead of the Gaussian TF. There are also
many substitution data partition and reduction strategies other than



octree. We also believe that some effective projection algorithms
can be integrated into our framework for specific data sets, e.g. LLE
or SOM, depending on the data features. Exploiting different dis-
tance metrics e.g. L!-norm for dimension embedding could also be
taken advantage of to reveal more meaningful features.
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