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Abstract—In this paper, we present an effective and scalable system for multivariate volume data visualization and analysis with

a novel transfer function interface design that tightly couples parallel coordinates plots (PCP) and MDS-based dimension projection

plots. In our system, the PCP visualizes the data distribution of each variate (dimension) and the MDS plots project features. They are

integrated seamlessly to provide flexible feature classification without context switching between different data presentations during the

user interaction. The proposed interface enables users to identify relevant correlation clusters and assign optical properties with lassos,

magic wand and other tools. Furthermore, direct sketching on the volume rendered images has been implemented to probe and edit

features. With our system, users can interactively analyze multivariate volumetric data sets by navigating and exploring feature spaces

in unified PCP and MDS plots. To further support large scale multivariate volume data visualization and analysis, Scalable Pivot MDS

(SPMDS), parallel adaptive continuous PCP rendering, as well as parallel rendering techniques are developed and integrated into our

visualization system. Our experiments show that the system is effective in multivariate volume data visualization and its performance

is highly scalable for data sets with different sizes and number of variates.

Index Terms—Multivariate volume, transfer function, parallel coordinates, dimension projection, user interface design, parallel

visualization.
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1 INTRODUCTION

M ULTIVARIATE volumetric data sets, which are com-

prised of many independent parameters that may or may

not co-vary, are common in many applications. For example, in

computational flow dynamics, velocity, pressure, temperature

and other derived values such as vorticity are involved to define

features. However, effectively visualizing and analyzing such

multivariate data is still a challenging task. Existing methods

of direct volume rendering have been successful with scalar

field volume data, such as that produced in a CT scan. The

original density values are mapped into colors and opacities

through Transfer Functions (TF). Conversely, the mapping

from multivariate volumetric data to visual components is

much more difficult to design, because the high dimensional

feature space is even harder to handle. The complexity of

the problem is compounded as the scale of the multivariate

data set becomes exceedingly large. As scientists attempt to

solve larger and more complicated problems using massively

parallel supercomputing power [40], multivariate datasets are

produced at terabyte (TB) to petabyte (PB) scale. A key goal

of multivariate volume rendering is to allow users to inter-

actively interrogate the data with the goal of understanding

• H. Guo, H. Xiao, and X. Yuan are with Key Laboratory of Machine

Perception (Ministry of Education), and School of EECS, Peking University,

Beijing, P.R. China, 100871.

E-mail: {hanqi.guo,xiaohe.pku,xiaoru.yuan}@pku.edu.cn

• H. Guo and X. Yuan are also with Center for Computational Science and

Engineering, Peking University, Beijing, P.R. China, 100871.

• To whom correspondence should be addressed. Email:

xiaoru.yuan@pku.edu.cn

the correlations between different variables with multivariate

TF. A scalable system to effectively visualize multivariate TFs

requires efficient parallel implementation.

In previous work [11], we developed a novel design of mul-

tivariate TFs, which tightly integrates two multidimensional

visualization methods: PCP (Parallel Coordinates Plot) and

MDS (Multi-Dimensional Scaling) plots. PCP [16] transforms

points from high dimensional space to 2D space in the form of

polylines and presents the information for individual dimen-

sions. Furthermore, the technique simultaneously visualizes

the correlations between dimension axes next to each other.

Multi-Dimensional Scaling (MDS) techniques [39], are widely

used to identify and select clusters. They project high dimen-

sional points into a lower dimensional space while preserving

distances. Both PCP and dimension reduction techniques have

been widely applied in multivariate TF design [1], [2], [4],

[9], [33], [46]. However, when PCP is used as the sole

design interface, users repeatedly have to adjust parameters

for each dimension to define a feature in high dimensional

space. It may demand large amount of interactions when the

dimensionality is huge. Identifying a feature is easier in MDS

plots based on the density of local point clouds. But it is

hard to discern physical meaning from the clusters in a MDS

plot, as the original numerical distribution information on each

dimension is lost after the dimension projection. Based on

SPPC (Scattering points into parallel coordinates) [42], which

smoothly integrates MDS plots into PCP for multi-dimensional

data visualization, we have developed a new multidimensional

TF design which leverages and combines the power of PCP

and MDS. The proposed design flexibly integrates multiple

interactive exploration spaces, including tone-mapped continu-
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Fig. 1. Volume visualization of a multivariate data set (Hurricane Isabel) with our proposed system. (a) A transfer

function is specified in the transfer function design interface of our system, in which multidimensional scaling

(MDS) plots are embedded in the parallel coordinates to facilitate feature selection without context switching. (b)

Corresponding volume rendered image with the transfer function specified in (a).
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Fig. 2. System pipeline of the proposed multivarite volume data visualization and TF design. A multivariate volumetric

data set is first preprocessed with level-of-detail representation before projected to the PCP and MDS plots in the

transfer function design interface. Users interact with the plots and classify features of the volume data. TFs then can

be constructed based on the user clustering results with user specified colors and opacities. Further interaction can

also be performed on the volume rendered images, and fed back to alter the TF design. The volume rendering part

together with the drawing of PCP and MDS plots are parallelized in the system.

ous PCP, weight-adjustable MDS plots, and a volume rendered

image views with sketch feedback. The seamless integration

between PCP and MDS plots provides high efficiency in

feature classification by avoiding context switching between

different data presentations during the user interaction. In our

system, TFs can be defined and modified in different views by

various interactions as shown in Figure 1. Different views are

all linked to enable synchronization between changes in each

individual view.

In this paper, we introduce scalable parallel implementa-

tions for PCP, MDS, as well as parallel multivariate volume

rendering. The performance of the system is enhanced through

leveraging computing parallelism for large data visualization

and analysis. Three major components of the system, mul-

tivariate volume rendering, adaptive continuous PCPs, and

metric adjustable MDS plots are parallelized and integrated

into the whole system for acceleration under parallel com-

puting and rendering environments. In our system, users can

explore multidimensional feature spaces of large data sets

with integrated PCPs and MDS plots, and diagnose interesting

features by designing multivariate TFs with the interaction

tools provided. In addition, we provide extensions to a tiled

display wall and touchable devices for more flexible user

interaction and data analysis.

The contribution of this work is two-fold. First, we present

an efficient system for visualizing and analyzing multivariate

volumetric data through tightly linked views of continuous

PCPs, metric adjustable MDS plots, and volume rendering

with interactive feedback. Second, in order to facilitate large

data visualization, we developed several algorithms including

Scalable Pivot MDS (SPMDS), parallel adaptive continuous

PCP rendering to enable the system to work in parallel com-

puting environment with high scalability. Overall, we provide

a scalable system for multivariate volume data visualization.

The remainder of this paper is organized as follows: we first

summarize related prior work in Section 2. Then in Section 3,

we give an overview of our proposed system, and we introduce

the algorithm details and the extension on parallel visualization

in Section 4 and Section 5, respectively. The user interfaces

on the tiled display wall and touchable devices are presented
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in Section 6. Application cases of the system and the corre-

sponding visualization results are demonstrated in Section 7,

followed by the conclusion and discussion of its limitations in

Section 8.

2 RELATED WORK

In this section, we review the literature in the field of transfer

function design. As PCPs and MDS plots are employed in our

transfer function design interface, their related work is also

discussed together with parallel volume rendering.

Transfer Function Design is critical for insightful and

informative volume visualization, and it is regarded as a key

topic in the field. In general, the majority of TF design methods

can be categorized into data-centric and image-based [30].

Image-based transfer functions are goal-oriented. For example,

TFs and the corresponding rendered images can be gradually

optimized and guided by the image quality [13]. Design

galleries layout and present the rendered images generated by

different TFs for users to select better TF configurations. TF

design can also be generalized as a 3D image processing pro-

cedure to achieve better volume visualization results [10]. On

the other hand, data-centric TF design emphasizes the volume

data set itself and the derivative properties. Much work has

been focused on designing TFs considering different dimen-

sions for better classification in the visualization results [19].

For example, boundary information can be added to enhance

rendering results by accounting for gradient magnitude [21].

The visualization community also proposed various TF design

by exploiting curvatures [18], relative sizes [6], and ambient

occlusion [7], in order to separate and present more features.

Statistical properties can also be extracted as new dimensions

for TF design [12], [26].

It is non-trivial to design multi-dimensional TFs without ef-

fective user interfaces. Some widgets are designed for 1D, 2D

or 3D TFs under the guidance of histograms in feature space

[19]. For higher-dimensional feature spaces, many alternative

methods other than direct manipulation of feature space have

been proposed, including cluster space-based design, machine

learning based algorithms, projection space-based methods and

PCP-based user interfaces.

Cluster space-based TF design interfaces [36] enable users

to work in cluster space, rather than in the TF space. Tzeng and

Ma [36] utilized ISODATA clustering to classify the feature

space. Furthermore, automatic TF design based on hierarchical

clustering was proposed [32]. The cluster space-based method

makes it convenient to design multidimensional TFs, but its

performance relies heavily on the results of clustering, and

limited user participation. In addition to cluster space-based

methods, machine learning is considered an important tech-

nique for TF design [22]. Artificial Neural Networks (ANN)

and Support Vector Machine (SVM) algorithms have also

been applied to the TF design for multi-modal volume data

sets [35]. Sketches on volume slices act as the sample input

of the learning algorithms, and the output of the algorithm is

the complicated fitting of a multidimensional feature space.

Although machine learning based methods are effective and

straightforward, it is difficult to check and verify the physical

meaning of the visualization results.

Dimension reduction and projection provide a similarity-

based layout for the data. The distance in high dimensional

space is embedded into a lower dimensional space. Utilizing

dimension reduction and projection for TF design has been

investigated [9], [33], [46]. The results of the projection in

the form of point clouds are much easier to comprehend

and select. The local clustering of the point clouds are

likely to represent the features in the original volume data

under exploration. Various projection and dimension reduction

methods have been exploited to facilitate multidimensional TF

design, including ICA [33], PCA [31], SOM [9], LLE [46].

In recent years, the performance of dimension projection

has been the focus. Two-phase mapping [28] and piecewise

Laplacian-based projection [27] are proposed to improve the

performance of dimension projection for massive datasets.

Recently, Zhang et al. [45] parallelized the classical MDS for

scientific applications. In our work, we employ Pivot MDS [5],

which is very fast and stable. Different to previous work on

high-performance data mapping, we utilize parallel computing

techniques to accelerate the data projection.

Parallel Coordinates have been widely used to visualize

multivariate discrete data [16], and some extensions on as-

sisting TF design were proposed in recent years [1], [2], [4],

[46]. In those designs, TFs are defined on the dimension axes

by assigning numerical ranges [1], [4]. PCPs have also been

used for feature selection in particle simulations [17], which

is a similar process to TF design. Zhao and Kaufman [46]

used PCPs for TF design, and showed the transferred voxel

points on the dimension reduction plot. In our design, users can

additionally select features on the projection plot, and reflect

the TFs on the PCP, providing multiple linked explorative

spaces for TF design. The simple integration of PCPs and

MDS plots has been applied to colormap design of multi-

modal remote sensing images [44]. However, due to the

inherent complexity and the overwhelming amount of 3D

voxel data, it is difficult to design transfer functions with PCPs.

Parallel Volume Rendering is critical for visualization of

large data sets. In most situations, the sort-last method renders

the data that are pre-partitioned and assigned to different

rendering nodes. The result is a composite of rendered images

from each node. Binary-swap [23] has been proposed to bal-

ance the overhead of image compositing, with the restriction

that the number of processors is restricted to 2n. More recently,

several algorithms were proposed to make compositing more

flexible, such as 2-3 swap [41] and Radix-K [29]. In our

system, parallelism is advantageous to enable handling data

sets with larger sizes.

3 OVERVIEW

The road map we design in the multivariate volume visual-

ization system is to provide interactive multiple perspective

views for helping users analyzing and comprehend the data.

First, PCP is a powerful tool to visualize the data distribution

on each dimension, as well as their correlation. We employ

adaptive continuous PCP to depict the continuously defined

volumetric data. Second, MDS plots can better present the

data clusters in low dimensional space, yet the information on
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each dimension is lost. By interwinding MDS plots into the

PCP [42], the multidimensional data analysis becomes more

efficient than with traditional tools. Third, multivariate TFs can

be designed with the integrated interface of PCP and MDS

to reveal spatial distritution of features in volume rendering

results. Users can also get direct feedback while interacting

with rendered images by sketching tools. At last, in order to

ensure interactivity, scalable implementations are added into

the system.

The major components of our system and their logic

pipeline are illustrated in Figure 2. First in preprocessing, a

level-of-detail representation of the multivariate volume data

set is constructed and then projected as continuous PCP with

embedded dimension projection plots (Figure 3). The user can

define and select clusters based on classification characteristics

in the plots. The system reconstructs the TFs automatically

based on the user selection and updates the classification

results in all linked views accordingly. The new generated

TFs are the estimation to the numerical distribution of user

selection. After a new TF has been defined, the volumetric

data is rendered based on the TF definition. Furthermore,

interaction can also be performed on the volume rendered

images, to directly remove or add components from the overall

TF.

3.1 Transfer Function Widget

A TF layer (in color) and a PCP / MDS layer compose the

TF widget (Figure 1 (a)). The TFs are presented with ribbon

metaphors in an illustrative manner [25] in the top layer, which

is spatially more compact and informative. The system links

the central points to extend the illustrative PCP to MDS plots.

One component of the TF corresponds to one ribbon. The

position and width of the ribbon encode the center and range of

TFs, respectively. Users can drag corresponding control points

to adjust the ribbon centers, and directly tune the width on

each dimension. PCP and MDS plots are linked. All the plots

can be updated in real time with the operations on TFs in any

individual view.

Between neighboring axes of the PCP, or on the side

of the PCP, multiple MDS plots with different dimension

weights can be embedded, and visually linked by the curve

bonds (Figure 3). Between the MDS plots and the PCP,

the clusters can be visually traced through connecting lines,

without significant cost on context switching. With this design

the users can effectively and efficiently obtain data clustering

and data distribution information from PCP and MDS plots.

In the TF widget, the system enables various user inter-

actions. On the PCP, it supports traditional brushing such as

axis brushing and angular brushing. Users can select a certain

range on one dimension axis with axes brushes. Selecting line

segments with similar slopes between two neighboring axes,

with angular brushing is suitable for filtering features with high

correlations shown on the PCP. In the MDS plots, the lasso

tool or the magic wand tool are developed to select features.

Those tools can pick up similar neighborhood features near a

given point. All user interfaces are coordinated. The selection

on both PCP and MDS will be presented on both views.
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Fig. 3. Smooth linkages between the continuous PCP

and the MDS plots: (a) the local shape of the linkage when

a subset of samples is shown; (b) the linkage of the whole

domain.
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Corresponding Feature Blob

Fig. 4. User interactions on direct volume rendering view.

The blue colored TF component is highlighted after a

sketch on the rendering view. It can be further removed

if the eraser tool is selected.

3.2 Volume Rendering View

Direct sketching interactions are implemented on the volume

rendering view in addition to the operations of the TF widget

(Figure 4). Users can pick the query tool, and then sketch

on desired regions of the rendered volume image. Then the

corresponding TF component is selected and highlighted on

the TF widget. Users can drop a TF component quickly with

the eraser tool. When reviewing the rendered results, the sketch

interaction in our system can give instant feedback.

4 ALGORITHM DETAILS

To support interactive multivariate data visualization and

analysis with PCP, MDS and direct volume rendering in

our system, we developed corresponding algorithms for each

visual component. First, we introduce how adaptive continuous

PCP and MDS are generated and rendered, as well as how

MDS plots are embedded into a PCP. Secondly, a multivariate

transfer function construction algorithm is proposed in order

to visualize the selected features on the volume rendering
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view. Third, we present the feedback mechanism between the

coupled views.

4.1 Adaptive Continuous Parallel Coordinates

PCP, an effective way to visualize discrete multivariate data,

maps the high-dimensional points into polylines intersecting

parallel axis. However, for continuous data, specifically vol-

umetric data, such mapping may not properly present data

features if inappropriate sampling strategies are applied. To

solve this problem, a dense presentation of PCP, which is so-

called continuous PCP [14] is empolyed to reveal insights into

the multivariate volumetric data. Although continuous PCP can

suitably present the continuously defined data, a mechanism

is lacking to map the features on the continuous PCP back to

the original data points. This problem prevents linked brush

operations on continuous PCPs.

To address this issue, we developed an adaptive hierarchy

rendering strategy for continuous PCP based on BSP (Binary

Space Partitioning) tree, which preserves sufficient discrete

information for the linked brushes. Other linked components,

such as MDS plots, also utilize such discrete information for

data projection. The adaptive rendering of the PCP is anal-

ogous to the adaptive hierarchical continuous scatterplot [3].

During rendering, the PCP is obtained by accumulating the

height map from eligible BSP tree leaves as quadrilateral strip

primitives, giving the tolerance error for rendering.

4.1.1 Adaptive Rendering of Continuous PCP

Since there are many homogeneous regions in multivariate

volume data, the data scale can be largely reduced by merging

isotropic regions with BSP tree structure, in order to support

interactive exploration. In each leaf node, the numerical prop-

erties can be considered identical. The level of data abstrac-

tion with BSP tree can be controlled according to different

demands of data analysis. When higher level distributions are

under focus, faster rendering results with less details are pro-

vided. Moreover, fine features are presented when exploring in

details. Such hierarchical sampling strategies provide options

and balance for faster visualization and more details with

controllable error levels.

The rendering of adaptive continuous PCP is a two-step

procedure. First, the leaves of BSP tree are filtered out by

tree traversal according to a user defined error threshold.

Secondly, the selected tree leaves are accumulated on the plane

of parallel coordinates as quadrilateral strips, before being

accumulated onto the image buffer. Notice that the intensities

of the quadrilaterals are decided by the volume of the corre-

sponding leaves. The splatting and accumulation processes are

performed on the GPU (Graphics Processing Unit), in order

to achieve interactivity. The rendering error of the adaptive

method is controlled by given thresholds (Figure 5). Based on

the experimental results, we can roughly expect that the results

of the adaptive continuous PCP approaches more accurate

values when the dataset is partitioned small enough.

4.1.2 Tone-Mapping of the Adaptive Continuous PCP

Since the accumulation result of the continuous PCP is a

float-precision density map with high dynamic range, proper

Adaptive Rendering ResultError

Threshold/

Samples

Relative Rendering Error

0 1010
-3 -2

5%
48,364

10%
10,711

15%
2,983

Fig. 5. Comparisons of the adaptive PCP rendering at

different user defined error levels. The relative rendering

error is scaled with a pseudo colormap.

(a) (b) (c)

Fig. 6. Result comparisons with linear mapping and

logarithmic mapping: (a) pseudo color and the colormap

on [0,1]; (b) linear; (c) logarithmic.

methods should be applied to prevent information loss of

mapping the density map into limited gray scales for dis-

playing. If a naive linear mapping is employed, many subtle

yet important features will be lost in the final image. Such

situations often occur in high dynamic range data visualization

applications [43]. In order to maintain and enhance the feature

presentation on the continuous PCP, we utilize a non-linear

tone-mapping operator (TMO) for the mapping:

I′ = 1−
ln((1− e−α)I + e−α)

−α
, (1)

Where I′ is the intensity of tone-mapped pixel, and I is the

original intensity value. The parameter α can be interactively

changed by users with the mouse wheel, to achieve different

visual enhancements. Compared to linear mapping (Figure 6),

the proposed mapping strategy provides superior visualization

on small, yet important features. In Figure 6(c), the features

on the lower half of the leftmost dimension are clearly visible,

but the corresponding feature is totally submerged when linear

mapping has been applied, as shown in Figure 6(b). The

tone-mapping post-processing is also performed on GPU for

interactive exploration.

4.2 Dimension Projection Plots

MDS techniques project points in high dimensional space

R
k to point clouds in lower dimensions (usually 2D) to

enable easier feature identification and classification by users.

Such embedding process is based on the dissimilarity values

between every two points, which is usually defined by proper

distance metrics in high dimensional space. The distances are
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approximately preserved during the dimension reduction by

minimizing the errors, such that δi j ≈ ‖xi − x j‖:

min ∑
i< j

(‖xi − x j‖−δi j)
2
, (2)

where δi, j is the high dimensional distance between point i

and j, and ‖xi − x j‖ is the distance in embedded dimensional

space. The layout of the MDS plots changes with different

distance metrics, and each individual plot conveys different

perspectives of the multivariate data.

In our system, users can define and adjust various distance

metrics on multiple MDS plots. Two facets of distance metrics

include norm type and weights of dimensions. Commonly

used norms, e.g. Euclidean norm (2-norm), Manhattan norm

(a.k.a. city blocks, 1-norm), and infinity norm (inf-norm) can

be adopted to generate MDS layouts with different insight. On

the other hand, the impact of each individual dimension can be

boosted or reduced by tuning its weight. Domain knowledge

can be utilized to generate meaningful results. Meanwhile,

animated MDS layouts during the tuning process help to

understand the structure of the complicated high dimensional

space.

4.2.1 Pivot MDS

We utilize a low storage and low computational method called

Pivot MDS [5] for dimension projection, which is a sampling-

based progressive approximation of classical MDS [34]. In

classical MDS, inner products rather than distances in Eq. 2 are

used. Denote the points in the embedding d-dimensional space

as a matrix X ∈ R
m×d with X = (x1, . . .xm)

T , and B = XXT ,

Eq. 2 can be transformed to a matrix form:

min∑
i, j

(∆(2)−B), (3)

where [∆(2)]i j = δ 2
i j, and B is the double-centered matrix of

the squared dissimilarity matrix ∆. The minimum in Eq. 3

can be achieved when X = VdΛ
1
2
d , where Vd ∈ R

m×d and

Λd ∈ R
d×d are the d largest eigenvectors and eigenvalues

w.r.t B [5]. In Pivot MDS, the double-centered matrix B

is replaced by a double-centered m× k smaller submatrix C

of squared distances ∆, assuming B2 ≈ CCT [5]. Thus, the

computational complexity of the double-centering matrix is

decreased from O(n2) to O(nk), where k is the number of pivot

elements. Meanwhile, the problem size of the eigensolver is

reduced to k× k, which is far less than that of classical MDS

(typically k = 50,100). The serial version of Pivot MDS can

be summarized as follows:

• Randomly pick k pivot items from the input data set;

• Calculate the squared distance between each point and all

pivot points, and store them in matrix ∆;

• Construct the double-centered dissimilarity matrix C(ci j)
between pivot items and all input items, whose elements

are defined as

ci j =−0.5(δ 2
i j −

1

m

n

∑
r=1

δ 2
r j −

1

k

k

∑
s=1

δ 2
is +

1

mk

n

∑
r=1

k

∑
s=1

δ 2
rs),

(4)
• Calculate the eigenvalues and eigenvectors of the matrix

CT C

(a)

(b) (c)

(d) (e)

Flip
ped

Flipped

Coherent
Coherent

Fig. 7. Rotation correction for the MDS results. The

weighting values modify the distance metric of the MDS,

thus adjusting the MDS layout. The weighting of dimen-

sion “Temperature” is set to 30% in (a), and then it is

increased to 35% in (b) and (d), 40% in (c) and (e). The

MDS layouts are flipped randomly in traditional methods

as shown in (b) and (c). Sequence (a), (d) and (e) keep

coherence with our rotation correction algorithm.

• Pick up the largest d eigenvectors {v}. The low dimension

embedding is achieved by

xi =Cvi, i ∈ {0, 1, 2, . . . , d} (5)

where k is the number of pivot points, and n is the total number

of data points. δi j stands for the dissimilarity of the ith item

of input data with the jth pivot item.

4.2.2 Rotation Correction for MDS Plots

Due to the numerical instability and random factors in Pivot

MDS, a rotation correction algorithm is applied to ensure

frame coherence during tuning the dimension weights. There

are two steps in the algorithm. First, the same set of pivots

are used whenever the MDS plot updates, in order to avoid

random factors related to the first step of the Pivot MDS

algorithm. Secondly, a rigid transformation is applied to every

new result, to minimize the rotations between the new result

and the former one. We followed the least-squares registration

algorithm [37]. Specifically, our method searches for the zoom

factor c, rotation matrix R and translation vector t that satisfy

the following condition:

argminE =
n

∑
i=0

||p′
i − (cRpi + t)||2, (6)

where {p′
i} and {pi} are the newly generated and the

original point cloud. Notice that we must use a rigid transfor-

mation instead of non-rigid linear transformation, because non-

rigid transformation cannot keep the relative distances of the

projected points. After finding the parameters by optimization,

the transformed points {p′′
i } are:

p′′
i = c−1R−1(p′

i − t). (7)

Figure 7 shows an example in which an MDS plot in (b)

and (c) flipped randomly when the weights of one dimension

varied from 30% to 35% and 40%, respectively. When apply-

ing our rotation correction algorithm, the MDS plots are stable

as shown in Figure 7(d) and (e).
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Seed Point

Seed Point

Threshold Tuning
20%

30%

(a) (b) (c)

Fig. 8. Magic wand tool for user selection on projection

plot. A threshold can be defined by users for automatic

diffusion based on the point distribution shown in (c).

4.3 Integrating MDS and PCP

To maintain visual continuity and avoid context jumps,

SPPC [42] is adopted in our system. In the work of SPPC,

regions between two selected neighboring coordinate axes are

converted into a scatterplot or MDS directly. Smooth transition

between the newly created MDS plot with the rest part of

parallel coordinates is achieved by crossing each MDS plot

point with a curve connecting the corresponding ployline(s)

in the parallel coordinates. We substituted the spline curves

from original SPPC with quadrilateral strips. In this way, the

accumulated intensity of the spline strips remains coherent

to the strips from the PCP, and the data can be tracked

continuously from axis to axis. On PCP axes, the width of

the spline strip of each BSP tree leaf is set to be the range on

the specific dimension, as described in Section 4.1.1. In the

MDS plots, the strip length passing through the corresponding

point is set to zero. Cubic splines connect the upper and lower

boundaries on the axis to the projected point in the MDS plots

as shown in Figure 3. Notice that the MDS plots can also be

embedded on the side of the PCP, which is better for occlusion

reduction, but not intuitive to present correlations. Users can

freely decide and combine the components.

The embedding of MDS plots into the PCP brings multiple

benefits. First, the combination provides strong visual hints

of data clusters [15], [42]. Furthermore, the tool supports

coordinated selection between the PCP and the MDS plots

without the cost of context switching.

4.4 Feature Selection on the Linked Views

Our proposed framework provides several linked spaces for

exploration, including the PCP, the MDS plots, and the vol-

ume rendering view. Each component provides a distinctive

capability for feature selection. The interactions on the PCP

are similar to those in the previous work, e.g. axis brushing and

angular brushing, so we mainly introduce here the details for

the interaction with the MDS plot and the volume rendering

view.

4.4.1 Interactions on MDS Plots

Two interaction methods, the lasso and the magic wand tool,

are available on the MDS plots. The lasso tool picks up the

sample points inside a specified polygon. The magic wand

tool automatically selects the neighborhood samples from a

given seed point according to the local distribution in the 2D

projection space as illustrated in Figure 8. A fuzzy weight

(similarity value) is given to each point, in order to estimate

the numerical distribution for the TF construction.

Computing the magic wand selection has two phases, in-

cluding the height map construction and the diffusion process.

The height map is essentially the construction of the feature

space [24] in the 2D projection space, which can be generated

by GMM fitting or point splatting. An example result for

height map construction is shown in Figure 8(c). We discretize

the 2D space as an image. For the diffusion process, we first

find the nearest data point from the user defined position as

the diffusion seed, and then utilize a BFS (breadth-first search)

process that spreads the selection from the seed point to the

final selection set by searching the neighborhoods. At every

single step, the algorithm gives a fuzzy weighting depending

on the similarity value with the seed point.

4.4.2 Sketch Interaction on Volume Rendering View

One key issue of direct operations on the rendering view is the

intelligent speculation of user intention. In our design, users

can direct pick up what they see from the results, which aims

to find out the closest Gaussian blob from the TF set. A ray

can be traced from a certain sketch point, and we can calculate

the visibility of each sample point along the ray. The visibility

at position x can be written as [8]:

V (x) = (1−α(s(x)))O(x), (8)

where s(x) is the multidimensional sample at point x, and

α is the opacity TF. O(x) is the occlusion value at x. We

assume that the user intention is very likely to fall on the local

maxima of the visibility. We can also derive the ambiguity

of the visibility local maxima Ai. Finally, the Gaussian blob

selection i is decided by searching for the optimized value

of AiVi. In order to accelerate the ray traversal, the BSP tree

traversal along the ray has been implemented.

4.5 Transfer Function Construction

The construction process converts user selected features with

assigned colors and opacities into TFs. The major algorithm

for the construction in our system is the Gaussian Mixture

Model (GMM), which estimates the input features. A series

of Ellipsoid Gaussian TFs [20], [38] are generated as the

construction results. Notice that the extracted Gaussian blobs

in the GMM are only the estimation to the user selection,

instead of the original values.

Suppose the numerical distribution in every BSP tree leaf

is Gaussian. Ideally, the Gaussian blobs from selected leaves

can be taken as TFs. However, due to limited computational

capability, the sum of huge numbers of Gaussian function

values for each sample point cannot be evaluated in real-time.

More efficient fittings for the user defined features with a

relatively small numbers of mixtures was developed in our

system, since many of the leaves selected will have similar

numerical distributions. We employed the GMM to fit the

feature space:
m

∑
k=1

µkGk(v) =
n

∑
i=1

ωimiGi(v)+ ε(v), (9)
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(a) (b)

Fig. 9. The transfer function generation: (a) a user defined

stroke on the PCP; (b) the constructed transfer function

with 3 Gaussian blobs.

where Gi, mi, ωi are the estimated Gaussian distribution

of BSP tree leaf i, the volume of the leaf, and the fuzzy

selection coefficient, with the range of [0,1]. The left term

of the equation is the Gaussian mixture, where m is the

number of Gaussian blobs, and µk is the weight for the

Gaussian blob Gk. The standard Expectation Maximization

(EM) algorithm determines the parameters of the GMM model

through iterations. The Gaussian mixtures can be transformed

to Gaussian TFs [20] by multiplying the opacity value αmax:

GT F(v) = αmax

m

∑
k=0

µkGk(v), (10)

where v is the input data vector, and µk is the maximum

opacity value for scaling each Gaussian bolb, which is ob-

tained in Eq. 9. The final color C and the opacity α values

are:

C =
∑αiCi

∑αi

,α = ∑αi,αi = αmaxµi (11)

where Ci and αi are the color and opacity of each Gaus-

sian component. Gaussian TFs are applied on-the-fly to each

sample point in the standard GPU volume raycasting process.

5 PARALLEL VISUALIZATION SYSTEM AND

PERFORMANCE

In order to support larger dataset exploration with our method,

we accelerate the user interface by leveraging parallel com-

puting techniques. There are three major user interaction

components in our system, including the computing of MDS

layouts, the rendering of a PCP, as well as the multivariate

volume rendering. We have added three corresponding parallel

subsystems to the pipeline (Figure 2) to make it possible

to visualize and analyze larger datasets with our system. In

a parallel environment, data is distributed to different types

of processes, and then results are gathered back to the GUI

processes before the GUI sends out requests during user

interaction.

5.1 Parallel MDS Computing Subsystem

A scalable MDS layout solution is provided for large dataset

exploration in our system, by exploiting parallel computing

technologies. Although there are many existing MDS tech-

niques, the performance and the scalability of the algorithms

are limited when dealing with large dataset. For example,

the computational complexity of classical MDS (CMDS) and

many iterative force-directed distance scaling methods are

O(n2), which prevents interactivity if the data set is large.

To project high dimensional points into 2D effectively, we

propose Scalable Pivot MDS (SPMDS) to scale for large data.

There are four major sub-procedures that can be parallelized

in Pivot MDS, including the computation of the squared

distance matrix ∆(2), the double centered sub-matrix C and its

inner product CT C, as well as the eigensolver. As illustrated

in Figure 10, suppose there are N parallel processes, each

process p (p = 1,2, . . . ,N) holds a part of the multivariate

data Vp ∈ R
mp×n and all the pivot elements x′0, . . . ,x

′
k−1. The

algorithm for each process can be written as follows:

• Calculate the sub- squared distance matrix ∆p ∈ R
mp×k.

Each element δp,i′ jin ∆p is the squared distance between

the point i′ and the pivot point j;

• Calculate the column summation Sp,i′ = ∑k
s=1 δ 2

i′s
, and

the row summation S′
p, j = ∑

mp

r=1 δ r j2 of matrix ∆p. The

column summation of the whole matrix ∆ is Si = Sp,i′ ,

after the transformation of index i′. The row summation

∆ is the reduction result of each process: S′
j = ∑p S′

p, j.

The total summation S′′ of ∆ can be further obtained by

summing values in S′
j;

• Construct the sub-double centered dissimilarity matrix

Cp, whose elements are defined as

ci′ j =−
1

2
(δ 2

p,i′ j −
1

m
Sp,i′ −

1

k
S′

p, j +
1

mk
S′′). (12)

• Calculate CT
p Cp, and reduce the sum of CT

p Cp in all pro-

cess into the first process as CT C. (It is straightforward

to prove (C1, . . . ,CN)
T (C1, . . . ,CN) = ∑N

p=1 Cp);

• Solve the largest d eigenvalues and eigenvectors by

utilizing standard scalable linear algebra libraries (e.g.

ScalLAPACK), and distribute the eigenvector vd to each

process.

• Obtaine the projected d-dimensional coordinates by mul-

tiplying the sub-double centered matrix and the eigenvec-

tors:
Xp = Cpvd . (13)

5.2 Parallel PCP Rendering Subsystem

The performance of the adaptive continuous PCP rendering

can be boosted by leveraging the power of parallelism. The

data is distributed and scattered to different processes, and

each node generates a partial density map for the PCP. The

final PCP is obtained by gathering and reducing the results

from the rendering nodes. Currently the cross-node summing

and reducing process is performed by employing reducing

functions in MPI (Message Passing Interface), and the per-

formance can be improved by utilizing GPU acceleration on

each node.

There are two strategies for partitioning the data for parallel

processes. One method is to assign a spatial region of the

original data to each node, and the other method is to assign

equivalent BSP tree leaves to each node. In practice, the load

balancing of the latter method is better.

5.3 Parallel Volume Rendering Subsystem

Sort-last strategies, which have been widely applied in parallel

volume rendering, are utilized in our system. The whole multi-

variate volume data set is subdivided into subregions of equal
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Fig. 10. The pipeline of SPMDS (Scalable Pivot MDS). The input multivariate data points are subdivided and

distributed into parallel processes, before the dissimilarities are calculated in sub-matrices. After the row sums and

column sums are derived, the double-centering sub-matrices Ci are calculated in parallel. The summation of the dot

products CTC is reduced from the corresponding results CT
i Ci in each process. The final projection results are obtained

after multiplying each dissimilarity sub-matrix and the two largest eigenvectors of CTC.

size before they are assigned to specific rendering processes.

If the number of processes is a power-of-two, the whole

volume is divided into octree leaves. Or it is divided as equal

slabs along a specific axis. The final images are obtained by

compositing the rendered images from all processes in proper

orders. Currently, Radix-K image compositing algorithm [29]

is utilized in the system.

We have implemented both a GPU-accelerated and a pure-

software parallel rendering version. In the GPU implemen-

tation, the block rendering and the cross-node image com-

positing are both accelerated by graphics cards. During the

block rendering, the parameters of the multivariate Gaussian

transfer functions are stored as textures. The values of Gaus-

sian functions can be looked up from a pre-computed 1D

texture, which is about 4 times faster than the on-the-fly

call of the exponential functions in a shader program. The

communication cost is higher than pure software rendering due

to the extra data swapping from the video memory to the main

memory. On the other hand, the pure software implementation

is based on hybrid MPI and OpenMP parallelism. On each

node, the image space is divided into parts for OpenMP threads

to perform block rendering and image compositing.

On each rendering process, standard front-to-back raycast-

ing technology is utilized for rendering. If the data size of

the assigned region is too large to handle, out-of-core strategy

is leveraged to break through the limitation. In out-of-core

mode, the subregion is further subdivided into blocks in equal

storage sizes, which can fit into the video memory. At first,

the rendering process allocates memory for one block, and

then dynamicly loads, renders, and dumps each block one

after another. Due to the limited bandwith between the main

memory and the GPU, the performance drops because of the

swapping of the block data. In order to accelerate the framerate

during interaction, low resolution blocks are also generated for

faster rendering.

5.4 Performance

The system is mainly in C++, and part of the numerical

subroutines are implemented with Fortran and NVidia CUDA.

The graphical components are implemented with OpenGL and

Cg shading language. The multivariate volume rendering is

implemented in both the hardware accelerated version and

the pure CPU version, which is prepared for clusters without

graphics hardware or in-situ purposes. MPICH2 is utilized for

cross node communication. In the parallel environment, dif-

ferent types of processes are dynamically spawned according

to the host configuration at the startup of the system, and then

they are partitioned into different communication groups.

The performance benchmark (Figure 11) is tested both on

a single workstation and in parallel environments. The former

benchmark is performed on a Dell T3400 workstation, with a

2.66GHz Intel E7300 CPU, 4GB memory, and an NVidia GTX

470 graphics card with 1280MB video memory. The parallel

platform is an 8 node SuperMicro PC cluster with a Dell

T3400 workstation as the dedicated GUI node. Each cluster

node has two Intel Xeon E5520 CPUs in 2.26MHz, 48GB

main memory, and two NVidia GTX 275 graphics cards with

768MB video memory. The nodes are connected with Gigabit

Ethernet. The GUI node has an Intel E7400 CPU in 2.80GHz,

2GB memory, and an NVidia 275 graphics card. The operating

system of the cluster is 64-bit CentOS 5.6 Linux. Currently,

we only utilize affordable and frequently used Ethernet for

communication. The performance and the scalability will be

increased if a faster network environment is available.

5.4.1 Performance on the Single Workstation

On the single workstation, three different multivariate data sets

are tested, including hurricane Isabel simulation, the ionization

front instability simulation, and the turbulence data. The data

properties and the timings of each subroutine are shown in

Table 1. In Table 1, Tpre, Tpro j, Tc, Tr are timings of pre-

processing, projection, TF construction and frame update time,

respectively. For interactive exploration, the most important

timings are Tpro j and Tr. The low Tc timing can insure instant

feedback after users’ query and a selection on both PCPs

and MDS plots. Although a Tpre is relatively long, users can

instantly obtain feedback during a data exploration since pre-

processing is offline.

Currently, the preprocessing is available only on the single

workstation. Out-of-core data reading strategy is applied when

creating the hierarchical numerical data structures, if the data
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Fig. 11. Benchmark of parallel MDS computing (a),

parallel PCP rendering (b), parallel multivariate volume

rendering with GPU cluster (c) and CPU cluster (d) on the

turbulence data, using different parameters and cores.

is larger than the main memory. The out-of-core scheduling

and trashing mechanism is based on data blocking, which

is similar to the out-of-core rendering (Section 5.3). The

processor loads one BSP tree leaf once to build its numerical

hierarchy, and then dumps it before loading another leaf. In

general, if the data is larger and more complicated, more leaves

are generated, which determines the performance of Tpro j (also

Data Set Size Dim Tpre leaves Tpro j Tc Tr

(s) (ms) (ms) (ms)

Isabel 5002 ×100 5 224.0 55,273 150 725.0 233

Ionization 1242 ×300 12 90.6 40,321 148 1045.5 833

Turbulence 1,0003 3 ∼ 4hrs 638,870 1,688 2618.0 N/A

TABLE 1

Timings on single workstation.

refer to Figure 11). Tc is not only related to the number of

leaves, but also decided by the features that the user selected.

If the feature is more complicated, the iteration steps of GMM

will take longer (c.f. Section 4.2).

5.4.2 Performance on Parallel Clusters

The parallel MDS subsystem mainly relies on the compu-

tational capability of CPUs. Numerical libraries, including

BLAS and LAPACK are utilized for matrix and vector compu-

tation. We tested the performance of SPMDS on the turbulence

dataset with various numbers of cores (Figure 11(a)). Different

sample numbers are filtered out from the hierarchy data

structures of the data with different error thresholds. There

are more sample points if the corresponding threshold is lower.

The pivot number k of SPMDS is set to be 50. Besides the

initial data sending and final result gathering time, SPMDS

is highly parallized. Several factors may negatively impact

the performance. Firstly, the result gathering routine, which is

essential for visualization, is not very scalable. The network

response time and the transmission rates also influence the

performance.

The performance of the parallel PCP subsystem is shown in

Figure 11(b). The testing is performed on different numbers

of GPUs on the cluster, ranging from 1 to 16. The total time

of the PCP rendering decreases as more processes are used. If

the number of samples is larger, the speedup is higher. When

the data sizes are small, low speedup is observed due to the

communication cost and the cost of reduction subroutines.

The timings for the rendering subsystem in both hardware-

accelerated version and pure-software implementation are

shown in Figure 11(c) and (d). The raycasting step-size in

the test is 1 voxel. All the rendered image sizes are 640x480.

Different numbers of Gaussian blobs (from 1 to 4) in the

multivariate TF are tested. From the results, we can observe

that the rendering time is longer when more TF components

are utilized. The performance of the rendering increases as

more computational resources are utilized. Since the storage

size of the turbulence data is about 12GB, the out-of-core

mode is employed for rendering, if the block on each process

is larger than the video memory. Frequent swapping on the

video memory and main memory reduces the performance of

rendering. On the contrary, in-core mode saves time if the

storage size on each process is less than the available memory.

6 USER INTERACTION ON TILED DISPLAY

WALL AND MULTITOUCH DEVICES

The proposed system also provides flexible user interaction

with both tiled display wall and touchable devices. Tiled

Display Walls (TDW) can present the rendering result in
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very high resolution, which provides more details of the data.

Touchable devices, such as an iPad, can provide a flexible

user interface for data analysis. In our system, we combine

both powerful visualization and interaction devices to facilitate

data analysis. As shown in Fig 2, the TDW displays the

multivariate volume rendering result, and the transfer function

design interface with PCP and MDS is provided to users on

a iPad. On the TDW, users can pan, zoom, and rotate the 3D

view by motion and gesture, which are captured by Microsoft

Kinect device. Meanwhile, the transfer function of the volume

rendering result can be modified with the iPad interactively.

With such configuration, users are free to change views of the

volume rendering on the TDW, while flexibly exploring the

parameter space with the iPad.

Both TDW and iPad are driven by the visualization cluster.

The volume rendered images are composited and transfered to

each tile with MPI, and the rendered PCP with MDS images

are transmitted to the iPad via TCP packets over wireless LAN.

On the other hand, the user interaction events are carried to the

cluster with UDP packets. Multitouch events are directly sent

by the iPad, and the 3D positions of the skeleton are extracted

based on the color and depth images that are captured from

Kinect cameras.

7 CASE ANALYSIS

In this section, we demonstrate the capability of our system

with multivariate TF design through applications on several

representative data sets listed in Table 1.

7.1 Atmospheric data set (Hurricane Isabel)

Fig. 12. Different MDS plots of Isabel data embedded

in the PCP. The impact of each dimension is assigned by

the pie-chart-like round widget at the bottom of each MDS

plot.

The Hurricane Isabel dataset is an atmospheric

simulation (IEEE Visualization contest 2004,

http://vis.computer.org/vis2004contest). In this case, five

dimensions are considered, including pressure, temperature,

wind speed magnitude, water vapor mixing ratio (QVAPOR),

and cloud moisture mixing ratio (QCLOUD). From the

different perspectives and components provided by the

system, users can better comprehend the data. In MDS plots,

data clusters are easy to be identified (Figure 12). By tuning

the weight of each dimension on the small round widgets

below the PCP, the MDS plots give animated results, which

helps users to comprehend the role of each dimension.

Sub-dimensional space can also be navigated by selecting

a small set of dimensions. The PCP presents the numerical

distributions on each dimension, as well as the correlationship

between neighboring dimensions.

The exploration of the data is very helpful for users to

understand the multivariate features in the data. Figure 14

shows the exploration process of the hurricane eye. Color and

opacity values can be assigned to desired clusters by brushing,

lasso or magic wand tools on both PCP and MDS plots. After

further tuning the Gaussian blobs in the PCP view, insightful

direct volume rendering results are generated. In Figure 14,

we first assume that the wind speed of the hurricane region

is relatively high, and then we brush on the corresponding

range on the PCP axis. The volume rendering result which

reveals the shape of hurricane eye is shown after the selection.

Further hypothesis and exploration can be done by tuning the

numerical ranges on the PCP.
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Fig. 13. Multivariate and univariate rendering results of

Hurricane Isabel with 4 decomposed multivariate transfer

functions.

After several trial-and-error steps, insightful rendering re-

sults can be obtained (Figure 1). Rendering results of each

individual dimension, as well as the multivariate rendering

results of the decomposed TF are shown in Figure 13. The

red part of the result is the side region of the hurricane eye,

where the pressure is low, and the values of wind speed

and QCLOUD are medium; The outside feature with yellow

color has a much higher pressure value but lower wind speed

than the eye region. We can also see how different features

are mixed. Many other patterns can be recognized from the

visualization results.
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Increase QVAPOR.

Reduce the interval of wind speed;

Decrease temperature;(b)

(c)

(d)

(a) The initial selection high-

lights the region with high 

wind speed magnitude;

Fig. 14. Interactive exploration of Hurricane Isabel. From the initial selection in (a), the results can be modified by

changing the numerical ranges on the PCP. (b)-(d) present the animation sequences during user interaction.

7.2 Ionization Front Instability Simulation Data

The ionization front instability simulation data

is from the IEEE Visualization contest 2008

(http://viscontest.sdsc.edu/2008/), which aimed at

understanding the ionization front instability. This dataset

consists of 12 dimensions, including particle density, gas

temperature, speed, vorticity magnitude, and the mass

abundance of H, H+, He, He+, He++, H−, H2, H+
2 ions. We

construct a 12 dimensional TF to generate the visualization

results (Figure 15), which bring out some insights into the

data. In the purple cluster, where the vorticity is higher, is the

region of shock gas. The ingredient of ions are mixed in this

region, which is shown in the PCP. This phenomenon is also

reflected in the MDS plot (on the right of the PCP), as the

purple region covers a large area in the projected space. The

green ionization front has medium mass abundance of He

and He+, where there are some transformation process from

He to He+. This region has higher density, medium speed

and vorticities. In the central area of the green region, there

is a yellow structure, where a much more intense process is

happening, as the temperature and the speed are very high.

Blue and red regions are transitive features, which provide

context of the data. Scientists can conveniently define more

insightful features using our TF design interface, in order

to test hypotheses, and find meaningful structures in the

simulation.

7.3 Turbulence Data

Figure 16 presents the rendering results of a numerical simula-

tion of decaying, compressible, and homogeneous turbulence.

The visualization results aim at illustrating the complicated

fluid structures. The model of the fluid simulation is dry air,

and the initial density and pressure is constant. There are

random and uncorrelated sinusoidal velocity perturbations in

the periodic cubical volume. The initial RMS Mach number

is unity, as the amplitude of the initial power spectrum of

velocity fluctuations is chosen. Significant compressible flow

and shock waves are generated. The computational mesh used

for the simulation is 1,0003, and the storage size of each time

step is about 12GB.
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(g)
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e
f
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Fig. 15. (a) The rendering result of the ionization front

instability simulation data with the multivariate TF spec-

ified in (g). (b)-(f), Different components of the data,

corresponding to the Gaussian blobs of the TF.

Three of the variables in this multivariate volume visual-

ization case are focused, and they are useful for compressible

turbulent flow diagnosis, including the entropy s, the diver-

gence of velocity, ∇ ·U, and the vorticity magnitude |∇×U|.
The variables contain different structures and features of the

fluid simulation. The entropy s, which is a thermodynamic

quantity, only changes in response to a dissipative process. As

the compressible flow evolving, the shock waves and dissipate

kinetic energy are converted into heat, thus increasing the

entropy in isolated regions and patches. As the turbulence

evolves, the entropy variation develops from the turbulent

mixing into surrounding gases. The velocity divergence ∇ ·U
measures the compressibility of the flow, which characterizes

shock waves and sound. The concentrated regions of velocity

jumps tend to be shock waves in the simulation, especially for

negative values. Vorticity magnitude |∇×U|, which measures

shear in the velocity field, is the main variable in the turbulence

evolution. Large values of vorticity can depict both slip

surfaces and vortex tubes in the simulation.

As shown in Figure 16, the numerical distributions, as well

as the correlations between the three variables are clearly

shown in the parallel coordinates. Most of the data points are

concentrated in a small range of values. The point cloud in

the MDS plot indicates the dissimilarities of the multivariate

samples. In the volume rendering result, the red and yellow
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Fig. 16. The rendering result and corresponding multi-

variate transfer function for a turbulence data set.

components have almost the same distribution on velocity

divergence, which reveals the shock waves in the fluid. The

geometry structures of the shock waves are clearly shown.

In the yellow regions, the vorticity values are high but the

entropy values are low. The red regions are complementary to

the yellow region with lower values in vorticity but higher in

entropy, which indicates significant energy conversion. Unlike

red regions, there are also more small vertex tube structures

in the yellow regions. Quite different to the regions of shock

waves, the green regions present the segmentation informa-

tion of the fluid structures, since the velocity divergence is

relatively low in the field.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we present a multivariate volume visualization

system with a novel transfer function design interface. Our

design integrates multiple data exploratory methods, including

the PCP embedded with MDS plots, and the volume rendering

view. The proposed method takes advantage of both a PCP

and MDS plots by providing numerical correlation and cluster

layout simultaneously. Besides the high performance of the

TF generation algorithms and other convenient user inter-

action techniques, domain experts can quickly make feature

selections on any of the components to generate insightful

visualization results taking only a few steps, while being aware

of the distribution information about the data. Furthermore,

we implement our system in parallel computing environments.

The volume rendering, MDS plots, and adaptive continuous

PCP rendering are accelerated by parallelism, which further

accelerates the interactive exploration of larger data sets.

There are a few limitations of our work. First, instead of a

real continuous method, a hybrid strategy of continuous and

discrete data processing is applied as the hybrid method can

keep essential discrete information for clustering and analysis.

Continuous dimension projection can be a future improvement,

which would allow the data presentation to be continuous and

keep more information. Second, our tool relies on manual

feature selection. Users need to identify multidimensional

features from the user interface, and then highlight the features

of interest to explore the data. In our future work, automatic

feature detection techniques can be integrated into the systems

to facilitate the exploration.

A few more extensions for this work can be developed in

the future. First, a systematic evaluation of our system by real

users will also be conducted to improve our system. Further

more, our system has potential capabilities for large scale

temporal data sets. Insightful results could be generated by

exploiting some feature tracking and interpolation algorithms.

The TF construction can utilize other base functions instead

of the Gaussian TF. We believe that effective projection other

than Pivot MDS can be integrated into our framework for

specific data sets, e.g. LLE or SOM, depending on the data

features.
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