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Fig. 1. Visualization results of GEOS-5 ensemble simulation data. Pathlines are filtered and selected with Lagrangian-based variation.
The depiction summarizes the variation among pathlines between runs in the chosen time period. In region A, lines traced from the
same point in different runs go in different directions, including Australia, west Pacific Ocean, and Caribbean Sea. Highly varying
results are also in region B. In the timeline view the differences are presented in the whole volume as well as in regions A and B.

Abstract—Ensemble run simulations are becoming increasingly widespread. In this work, we couple particle advection with pathline
analysis to visualize and reveal the differences among the flow fields of ensemble runs. Our method first constructs a variation field
using a Lagrangian-based distance metric. The variation field characterizes the variation between vector fields of the ensemble runs,
by extracting and visualizing the variation of pathlines within ensemble. Parallelism in a MapReduce style is leveraged to handle
data processing and computing at scale. Using our prototype system, we demonstrate how scientists can effectively explore and
investigate differences within ensemble simulations.

Index Terms—Ensemble analysis, parallel processing, field line advection

1 INTRODUCTION

In scientific applications, it is increasingly widespread to study model
uncertainties and parameter sensitivities using ensemble runs. For ex-
ample, climate researchers routinely use ensemble runs to reveal how
greenhouse gas spreads over the earth under different physical, human
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and policy scenarios. Scientists also commonly conduct ensemble runs
with different initial values and boundary conditions. Because a data
ensemble can be large and complex, it is still an open problem to ef-
fectively extract and compare features across an ensemble.

In this work we focus on flow fields because they are prevalent in
simulations. Wind fields in climate simulation, diffusion flux in pol-
lution simulation, and advections in combustion simulation are a few
well-known examples. Moreover, flow components are usually related
to the core of the domain science at hand. While there are many meth-
ods for visualizing scalar variables in an ensemble or multi-run simu-
lation, far fewer exist for studying flow fields in ensembles. It is dif-
ficult to extract flow field differences between runs, because unsteady
flow features are sensitive to turbulences and not spatially localized.
Previous work has been done to make visual comparisons [40], yet
the field has not yet attempted to comprehensively analyze ensemble
uncertainty in unsteady flow fields.

To study unsteady flow features in an ensemble as a whole, we have
developed a novel framework, and a prototype system, called eFLAA
(ensemble Flow Line Advection and Analysis). eFLAA computes a
comprehensive variation field, which is then used for a variety of pur-
poses, such as to better guide the analysis, to reduce the runtime, and
to accelerate the analysis. eFLAA achieves scalability by extending



DStep [18] in significant ways. First, field lines are massively traced
across the runs in a synchronized manner. Second, tasks are sched-
uled so that memory use by intermediate field lines is limited while
maintaining both load balance and high throughput.

One way to compare ensemble flow fields is to compute field line
traces, store and compare them. Unfortunately, the volume of all these
traces could be much larger than the original ensemble dataset. An-
other way is to compare field line traces while the traces are being
computed, omitting a vast majority of the I/O overhead. We choose
this latter way. The challenge and our focus is to achieve for the en-
semble analysis scalability in terms of memory use, while balancing
the scalability in terms of computation. The correctness of eFLAA is
verified with a synthetic dataset, and then validated for effectiveness
using two real world scientific datasets from atmospheric modeling
of CO2 transportation and from models for weather prediction. The
system is evaluated on two different supercomputer architectures.

eFLAA is the first to employ a distance metric based on Lagrangian
specification. Specifically, the scalar variation field, based on a La-
grangian specification represents the differences either between the
geometry of pathlines or between physical quantities along such lines
and thus reveals the ensemble uncertainty. With the flexibly-defined
Lagrangian-based metric, differences of field lines between runs are
compared on their original positions as well as advected positions.
Based on the variation field, field lines can be selected to illustrate
the ensemble differences between runs.

eFLAA provides elaborate and interactive user interfaces. After
processing the data, the distances between lines originating from the
same spatiotemporal locations are recorded in variation fields. Field
lines with high variation values are also stored and rendered through
the user interface. In the timeline view, users can navigate the results
with the aid of similarity overview graphs.

In the following, we describe the background of our work in Sec-
tion 2, illustrate conceptual design of eFLAA in Section 3, describe
details of parallel algorithms and performance in Section 4, demon-
strate application results in Section 5, and finally provide discussions
and conclusions in Section 6 and Section 7, respectively.

2 BACKGROUND

2.1 Ensemble Data Analysis, Comparative Visualization,
and Uncertainty Visualization

Ensemble runs are commonly used for studying sensitivities of param-
eters, mitigating uncertainty and improving models. Ensemble data
visualization research includes the visualization of uncertainty (e.g.
means and standard deviations), comparative display, and user inter-
faces for navigation [34]. Although few previous work has been on
visualizing flow variation in ensembles, our work is related to both
comparative visualization and uncertainty visualization methods.

Comparative visualization aims at showing similarities and differ-
ences in the datasets [26]. Known techniques range from juxtaposi-
tion, superposition, to explicit representations [11]. Those techniques
in general focus on visual representation and rendering, and should
be considered under the framework of an analysis workflow [34].
Specific to ensemble data, comparative visualization methods include
pseudo coloring, contour lines [22], and glyphs that encode scalar dif-
ferences and outliers [15]. Verma and Pang [40] proposed several
methods for making visual comparisons of flow fields datasets.

Uncertainty visualization relies upon the uncertainty information
associated with ensemble data. Previous works often measure uncer-
tainties by local statistics, such as mean value, standard deviations, and
confidence intervals [34, 37]. Ensemble uncertainties are visualized in
both attribute spaces [32] and in real space using metaphors such as
uncertainty glyphs and ribbons [37]. Previous works on flow fields
primarily use Eulerian specification of the ensemble flow fields. This
does not suffice for revealing differences between particle trajectories.
To address this shortcoming, our work uses Lagrangian-specification.

Beyond the scope of ensemble flow fields, there has been a lot of
research in uncertainty quantification and visualization, either in gen-
eral scientific visualization [13] or specifically in spatiotemporal data

visualization [14, 31, 30]. As categorized by Pang et al. [27], there ex-
ists a wide range of methods(e.g. glyphs, texture mapping, animation)
and a large variety of visual metaphors. Potter et al. [33] provides
a more recent review on this topic as well. Independent of ensem-
bles, uncertainty visualization has also attracted attention in the con-
text of managing simulation processes [39], understanding parameter
spaces [3], and differentiating simulation results [5]. While we draw
inspiration from the above literature, our work is not directly related
to these studies.

There are other noteworthy works on visualizing the uncertainty
of flow fields independent of ensemble data. For example, visual
metaphors such as glyphs [41] and textures [4] are effective at show-
ing flow uncertainties. In UFLOW [21], uncertainties raised by dif-
ferent numerical particle tracing methods have been visualized. Flow
Radar Graph [12] provides a glyph-based visualization for unsteady
flow, which presents the changes in flow directions as spherical coor-
dinates. Recently, techniques were proposed to visualize the uncertain
topology [25] and local features [29] of 3D vector fields. Our research
on ensemble flow field focuses more on characterizing the variation
among ensemble flow fields, as opposed to the optimal visual repre-
sentation of uncertainty.

In a related manner, for data assimilation in ensemble forecasting,
climate modelers have developed Ensemble Kalman Filters [9]. Our
goal is to reveal differences among field lines. Although these varia-
tions we reveal will be useful for making better ensemble forecasting,
making predictions is beyond the scope of this work.

2.2 Parallel Field Line Advection

Scalable algorithms for tracing field lines are hard. As simulations
surpass terascale and soon petascale, it has become unrealistic to ex-
tract a meaningful set of field lines without using supercomputers. To
analyze differences in ensembles of flow fields, even more field lines
have to be extracted and compared for corresponding locations in the
ensemble runs. Since the data volume of the traced field lines exceeds
that of the ensemble data, scalability is difficult to achieve with stan-
dard memory sizes with existing methods.

Tracing field lines can be parallelized using either data-parallel or
task-parallel methods or both. Scalability is limited by I/O over-
head and complex load balancing. Parallel flow visualization meth-
ods that are solely data-parallel rely on data block distribution for
load-balancing. Known schemes range from static round-robin [28],
to hierarchical clustering [43], to partitioning by flow directions and
features [8]. Controlled block layout has also been leveraged for im-
proving I/O performance [7]. Methods that are solely task parallel
typically revolve around scheduling: such as dynamic load balanc-
ing [35], workload estimation [24], and on-demand strategies to re-
duce communication and I/O costs [6]. A dynamic load-balancing
approach proposed by Pugmire et al. [35], which shows good scala-
bility and performance. Different strategies for block I/O are applied
on-demand to improve the throughput of the system. Camp et al. [6]
presented a hybrid-MPI implementation for parallel streamline inte-
gration. The hybrid algorithm improves the overall performance by
reducing the communication and I/O cost. A workload estimation al-
gorithm is proposed to decompose the flow field statically in recent
literature [24].

Recently, Kendall et al. [18] proposed a MapReduce-like frame-
work DStep for field line tracing, Unlike data-parallel MapReduce,
DStep which implements and successfully manages both data-parallel
and task-parallel parallelism. DStep was reported to scale to 64K Blue-
Gene/P cores [18]. For comparing the variation of pathlines among
ensemble runs, the ability to extract many field lines at once is so cru-
cial that it demands the most efficient and scalable solution. For this
need, DStep is an ideal method. However, higher extraction perfor-
mance increases the data deluge and precludes storing the entire field
line dataset for later analysis. This is the same rationale that has moti-
vated the recently popular topic of in-situ visualization. DStep was not
originally designed for such a use-case: the key missing element is to
have run-time control of how much memory is used and accordingly
manage the “run-time flow” of concurrent tasks. eFLAA provides this



Ensemble Line Advection Distance Computation Line Filtering User Interaction

Ensemble Run Data Field Lines from All Runs Variation Field Filtered Field Lines Interactive Visualization

U(t,z,y,x)

V(t,z,y,x)

W(t,z,y,x)

...

Run_n*.nc

...

U(t,z,y,x)

V(t,z,y,x)

W(t,z,y,x)

...

Run_2*.nc

U(t,z,y,x)

V(t,z,y,x)

W(t,z,y,x)

...

Run_1*.nc

Variation Fieldmble Run Data Field Lines 

.nc

U(t,z,

V(t,z,

W(t,z,

Run_2*.nc

U(t,z,y,x)

V(t,z,y,x)

W(t,z,y,x)

...

Run_1*.nc

s from All Runs

Fig. 2. Our system workflow. Field lines are traced and then used to compute variation and produce a variation field. Field lines are further filtered
and selected according to the uncertainty variation field for users to investigate differences among the ensemble runs.

missing component.
Tracing massive amounts of field lines is also done in flow analysis

like FTLE (Finite-Time Lyapunov Exponent). One way to accelerate
FTLE is by reducing the number of particles [10]. Recently, a parallel
framework was also proposed [23]. In comparison to FTLE computa-
tion, our problem requires consideration of larger spatial and temporal
domains and thus incurs more stringent needs to limit memory use.

In Section 4 we further analyze the design needs and describe how
eFLAA reimplements DStep and how we redesigned the system, in-
cluding architectural extensions that improve scalability.

3 VARIATION QUANTIFICATION FOR ENSEMBLE FLOWS

The main purpose of our method is to discover the differences between
multiple flow fields from ensemble runs. Essentially, we extract dif-
ferences as features from flow fields.

Fig. 2 shows our workflow. The input is the raw data and the output
is a set of field lines capable of depicting the differences. From the raw
flow field data, we compute the distances between the runs at every
spatiotemporal sample using the Lagrangian-based distance metric.
The distance metric is computed by accumulating differences along
the field lines that are traced from the samples. The variation field,
which describes the variation of every spatiotemporal location, is ob-
tained by averaging the distance fields. Then we filter out the samples
with high variation, and visualize the field lines traced from the corre-
sponding samples. A 2D cylinder unsteady flow simulation dataset is
used to illustrate the proposed methods in Figure 3. A “noise” run is
synthesized by adding Gaussian noises.

Since for real data the computation costs, memory footprint, and
I/O costs are extremely high, careful design of a scalable and parallel
system is needed.

3.1 Specification

In fluid dynamics, there are two kinds of specifications for the flow
field, Eulerian and Lagrangian.

In the Eulerian specification, the variables are described as a func-
tion of spatiotemporal coordinate x and t. For example, the velocity
field v, the pressure field p, and the temperature field T can be written
as the following, respectively:

v = v(x, t), p = p(x, t),T = T (x, t). (1)

In Lagrangian specification, quantities are associated with particles
that move within in the flow field. The particles are identified by their
location a at time t = 0. For instance, the displacement X, the pressure
field p, and the temperature field T in Lagrangian specification are the
following, respectively:

X = X(a, t), p = p(a, t),T = T (a, t). (2)

The two specifications are two ways of describing the same phe-
nomena, they are related as:

v(X(a, t), t) =
∂X(a, t)

∂ t
, (3)

(a)

(b)

(c)

(d)

Base Run “Noise” Run

Fig. 3. The cylinder dataset (Reynolds number is 100) on a 400× 100

regular grid. Gaussian noise (µ = 0,σ2 = 0.04) has been added to each
velocity component. (a) The ensemble pathline advection results. The
lines are intentionally faded over time for illustration; (b) The vertex-
wise differences between the two runs, namely the Eulerian-based dif-
ferences; (c) The Lagrangian-based differences of the two runs, which
is based on the ensemble pathline advection results; (d) The filtered
pathlines which can characterize the differences between the two runs.

X(a, t) is a pathline generated from the spatiotemporal coordinates
(a,0). In general, for any quantities in the flow field, U(a, t) is an
implicit function of the Eulerian specification. Distances between dif-
ferent flow fields can be computed by Lagrangian specifications.

The Lagrangian specification is easier when using the flow map Φ :

x 7→ Φt0+t
t0

(x), which provides the coordinates of a particle at time t
that was at point x at time t0. Thus, for given spatiotemperal position,
the above mentioned variables can be conveniently expressed as:

Φt0+t
t0

(x), p(Φt0+t
t0

(x)),T (Φt0+t
t0

(x)). (4)



3.2 Lagrangian-based Distance Metric

The essence of eFLAA is to measure the differences between multiple
flow fields in using Lagrangian specification. For the attributes U and
U′ from any two flow fields, without the loss of generality, Lagrangian-
based distance at (x, t0) in a time span t is defined as:

dt
x,t0

(U,U′) = µt
t0
(U(Φt0+τ

t0
(x)),U′(Φt0+τ

t0
(x))), (5)

where the metric µt
t0

measures the distance of the functions U and U′

over the flow map Φ through time t0 to t0 + t. The time span t, which
is less than the total simulation time T , depends on analysis require-
ments and potentially also the computing resources. The metric can be
flexibly defined, e.g. using the the maximum distance or the Hausdorff
distance. U is usually the identity function for location comparison, or
a scalar/vector variable in the data. Geometric quantifications [16], or
predicates [36] may also used for different analysis purposes. In the
applications of this work, we use the accumulated difference of U as
the metric:

dt
x,t0

(U,U′) =
∫ t0+t

t0

||U(Φt0+τ
t0

(x))−U′(Φt0+τ
t0

(x))||2dτ. (6)

where U can be the displacement vector X(a, t), or scalar quantities de-
fined in Lagrangian specification. In discrete form, the distance (Eq. 6)
is computed as:

dt
x,t0

(U,U′) =
1

n

n−1

∑
k=0

||U(Φt0+k∆t
t0

(x))−U′(Φt0+k∆t
t0

(x))||2, (7)

where ∆t is the size of a time step, and n is the number of time steps.
The distance metric (Eq. 5) brings flexibility for different analysis

purposes. For example, we can use the difference of CO2 concentra-
tion along the field line as the metric. Several metrics can be combined
to simultaneously take consideration of multiple factors. To gener-
alize, we can also use other field lines, e.g. streaklines to compute
distances. In ensemble simulations, our metric not only accounts for
the very local domain on the corresponding points, but also counts the
nearby samples on the line advection direction.

3.3 Variation Field and Line Filtering

The variation field V is defined as the average of difference fields:

V (x, t0, t) =
1

N(N −1) ∑
i< j

dt
x,t0

(Ui,U j), (8)

where N is the number of runs, and dt
x,t0

(Ui,U j) is the distance field

for run i and j at point (x, t0). In practice, we use the discrete form of
the variation field, which is stored as a time-varying volume. In this
volume, variation values are evaluated by interpolation on non-grid
points. In general, the resolution of the variation field depends on the
granularity of the analysis and the available computation power. The
variation field can reveal the ensemble uncertainty of the simulation.
As the metric is sensitive to the variations between the ensemble mem-
bers, our method is capable of capturing even small variations between
the flow fields.

There are two ways to visualize the variations of the ensemble flow
data, including the direct volume rendering of the variation field and
the field line rendering. Although not specific for ensemble run visual-
ization, the field has developed various ways to enable effective visual
exploration of complex sets of field lines (e.g. streamlines, pathlines,
streaklines). One way is to extract and render only evenly-spaced lines
from the vector field, such that the visualization is less cluttered and
has less occlusion [20, 42]. Verma and Pang [40] proposed a series of
comparative flow visualization methods. Our research does not focus
on scalable rendering methods. We leveraged the leading practices,
while we dedicated effort on creating more ways to provide overview
of the variation field and control of the exploration processes.

In the field line rendering, only a subset of field lines which are
capable of depicting differences from flow fields are visualized, in or-
der to avoid visual cluttering. We first find out all the locations where

the variation value is greater than a threshold. Then we truncate the
corresponding field lines, by dropping the points along the field lines
where the variation value is lower than the other thresholds. The line
filtering occurs during post-processing process. Although the process
is straightforward, the filtered field lines seeded from such locations
are likely to represent the top differences between the runs.

3.4 Timeline View

In addition to the variation weighted field lines depicting the spatial
distribution of the differences among runs, our system has a timeline
view which gives the insights on the simulation differences in an ag-
gregated way. As shown in Fig. 1, there are two main views in the GUI,
the 3D navigation and the timeline view. In both views, each color rep-
resents one simulation run. The main component in the timeline view
is the difference plot. The horizontal axis of the difference plot is the
time, and the vertical axis encodes the relative distance among runs
on each timestep. The timeline view can visualize the regional differ-
ence among runs based on the user selection. By default, the timeline
view presents the overall differences between ensemble runs. Users
can select a region of interest to create a new timeline for a local re-
gion. Thus, users can discriminate the quality or the bias of each run in
specific locations, in order to study the patterns and improve the sim-
ulation models in practice. In the simulation design, usually certain
parameters or models are optimized for certain specific geographical
region. Our design enables the user to examine the local differences
between runs based on their domain knowledge of the models.

The difference plot in the timeline view is generated by 1D Multi-
Dimensional Scaling (MDS) projection for all runs. Since the number
of runs is relatively low, we use classical MDS [38] to compute the
layout in 1D. The distance between each run is the summation of all
distances between corresponding points. We denote the distance over
the time between two runs as:

Di, j(t) =
∫

D
dt

x,t0
(Ui,U j)dx, (9)

where D is the spatial domain, and i and j are the indices of runs. A
MDS projection is computed to minimize the following function:

min ∑
i< j

(||xi(t)− x j(t)||−Di, j(t))
2
, (10)

where x is the coordinate in the difference plot. The minimum of this
equation can be achieved by solving an equivalent eigenvalue prob-
lem. The 1D projection result visually separates the runs with higher
distances in the horizontal axis, and the trends are also visualized over
time. In the timeline view, users can also remove runs considered as
“outliers” It is noteworthy that the features that are shown in the spa-
tiotemporal view and the timeline view are complementary but not
identical. The timeline view provides a statistical summary of varia-
tions as the time evolves, while the spatiotemporal view visualizes a
few samples with higher variation values, due to the clutter problems
in 3D field line visualization.

4 SCALABLE ANALYSIS FOR ENSEMBLE FLOWS

The computation of the variation field is very expensive due to the line
advection and comparison process, which requires a highly scalable
system. Unlike previous studies of parallel field line advection, the
implication of scalability for this work is unique due to the challenge
of data management and memory limits. Independent of ensemble
data, the intermediate field line data can be overwhelming — usually
1,000 times larger than the ensemble data at hand. Based on this dis-
tinctive scalability concern, we use a redesigned DStep framework to
maximize the performance given the memory limits.

Scalable field line advection and analysis requires great scalability
in both data parallel and task parallel steps. DStep provides an elegant
glue between the two. Their method is to connect data parallel mod-
ules with task parallel modules by using an explicit <key, value>

construct. This allows optimal scheduling methods to be used for data
parallel and task parallel steps orthogonally, without requiring a com-
plicated parallel program that is hard to debug, profile and maintain.



However, our application also has new challenges because the mem-
ory limit is the bottleneck of the system. Let us now overview the new
needs and then briefly introduce our architecture.

4.1 System Design

In comparison to visualizing ensemble scalar fields, ensemble flow
fields have received far less attention. This is partly due to the ex-
pense of computing, storing, comparing and visualizing unsteady flow
features in the form of fieldlines.

Scalable Performance: Existing works typically use Euler speci-
fication for distance metrics, instead of the computationally more ex-
pensive but more proper Lagrangian specification. However, our work
of eFLAA needs to use Lagrangian specification for full range analysis
of the ensemble flow variation.

The eFLAA system needs to implement synchronized field line ex-
traction across all ensemble runs simultaneously, which has not been
attempted in previous works. Synchronized field line extraction re-
moves the need to store all field lines to disk, thereby omitting an
otherwise unaffordable cost. This will enable comprehensive analy-
sis of the variations in unsteady flows “in-situ”. The challenge lies in
better load-balance control with an even more unpredictable workload
distribution. The result of synchronized field line extraction is a high-
resolution and reusable spatiotemporal variation field that then guides
subsequent interactive visualization at much lower computational cost.

Scalable Data Management: Current visualization systems usu-
ally compute and store the field lines to disk, in a run by run fash-
ion through the entire ensemble. The field lines are then read back
into memory for analysis. The overwhelming I/O costs, however, will
greatly limit the scale of the problem that can be practically studied.
As documented by [17], I/O cost for parallel visualization could take
up to 90% of the entire computing time.

A more serious challenge is the memory footprint in the synchro-
nized field line extraction of all runs. The field lines for computing
the variation field requires at least tracing one field line from each
spatiotemporal location in every ensemble run. In the GEOS-5 data
for example, every vertex includes seven floating point values for
4D spatiotemporal position and 3D velocity. The models are on a
288 × 181 × 72 spatial grid with 24 monthly time steps and 8 runs
in the ensemble. The total size of the loaded data is around 13GB. A
field line is terminated after one of the following three criteria is met:
(1) more than 1000 vertices (4th order adaptive Runge-Kutta), (2) the
field line has lasted more than one month of wall-clock time, or (3) a
critical point has been reached. At a maximum (not considering cri-
teria 2 and 3), the field lines will together take up to 17.5 TB. When
also considering criteria 2 and 3, we learned from experience that field
lines are on average three times shorter. In result, a practical estimation
is that the field lines for the analysis will take up to 5.86TB to store.
From 13GB to 5.86TB is an increase of 3,000×. That literally means,
without our data management, one would need to have a petascale su-
percomputer just to analyze a terascale ensemble simulation, which is
an unaffordable cost for ensemble flow analysis.

4.2 Basics of DStep Framework

Now let us briefly review key concepts in DStep framework. Similar to
MapReduce routines, without explicit management of complex com-
munication and job scheduling, application developers only need to
implement dstep() (map()) and reduce() functions with proper
key-value pairs. Domain traversal is simplified by recursively calling
emit dstep() functions, which queues a job to continue the unfin-
ished work. In field line tracing for example, each process is in charge
of a local domain. Partial line tracing is implemented in dstep().
When the trace goes out of the local domain, a new line tracing job is
emitted to continue the tracing. After the trace is finished, the partial
lines are merged in reduce() function.

Architecture wise, DStep uses a two-tiered job management. The
first tier is by data partition and hence manages the data parallel aspect.
The second tier handles the task parallel aspect. It is based on multi-
ple task queues, i.e independent queues dedicated to different types of
tasks. On each processing node in a supercomputer, there are typically

a number of processor cores. On the cores within a node, DStep will
set up a group of worker threads. These threads play different roles,
such as steppers, reducers, writers, and communicators.
Intra-group communication is local to a node, while inter-group mes-
sages are routed through and aggregated by communicators for effi-
ciency. More details on DStep framework is available in previous lit-
erature [18]. We redesign the framework in order to fit our goals.

4.3 Parallel Computing of the Variation Field

In comparison to DStep, eFLAA adds significant new functionality in
the job management module to simultaneously control memory foot-
print and improve load balance. This is because field lines together
can take 1,000 times more space than the unsteady flow field itself.
Without dynamic control of runtime memory footprint, scalable un-
certainty analysis for an entire ensemble is unfeasible. Details of this
addition are presented in Section 4.4.

The computing of variation fields is quite straightforward, as illus-
trated in Fig. 4. The system first loads all data blocks for all the runs
from the parallel file system. The spatiotemporal domain is decom-
posed and distributed in the same way used by DStep.

Field lines are extracted by steppers. The key-value pair is
<point, partial line>. Seeds are inputed as the key point
from the batch manager for field line initialization. Adaptive Runge-
Kutta 4th order numerical integration is used to trace the lines. If an
incoming point is out of the local boundary of data for a worker, a new
intermediate step job is emitted to the system to continue the work
later by other workers. Simultaneously, the partial field line is send to
the reducer for the further processing.

Variation values as defined in Section 3 are computed by
reducers. Each reducer handles partial fields in sets, where a set
consists of partial fieldlines originated from the same seed location,
regardless which run they are from. The field lines are merged, and
then re-sampled to consistent time intervals for distance and variation
computation. On the exit of the pipeline, the variation field is also
stored into the file system, which are used for line truncation and visu-
alization. The pseudo code of the reduce() function is as follows:

function REDUCE(seed, partial fieldlines[])
sort partial fieldlines[] into partial fieldlinesi[] by run id
for i = 1 → N do

sort partial fieldlinesi[] by hops
fieldlinei = merge fieldline(partial fieldlinesi[])

end for
for i = 1 → N do

for j = 1 → N do ⊲ Compare fieldlines from every run
di, j(seed) = distance(fieldlinei, fieldline j)

end for
end for
U (seed) = 1

N(N−1) ∑i< j di, j(seed)

if U (seed) > threshold then ⊲ Only save the fieldlines that are
with high variation

for i = 1 → N do
emit write(seed, fieldlinei)

end for
end if

end function

In the end, the output is a relatively small set of representative field
lines together with a high resolution temporal volume of variations.
The massive intermediate data, which are much larger than the input
data, are processed and discarded on-the-fly.

4.4 Batch Streaming

The field line data is often too large (even larger than the raw flow
field data) to store and subsequently load it. Our approach provides an
“in-situ” way to compare and filter field lines in the reduce stage.

The management for in-situ analysis uses batch streaming. We cou-
ple field line extraction by steppers and field line reduction and
variation computation by reducers in to “cycles”. In each cycle,
only a batch of seeds are pushed into the pipeline. For each batch,
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Fig. 4. The parallel pipeline of proposed system, based on the Map-Reduce like DStep framework. The raw ensemble run data is partitioned and
loaded into the system at the beginning, and then the computation is conducted in step and reduce stages in parallel. In the step stage, the
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we ensure all intermediate results with the same key (seed) are re-
duced together, such that the variation for the spatiotemporal location
in that ensemble is computed. This policy may slightly slow down the
pipeline, but the memory footprint can be controlled, given a relatively
large number of seeds. Both the steppers and reducers are com-
putationally intensive. Steppers handle field line advection. Reducers
are multi-threaded and handle merging and re-sampling of field lines,
computing the distances between all runs. Through experimenting,
we found it optimal for each worker group to have equal number of
steppers and reducers.

Batch size is defined in number of seeds, i.e. number of field lines
in the batch. The smallest is to have one field line per batch. This will
lead to unacceptable performance scalability, in part because eFLAA
uses static data partition and distribution on the node-level. The largest
is to have all the field lines in the same batch. This will lead to unac-
ceptable space scalability as noted in the above. The balance between
performance and space scalability is crucial to eFLAA, and the point
of balance is machine dependent. For the two test machines, we empir-
ically chose the batch size to be 80k and 10k field lines, respectively.

4.5 Reusable Ensemble Flow Variation Field

eFLAA outputs the variation field and only a selected subset of rep-
resentative field lines. Since users only care about the field lines that
can characterize the differences between runs, only a part of the field
lines are selected (using thresholding) and stored in the file system.
Our system also allows users to reuse the computed variation field to
generate more field lines on-the-fly. The existing variation fields can
help with the line filtering without rerunning the whole pipeline. In
addition, field line tracing is greatly accelerated because the problem
size is much reduced. This reusable ensemble variation field is use-
ful in a few different situations. For scientists who only have limited
computing resources, re-using the variation fields is a good choice to
achieve the goal with less cost. For post-analysis purposes, the varia-
tion field can be computed with supercomputers, and further analysis
can be conducted on smaller workstations or even desktop computers.

The re-use of the variation fields is also helpful for reduceing I/O
cost during subsequent analysis. Only limited numbers of field lines
are required to be traced again. Thus, the patterns of grid cell access
are limited and predictable. We implemented an experiment to val-
idate this hypothesis (Fig. 5). In the experiment, we re-traced field
lines from seed locations with top 2k, 4k and 8k variation values.
The result demonstrates that only a small portion of grid cells that
are visited. Subsequent analysis should indeed be able to implement
sparse-volume representation, as opposed to storing the full 4D array
of voxels. This will greatly reduce needs of computing, memory and
I/O bandwidth, thereby allowing machines that are far smaller than a
supercomputer to practically handle full-scale and full-range analysis.
Our technique thus greatly increases the potential for widespread pen-

1 3 5 7 9 11 13 15 17 19 21 23

0

1

2

3

4

P
e

rc
e

n
ta

g
e

 o
f 

C
e

ll
s

Timestep

Top 8,000

Top 4,000

Top 2,000

Fig. 5. The cell access patterns of re-using variation field by tracing
field lines from seeds with top variation values in GEOS-5 simulation
data. The horizontal axis is the time step, and the vertical axis is the
percentage of grid cells that are accessed.

etration of ensemble flow analysis in disparate application domains.

4.6 Parallel Scalability

We evaluate the system performance with several datasets on two su-
percomputers in National Super Computer Center in Jinan (NSCCJN),
which is located in Shandong province, China. The hardware archi-
tecture of the two supercomputers are ShenWei and x86, respectively.
The microprocessors of the former one are SW1600, which are devel-
oped and produced in China. The performance is also evaluated in the
x86-based supercomputer in the same center.

The ShenWei-based supercomputer consists of 8,704 16-core
SW1600 processors, which operate at 1.0-1.1Ghz. The theoreti-
cal peak floating point performance of each SW1600 processor can
achieve 128Gflops. Each physical node in the racks is equipped with
1 processor and 16GB memory, and is further divided into 4 virtual
nodes equally. Thus, each virtual node is allocated with 4 ShenWei
cores and approximately 3GB memory. The bandwidth of the high-
speed network is 40Gbps. The operating system is 64-bit Linux, and
the parallel file system is high-performance SWGFS, which is devel-
oped in China. Specialized MPI and C/C++ compilers are provided
for the ShenWei architecture.

The x86-based supercomputer in NSCCJN is composed of 700
nodes, each of which has 2 hexa-core Intel Xeon E5675 processors
working at 3.06GHz. Our allocation can use 10% of the computing re-
sources. The main memory for each node is 36GB. The nodes are con-
nected with InfiniBand QDR interfaces, whose theoretical bandwidth
is 40Gbps. The parallel file system of this supercomputer share the
same SWGFS with the ShenWei-based machine. MVAPICH2 com-
pilers are provided for interprocess communication.

Customized software configuration and job layouts are designed ac-
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process takes a virtual node with 4 cores. Performance of several problem sizes are tested on both x86- and ShenWei-based supercomputers.

cording to the hardware architectures and our application. The DStep
job layout is shown in Fig. 6(a). For ShenWei supercomputer, be-
cause there is less than 4GB memory for each virtual node (the op-
erating system occupies some space), it is insufficient to run 4 DStep
processes on one single virtual node. Instead, we run only 1 process
per virtual node, and 3 threads to accelerate stepper and reducer jobs.
In each worker group, there are 15 stepper-reducer processes and 1
communicator-writer process. For the x86-based supercomputer, we
use 11 stepper-reducer processes and 1 communicator-writer process.

The timings of the system with different numbers of processes on
both architectures are shown in Fig. 6. An 8-run GEOS-5 dataset is
used to evaluate the performance and the scalability. The grid size of
the data is 288×181×72, with 24 time steps. The monthly-averaged
multivariate ensemble-run dataset is stored in netCDF format across
192 files with float-precision, which totals 76GB. 5 variables which
are essential to compute the velocities and distances are loaded, so the
effective data size to load is about 13.4GB. The whole spatiotemporal
domain is partitioned into 512 data blocks for computation, which are
assigned to all steppers in round-robin manner.

In our experiment, different problem sizes are conducted by spec-
ifying various variation field resolutions, which also determines the
number of field lines that are traced. The timing results shown in
Fig. 6 present the scalability of the system on both platforms. On x86-
based machines, as the number of processes increases, super-linear
speedup is observed from 12 (1 worker group) processes to 192 pro-
cesses (16 worker groups). The super-linear speedup is likely caused
by the communication congestion and the high memory occupation.
On ShenWei-based supercomputer, we tested timings on up to 512
processes, which uses 2048 cores. Good scalability is observed in the
timings. Both platforms show linear speed-up as the data scale in-
creases for all numbers of processes.

The system is also portable to supercomputers with different archi-
tectures. The batch size needs to be modified according to the mem-
ory limit of the nodes. Generally, the larger the memory, the higher
the throughput and performance. Other parameters, (e.g. the worker
group size, the workload for epochs) also need to be tuned according
to the network bandwidth and performance of the processors.

5 APPLICATION RESULTS

5.1 GEOS-5 Simulation Data

GEOS-5 is a state-of-the-art atmospheric model from NASA Goddard
Space Flight Center. It aims at better understanding the internal-model
and applying teleconnection analysis. A flux-form semi-Lagrangian
finite-volume dynamical core with floating vertical coordinates [19]
is used in the GEOS-5 general climate model (GCM). A variety of
attributes, including divergence, vorticity, wind speed and pressure,

are computed with GCM. The output of the simulation is stored in
hybrid-sigma pressure grid, with the spatial resolution of 1◦ × 1.25◦

with 72 pressure levels in the vertical direction, which ranges from 1
atm (near to the terrain surface) to 0.01 hPa (about 80 km).

Previously, the scientists examined the internal model variability of
GEOS-5 by running an 8-run ensemble simulation [2, 18], and found
large variations between the ensemble members due to high sensitiv-
ity to the transportation model. In our experiment, we further examine
the variations of the transportation as well as the CO2 concentration
of fossil fuel emissions on the wind paths with Lagrangian-based met-
rics. We follow the previous research to use the monthly average data
of the 8 runs from Janurary, 2000 to December, 2011 [2]. There are
24 time steps saved in separate netCDF files, containing 35 variables
in floating-point precision. The data for all 8 runs amounts to about
76GB. Our Runge-Kutta advection has been customized for the curvi-
linear and hybrid-sigma pressure grid.

The visualization results with our method are presented in Fig. 1.
Two time steps are to show the differences of the ensemble runs. For
example, in March, 2000, the traces originating from the East Pacific
Ocean near the equator are much different. While in most runs, the
mainstream trends of the traces are toward to the west along the equa-
tor, some of the runs are intriguing. In Run #4, the trace went to the
west-south and then further proceed to the Australian continent. In
contrast, Run #8 is more intriguing. It first went toward the west,
and then made a U-turn to go toward the Carribean Sea. The dra-
matic changes of directions in this month can also be discovered in
this view, e.g. the North America and the south Pacific Ocean, etc. In
March, 2001, some interesting swirl patterns can be observed in North
America in some runs, which are significantly different to other runs.

We also compared the results with two different Lagrangian-based
distance metrics in Fig. 7, in order to examine the sensitivity of CO2

concentration due to the transportation [2]. The first metric only ac-
counts for the location differences, and the second one only consid-
ers the differences of CO2 fossil fuel concentration. Intermediate
variation fields are also visualized with volume rendering for illustra-
tion. We follow Equation 5 to compute the Lagrangian-based distance
and uncertainty of CO2 fossil fuel concentration along the pathlines.
In Fig. 7, 3 consecutive months (From January to March, 2000) are
shown to compare the two metrics. In January, although the results
from the location-based metric appears to diverge from run to run, the
CO2 fossil fuel concentration along the traces is not varied in certain
regions, like the U.S. region. Along the equator and several locations
in the Southern Hemisphere, higher variation values are observed. In
earth system, the distribution of CO2 mainly depends on two factors,
including the wind transportation and the emission/absorption on the
land. In this simulation, CO2 fossil fuel concentration is relatively
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in the results to reveal the differences between the ensemble runs.

stable, so it appears to be insensitive to the initial values. The ob-
servations from our results further validate the conclusions in previous
research. With flexible user-defined distance metrics, useful traces can
be filtered to show the differences of the ensemble runs. Our system
allows scientists to flexibly investigate variations of their models.

5.2 WRF Simulation Data

In this application, the researchers in environmental science would like
to investigate how urbanization influences the weather and climate.
Urbanization is usually considered to be influential to the change of
climates, yet the complicated mechanisms are still open research prob-
lems. Ensemble simulation with different initialization data is one way
to study this important topic.

In the experiment, the scientists conducted two runs with the WRF
(Weather Research and Forecasting) model, which is a well known and
routinely used numerical prediction system for weather research and
forecasting [1]. The first run, namely the base run, is initialized with
actual data. In the other run, the urban area is replaced by vegetation
landuse. The scientists who conducted the simulation would like to
see how weather differs with the two distinct geographical conditions.

The simulation starts from 2012-7-1 00:00:00 UTC to 2012-7-10
18:00:00 UTC, and spatially covers East China. The dimension of
the grid is 100 (west-to-east) × 100 (south-to-north) × 27 (vertical
pressure layers). Hourly data is stored in the simulation, and the
overall output data is about 4GB for each run. In our analysis, the
three wind components, as well as the essential variables to convert

coordinates in vertical layers are used. Other variables can be loaded
depending on the analysis purposes.

The visualization results of WRF data are shown in Fig. 8. The
3D rendering includes the volume rendered variation field and the fil-
tered pathlines. In the time line view, the overall differences between
the two runs are shown. At the very beginning, the two runs are very
close to each other. There are only small differences in wind directions
in the north. 40 hours later, there is a peak in the overall difference.
The traces originating from the north lead to considerable displace-
ment in the coastline of China. But later, it is interesting to see the
distances decrease. In the late stage of the simulation, another peak
appears. The variation values of the majority of the data domain in-
crease. Moreover, in the entire sequence, the sea region presents lower
variation than the mainland since sea surface temperatures are identi-
cal for both simulations. It is also worth noticing that during the sec-
ond peak, the regions with higher variation are moving toward the east,
as shown in the bottom of Fig. 8. Although the impact of urbanization
on the weather seems not to be significant in this short period of time,
our tool is still capable of detecting small differences and captures the
overall trend of 3-dimentional influence patterns in this case.

Positive feedback is given by the scientists who conducted this sim-
ulation. The visualization is very intuitive and straightforward to them.
The timeline view is very useful for the researchers to compare and
evaluate the ensemble runs. It is intriguing to see the two peaks in
the overall trends. The extracted lines and the variation field are quite
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clear to them and useful to investigate the influences of urbanization.
Without our tool, it is hard for them to compare the differences be-
tween runs effectively. Although in the current application, it is far
from drawing conclusions of the impact as to urbanization on weather,
more ensemble simulations will be conducted and visualized with our
tool to further investigate this complex research topic.

6 USER FEEDBACK AND DISCUSSIONS

We have received positive feedback from domain experts in climate
and environmental sciences. The scientist who conducted the WRF
simulations finds the differences shown in the visualization clear and
useful. There is a continued lack of analysis tools that can automat-
ically extract and reveal field line differences in ensemble simulation
runs. The emergence, migration, and dissipation of variation patterns
can help to design and refine future study of the influences of urbaniza-
tion. Another scientist who specializes in climate modeling and model
evaluation often runs tens of ensemble runs to study the models. The
most important measurements of model difference are bias and diver-
sity. The scientist feels our tool is useful for revealing model diversity
in unsteady flow components.

Both scientists like the timeline view. The peaks shown in the
WRF simulation results clearly show the differences between runs. In
addition, intuitively visible are large scale variation patterns that seem
to be periodic. Climate modelers pay attention to model effectiveness
and model validation on selected geographic regions. Our design of
region-selectable timeline view directly serves that need.

The Lagrangian-based variation is more effective than the tradi-
tional routinely-used local statistical-based uncertainty metrics, which
are primarily Eulerian-based. This is exemplified by the case of syn-
thetic 2D unsteady flow, with Gaussian noise injected into the flow
field. While Lagrangian-specification elegantly handles the analysis
task, using Eulerian-based metrics leads to an almost unusable uncer-
tainty analysis. This reference case clearly demonstrates the impor-
tance of Lagrangian-based variation.

Our variation metric can be generally adapted to different appli-
cations. For the Lagrangian-based distance metric, users can choose
to use difference of position, scalar values or other combinations. In
GEOS-5 application, we demonstrated how CO2 concentration is used

to compute the pairwise distance between the samples on the field
lines, and then obtain the variation value by summation. Such user-
defined application-driven metrics can be introduced directly from the
domain science to solve research problems in the domain science.

7 CONCLUSIONS AND FUTURE WORK

Although our work on eFLAA is primarily concerned with analysis
methods, it requires a parallel solution that is scalable in performance
and, more importantly, in space. As described in Section 4.4, the use
of a petascale supercomputer to analyze a terascale ensemble simula-
tion is prohibitive for the vast majority of scientists. eFLAA solves
this problem by closely coupling field line extraction with field line
analysis, and using batch streaming to control the entire process. Fur-
thermore, after the variation field has been computed, users’ analysis
can be done very flexibly and quickly. For example, when hypothe-
sizing about model diversity specific to a geographic region, one can
easily create test cases by filtering for that region and also filtering for
high flow variation. Due to this, our variation field is “reusable”.

As future work, we plan to extend our system to support irregular
grids. eFLAA currently handles rectilinear and hybrid-sigma grid (e.g.
GEOS-5 models). The current way of seeding pathlines is by uniform
sampling in the domain, which is of course not the optimal way for
our goal. In the future, we will leverage multi-resolution techniques to
produce more effective and efficient analysis. Interaction techniques
are also necessary for the coupled analysis on ensemble flow data. The
field also needs new methods for analyzing the variation of ensemble
tensor fields in future.
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