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Figure 1: Use case of EnsembleGraph to indicate the influences of Eurasian continent emisions on the surface ozone concentration over
eastern Asia. According to similar behaviors between ensemble members over space and time, the neighborhood is partitioned into three parts
(left thumbnails in the first three rows): eastern China, southwestern China, and northwestern China. Our novel graph-based interface provides
an abstraction of the grouped regions. Users can therefore navigate and track regions of interest over space and time. The last row shows
tracking partitioned over southeastern China using a graph view and linked spatial view. Users highlight regions for further analysis in the
comparison view, where they compare values between individual runs and behavior similarities between ensembles over different subregions
(charts in the first three rows).

ABSTRACT

This paper presents a novel visual analysis tool, EnsembleGraph,
which aims at helping scientists understand spatiotemporal simi-
larities across runs in time-varying ensemble simulation data. We
abstract the input data into a graph, where each node represents
a region with similar behaviors across runs and nodes in adjacent
time frames are linked if their regions overlap spatially. The visu-
alization of this graph, combined with multiple-linked views show-
ing details, enables users to explore, select, and compare the ex-
tracted regions that have similar behaviors. The driving applica-
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tion of this paper is the study of regional emission influences over
tropospheric ozone, based on the ensemble simulations conducted
with different anthropogenic emission absences using MOZART-4.
We demonstrate the effectiveness of our method by visualizing the
MOZART-4 ensemble simulation data and evaluating the relative
regional emission influences on tropospheric ozone concentrations.

Keywords: ensemble simulation, graph visualization.

1 INTRODUCTION

Ensemble simulations have become prevalent in various scien-
tific and engineering domains, such as aerodynamics, climate, and
weather research. They are usually used for studying model sen-
sitivities to parameters and initial conditions and for quantifying
uncertainties. The visualization of ensemble data sets is a grand
challenge, however, because ensemble data are usually multivari-
ate, multivalued, and time-varying and have large data scales.

Our focus in this paper is the behaviors of ensembles—
similarities between individual runs in space and time. Currently,
scientists typically analyze ensemble data by manual selection and
spatiotemporal aggregation. For example, a latitude-longitude box
is arbitrarily defined first as the region of interest, and users then



aggregate values along the temporal dimension (e.g., seasonal or
monthly average values). The spatial patterns of different ensem-
ble members can be visualized by contours or pseudo colors. Line
charts are plotted to compare the temporal differences between en-
semble members. This process has a number of critical issues.
First, without an overview, it is difficult to understand the overall
patterns of the data set by manual queries back and forth. Second,
inappropriately defined regions may lead to information loss in the
spatiotemporal aggregation and statistics, because the data proper-
ties may be highly inhomogeneous in specific regions. Visualizing
such data is challenging but critical, so that scientists can under-
stand their scientific data more effectively.

In this work, we propose a visual analysis framework called En-
sembleGraph (Figure 1), based on behaviors of ensembles. We
quantify the behaviors as behavior vectors, using metrics that de-
scribe similarities between ensemble members in spatiotemporal
location (detailed explanation in Section 4). Based on discussions
with domain scientists, we design visual analysis tools to support
various tasks, include the following:

• Partitioning the ensemble domain based on behaviors of
ensembles. Clustering of regions with similar behaviors
helps find reasonable initial targets. This provides an abstrac-
tion and overview of the overall patterns in ensemble data sets.

• Representing the spatiotemporal distribution of behaviors
in ensembles. A novel interface must be able to expres-
sively show the occurences of abstracted partitions in space
and time. Through this, scientists can quickly and flexibly
access data for the target regions.

• Comparing the different ensemble members. Comparison
is the core mission in ensemble visualization. Our tool should
be capable of comparing individual runs in targeted subre-
gions.

To support these tasks, we design the framework with several
components. First, we use an automatic ensemble domain par-
titioning method and do partitioning over the ensemble data, in
order to help identify regions with similar relative emission influ-
ences. Regarding those grouped partitions as basic units for analy-
sis, we also identify their spatiotemporal relationships in order to
give an overview to the whole ensemble data. Second, to sup-
port spatiotemporal exploration of all behavior patterns, we map
the spatiotemporal extracted regions and their relationships into a
graph structure, which provides an intuitive interface for analysis.
Third, we provide tools for comparing individual ensemble mem-
bers, which can be used to validate the findings for the exploration.

The driving application in this paper is to understand the impact
of regional emissions on the tropospheric ozone (O3). Tropospheric
O3, an important greenhouse gas that is harmful to human health
and agriculture production. They are formed from chemical reac-
tions of nitrogen oxides, carbon monoxides, and so forth, which
are caused mostly by human activities such as industrial and road
emissions. These anthropogenic emissions, so called O3 precur-
sors, are different around the world, because of local industrializa-
tion and environmental policies. Those emissions are transported
by wind convection, contributing a global atmospheric issue. Thus,
tropospheric O3 is a mixed influence affected by all regional an-
thropogenic pollutant emissions, yet the mixing weight from each
source region is not identical. For example, studies have shown that
O3 concentration over eastern China is affected mostly by domes-
tic pollutant emissions from the industry. Western China, which
is less industrialized, has the opposite situation; the O3 is formed
mostly from foreign emissions of upwind neighbors, such as In-
dia and Europe [17]. Analyzing and understanding the regional
emissions impacts are important for scientists and decision mak-
ers to further expedite emission reductions. To this end, scientists

have conducted ensemble simulations under different emission sce-
narios [17]. The ensemble simulation are based on the Model of
Ozone and Related Tracers, version 4 (MOZART-4). It consists
of perturbation runs with different emission sources and reference
runs (detailed explanation in Section 2.1); With such data sets, sci-
entists would like to investigate the relative importance of different
emission sources in the ensemble domain. To support the tasks,
we calculate behaviors according to the combination of influences
from different source emissions, and we apply our framework for
visualization using novel graph-based interface. Two case studies
and feedback from domain scientists show the usefulness of our
methods.

In summary, the contributions of this paper are as follows:

• Visual analysis framework that helps understand ensemble
simulation data based on behaviors of ensembles.

• Novel visual representation for exploring complex ensemble
data using a graph visualization method.

We organize the remainder of this paper as follows. In section 2
explain the background and review related work in Section 2. Sec-
tion 3 gives an overview to our approach. Section 4 describes data
processing and graph construction. Section 5 presents visual design
and interface. We then demonstrate cases and feedback in Section 6
and Section 7, and conclude the paper in Section 8.

2 BACKGROUND

We describe the driving application of this study and then summa-
rize related work on ensemble visualization and graph-based visu-
alization techniques in scientific visualization.

2.1 Driving Application

Scientists conduct perturbation experiments with ensemble simula-
tions to evaluate the sensitivities of O3 concentration to different re-
gional emissions [17]. The simulations are based on the MOZART-
4 model. The inputs of the model are from observations and emis-
sion inventories, and the outputs are the concentration of a series
of chemical species [5]. In this work, we focus on the most im-
portant substance—O3—which dominants the chemical reactions
in the model. We use daily surface O3 concentration in year 2000.

The experiments involve three types of runs in the experiments:
a BASE run, a GLOBE run, and perturbation runs. The BASE run
is conducted with the actual emissions, and the GLOBE run is con-
ducted by switching off all anthropogenic emissions. The perturba-
tion runs alternatively switch off the emissions from seven different
preset regions in the world. As shown in Figure 2, the preset emis-
sion source regions are Europe (related to EU run), India (IN run),
Middle East (ME run), southeast Asia (SA run), eastern Asia (EA
run), mid-Asia (MA run), and Siberia (RU run). Notice that the nat-
ural emissions still exist as the background emission, even if the
anthropogenic emissions from the source regions are switched off.
In our framework, we define the member behaviors by the bias of
the perturbation runs from BASE and GLOBE runs.

Through the ensemble simulations, one can measure the re-
sponse of tropospheric O3 concentration to different anthropogenic
emission conditions. Conventionally, scientists choose a range box
as the region of interest to study (e.g., rectangular range over east-
ern China). Next they compare the O3 concentration of one of the
perturbation runs with BASE run and GLOBE run in this area, to
evaluate the influence of this source region. For instance, the exam-
ple in Figure 3 shows the EA run for evaluating emission influence
from the eastern Asia region. From maps and statistics, the scien-
tists concluded that the O3 over eastern China is influenced mostly
by emission from the eastern Asia area, indicating very high do-
mestic emission in Eastern China, especially in summer (Figure 3).
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Figure 2: Seven source emission regions. During the ensemble sim-
ulation, anthropogenic emissions from one of the seven regions are
turned of, in order to calculate relative importance of influence from
human activity around that source region.

However, such conventional ensemble analysis workflow has
some difficiencies. First, the overall pattern is invisible to the users.
Because scientists can probe only one small region at one time, they
are almost blind to the overall data set, not knowing where to start
and having no evaluation for the rationality of targeting regions;
second, flexibility of interaction is limited. With this trial-and-error
process, scientists have no guarantee of the location and shape of
the target region; moreover, data in some locations may be inhomo-
geneous. To make the access more intuitive and flexible for scien-
tists to explore all potentially interesting features of regional emis-
sion influences, we partition the ensemble domain into spatiotem-
poral subregions, according to the behaviors of the ensemble. Then
our novel interface provides a visual abstraction and interaction for
ensemble analysis. We explain the workflow and the algorithms in
the following sections.

Monthly Average of BASE - EA

(a)

(c) (d)

(b)

BASE - EA

Base Run East Asia Run

Figure 3: (a): BASE run. (b): EA run — one of the perturbation runs
that is simulated for emission absence from the eastern Asia region.
(c): Their difference. (d): Monthly O3 average in an chosen area over
eastern China. This indicates that domestic emission influence over
eastern China is high, especially in summer.

2.2 Related Work

Ensemble Visualization. Ensemble simulation data sets are
usually multivalued, multivariate, and time-varying. Thus, they are
very challenging to visualize [16]. Aiming at showing spatiotem-
poral information as well as relationships between ensemble mem-
bers, the related research focuses on uncertainty visualization and
comparative visualization.

Previous uncertainty visualization work has used aggregation
or distribution to describe data values. Converting the multiple
values to statistics (e.g., mean, standard deviation, or peak num-
bers of distributions) makes common visualization techniques ap-
plicable [15, 20, 21]: pseudo coloring, streamlines, pathlines, or
isosurfaces. Histograms or parameter-based representations using

Gaussian mixture module also largely reduce the data complex-
ity [18, 36]. Visually embedding or extending uncertainty infor-
mation into conventional visualization methods helps users iden-
tify high-uncertainty regions and outliers: overlaying uncertainty-
encoded ribbons and glyphs over spaghetti plots [30], integrating
statistics (e.g., skew, kurtosis, and histogram) into the boxplot tech-
nique [34], and generalizing functional boxplots to visualize spatial
distribution of ensemble contours [25,38]. Our method abstracts the
ensemble domain into partitions with similar data properties (i.e.,
the behavior of ensemble members) and provides an intuitive in-
terface for exploration. One of the differences is that we focus on
the relationships between all ensemble members at each spatiotem-
poral location, that is, we quantify such properties using behavior
vectors. Another difference is that we detect and group locations
with similar properties in the ensemble domain and regard them as
the basic unit for exploration. By doing so, we reduce the complex-
ity of ensemble data and give users a simple portal that lets them
quickly identify and compare regions of interest in an ensemble.

Some previous works have also experimented with cluster-
ing and classification methods, e.g., clustering ensemble realiza-
tions [2], clustering location points according to member distribu-
tions [4], or classifying location points by member distributions and
ground truths [7]. We also use clustering for locations with similar
behaviors. During the clustering procedure, however, our compu-
tation of their distance considers individual ensemble members, in-
stead of overall distributions, because counting overall distributions
will cause information loss for individual ensemble members.

Comparative visualization is important in ensemble visualiza-
tion. A recent taxonomy for ensemble data comparison divides ex-
isting approaches into location-based comparison and feature-based
comparison [27]. Location-based methods conduct data compar-
ison by attributes at fixed locations in an ensemble domain: us-
ing a color map to show point-to-point differences between two
simulations [26] or statistical aggregation that indicates disagree-
ment between members at a single location [21, 31, 32], line chart
and bin chart encoding distribution inside one region [4], similar-
ity matrix for climate simulation models on predefined areas [29],
interactive similarity analysis for climate simulation models using
multiple criterias [28], and spatiotemporal exploration for off-shore
structures in a user-defined area [11, 12]. For ensemble flow field,
which is not applicable by traditional scalar field-based methods,
Lagrangian-based measurements [10] and transport variances [13]
quantify the degree of agreements on the same location in ensem-
ble flow fields. Feature-based methods first extract features from
individual runs and then compare them: rendering isosurfaces in
a slice-by-slice style [1], constructing isosurface-based comparison
for differences between two module runs [26], and displaying iso-
contours while overlaying uncertainty glyphs [34]. Our method be-
longs to the location-based type; we compare ensemble members
over precalculated regions.

Graph-Based Methods in Scientific Visualization. Apply-
ing graph visualization on scientific data is a new trend in scien-
tific visualization [37]. Abstracting features from scientific data to
graph models can help users gain better navigation and understand-
ing of relationships in the complex data, because graphs in 2D are
usually occlusion-free and more intuitive to explore than traditional
3D visualization methods. Many previous works used graph struc-
ture to represent large-scale, time-varying volumetric data and the
transitions of inside feature transitions over time [3,9,14,39]. Flow-
Graph [22, 23] and FlowWeb [40] are novel graph-based visualiza-
tion for flow fields that show the relationships of field lines and data
blocks. Sauber et al. [35] use graphs to reveal relationships between
variables for multifield data sets. Our work also takes advantage of
graphs to abstract complex time-variant ensemble simulation data:
we use nodes to represent subregions with similar ensemble behav-
iors, and we use edges for their spatial overlap in adjacent time



frames. Our graph-based interface helps researchers explore spa-
tiotemporal similarities between ensembles.

3 SYSTEM DESIGN AND OVERVIEW

EnsembleGraph is intended to help scientists find when and where
the ensemble runs are similar. Our motivation starts from close
examination of the steps that scientists take in a conventional work-
flow. We notice that their manual analysis process strongly depends
on trial and error, which is time-consuming and easily leads to miss-
ing important information in the data. We find that visual analyt-
ics can help identify regions with high similarity across ensemble
members and help scientists quickly explore the member behavior
in targeted regions. Based on discussions with scientists, we list our
design goal:

• Enabling subregion detection based on ensemble similar-
ities. We provide spatial domain partitioning according to
similarities across ensemble members. Scientists are inter-
ested mostly in finding the subregions that can help them iden-
tify patterns between ensemble members inside, such as sim-
ilar values between individual runs. Predicting their location
and shape is difficult, however. Our method quantifies the en-
semble similarities on each location and groups locations into
subregions, which can serve as guidance for ensemble data
exploration.

• Providing overview for subregion selection. Our visual
design includes a graph-based interface to show the evolution
of abstracted subregions. The similarities between ensemble
members would change over time. Giving an overview of the
spatiotemporal distribution of all abstracted subregions helps
identify evolving patterns for behavior vectors.

• Facilitating interactive visualization for comparison. Our
interactive interface provides comparison both inside and be-
tween subregions. The focus on subregions allows observing
actual values by using time series visualization techniques.

EnsembleGraph provides three visual components: a spatial
view, a temporal view, and a comparison view. The spatial view
shows how the ensemble domain is partitioned into subregions ac-
cording to ensemble similarities. We use a colored map to show the
partition results. Users can explore and highlight subregions. The
temporal view shows the occurrences of all subregions over time.
We plot the graph in chronological manner from left to right. Each
node in the graph represents a subregion with similar values across
individual runs; and links indicate spatial overlapping in adjacent
time frames. The layout is designed for easy reading and tracing.
The comparison view enables users to highlight and compare actual
values inside subregions. We enable single- and multi-run viewing
modes for comparing ensemble members both inside and bewteen
subregions. Our visual interface adopts area chart and pixel-based
table-style visualization for displaying time series.

The three components are linked to support spatiotemporal nav-
igation. Users track subregions in the temporal view and relate cor-
responding partitions in the spatial view. Then the comparison view
further provides time series and comparison for focused areas. The
last row in Figure 4 illustrates this process.

In order to support the aforementioned navigation functions, the
preprocessing steps mainly contains two parts (the first row in Fig-
ure 4): the domain partitioning and the region connection. First, we
do ensemble domain partitioning based on ensemble behaviors, so
as to summarize complex data into abstracted subregions: we quan-
tify the similarities into behavior vectors and group together simi-
lar locations into subregions. Second we construct a graph struc-
ture for spatiotemporally summarizing to the ensemble domain: we
establish connections between regions in neighboring time frames
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Figure 4: Overview of the EnsembleGraph visual analysis frame-
work. The first row is the data preprocessing part: we do partitioning
and region tracking for the data domain to provide overall summa-
rization. The second row is our interface including three main com-
ponents. The temporal view shows regions of similar ensemble be-
havior over time; the spatial view shows partitioning results as well
as spatial patterns of individual runs; and the comparison view vi-
sualizes emission influences of highlighted subregions for validation.
The third row is the exploration flow.

by detecting their spatial overlaps. We then abstract the ensemble
domain into a graph structure for visualization. We explain the pre-
processing procedures in the next section.

4 DOMAIN PARTITIONING BASED ON ENSEMBLE BEHAV-
IORS

We provide ensemble domain partitioning based on regional emis-
sions, to help scientists identify so-called influence relationships
between regions. Then we constrcut a graph data structure by their
temporal connectivity for further visualization.

4.1 Ensemble Behavior Definition

To establish a metric for representing the emission influences be-
tween regions, we quantify the behavior of ensemble by behavior
vectors. The behavior vector v is defined as an n-dimensional vec-
tor for each spatiotemporal location (Figure 5) x:

v(x) = (d1(x),d2(x), · · · ,dn(x))
T
, (1)

where n is the number of perturbation runs, and di(x) represents
the behavior of the ith ensemble member. For the application, our
definition of behavior di(x) is the influence to the location from
the ith emission source region Ri. It is calculated as the difference
between the BASE run and the ith run:

di(x) = Ĉ(x)−Ci(x), (2)

where Ĉ(x) and Ci(x) are the values of the BASE run and the ith
run, respectively. Thus, each spatiotemporal location has a high-
dimensional behavior vector. The similarities between behaviors on
two locations are defined by the inversion of the Euclidean distance
between behavior vectors. Therefore, locations having higher sim-
ilarity value indicate ensemble members having similar behaviors.
In our application, this means that O3 over two places is influenced
by a similar combination of emission sources.

4.2 Spatial Domain Partitioning for Ensemble Data

After quantifying the behavior of ensemble members on each loca-
tion, we aim at revealing how those behaviors distribute in space,



so as to indicate potentially interesting regions. Our method is
to group together the neighboring locations with similar behaviors
into subregions and present this as the basic unit for analysis. In
our implementation, we first cluster locations with similar behav-
iors into the same categories, and then merge clustered locations
into larger subregions.

We provide multiple options for the clustering algorithm, includ-
ing k-means [19], hierarchical clustering [8], and DBSCAN [6].
Users can select different algorithms and tune parameters to im-
prove the results with our tool. For simplicity, we use k-means for
algorithm description in this paper, which is one of the most used
methods for vector quantization. The clustering result keeps points
in the same groups close to each other and points in different groups
distinct from each other. The k-means algorithm starts with some
randomly selected centroids and then iteratively changes the cen-
troids for each cluster, until the clustering results become stable.
To keep the results stable, we avoid random initialization with the
unsupervised preclustering algorithm Canopy [24]. It quickly cov-
ers all data points with several circles with the same size (so called
canopies) in the high-dimensional space. The centroids of canopies
are then used as input for k-means, thus avoiding the random seed-
ing problem. After the clustering, we obtain the cluster labels for
each location in the domain.

We repeat the clustering for all time steps. To improve the per-
formance of the clustering for the sequential time steps, we use the
previous labeling results as the initial input for the k-means cluster-
ing in the next time steps. This approach is based on the assumption
that the ensemble values do not significantly change in subsequent
time steps.

After the clustering, we group locations with the same clustering
labels, in order to detect all continuous regions with similar values
across runs. We thus obtain partitioned results for ensemble do-
mains, and they keep the important features in the data. Subregions
are used as basic units in the graph-based visualization and analysis,
which represent data properties of all locations inside.

Grouped Locations with

Similar Behavior Vectors

Run of Emission A Base & Globe Runs Individual Influences

from Emission A

Behavior Vector

on Each Location

<d1(x),d2(x),··· ,dn(x)>

Individual Influences 

from All Other Runs

Figure 5: Partitioning ensemble domain according to the behavior
vectors on each location. First, we calculate the behavior vector on
each location according to the BASE run and the perturbation runs to
quantify behavior of ensemble on each location using a vector. Then
we classify all behavior vectors by clustering methods and use this
result for ensemble domain partitioning.

4.3 Partitioned Subregions Connection

We correspond subregions in subsequent time steps, in order to cap-
ture the evolution of similar ensemble behaviors over time. Feature-
tracking algorithms have been well studied over decades; we choose
an effective way to track neighboring features based on their spatial
overlap [33].

Two parameters in the overlap-based subregion trackin: the sub-
region size threshold γr and the overlap size threshold γo. Regions
with small sizes less than γr are skipped so as to avoid uninterest-
ing, noisy regions. The overlap size threshold γo is for region con-

nectivity. Smaller γo usually leads to larger connectivities between
subregions. Users can interactively change the parameters to ob-
tain different granularities of subregions for analysis. When users
change the parameters, our tool updates the visualization results in
the background, in order to reduce the delay in the user interface.
More details are discussed in the next section.

Next, we construct the edges connecting the subregions that are
regarded as the same feature. The split and merge events are also
recorded in the graph for further interactive visual analysis.

5 VISUALIZATION AND INTERACTION DESIGN

We construct and visualize the graph data structure of extracted sub-
regions that have similar ensemble behaviors based on the design
goals. In addition to the graph visualization that gives the overview,
we provide linked views for interactive exploration and comparison
of the selected subregions.

The visualization tool consists of three main components: the
temporal view, the spatial view, and the comparison view. In addi-
tion to the three main components, we provide a control panel for
users to select clustering algorithms and their parameters.

Our prototype system is implemented in C++ with OpenGL and
Qt libraries. We separately run the client on a lightweight machine
and the server on a powerful workstation with larger memory and
I/O performance. This design enables large data handling. We
would like to further extend this system to cluster and supercom-
puting environments.

5.1 Temporal View

The temporal view visualizes the abstracted subregions by using a
graph in a chronological manner, in order to provide an overview
of the ensemble data. It maps the time-varying partitioning results
into a 2D plane, which is intuitive for interactive exploration. For
example, the bottom part of Figure 6 shows a visualization result of
an ensemble flow simulation evolution.

Our visualization design involves three principles for the graph
layout. First, graph nodes must be aligned to their times of occur-
rence from the left to the right. Thus the layout is in a “streaming”
style, analogue to the storyline visualization. Second, edge cross-
ings need to be reduced as much as possible for better readability.
Third, the recurring subregions should be aligned horizontally as
straight as possible, so that users can easily trace them in the visu-
alization. In our implementation, we first use the “dot” algorithm
in the GraphViz library to generate an initial layout, which places
nodes from the left to the right. Then we visually wrap the straight-
ened nonbranch paths, to emphasize connected subregions for easy
tracking. In the visualization, the sizes of nodes are proportional
to the sizes of counterpart regions, and the colors of nodes encode
various variables selected by users.

The temporal view also links to other views in the system. The
selected subregions are also shown in the spatial view and the com-
parison view for detailed analysis. In addition, we provide an op-
tional star glyph visualization in this view for probing. Users can
highlight subregions by clicking on the interested nodes. The aver-
aged ensemble values of the selected subregion are visualized by a
star glyph. Each highlighted node correspond to one polygon in the
star glyph, and the coordinates on the axis are the averaged property
from individual ensemble members. Figure 1 shows some example
star glyphs on the right side.

5.2 Spatial View

The spatial view visualizes the spatial distribution and the input
ensemble data of the subregions. We provide a data mode and a
partition mode in this view. The data mode shows data values for
all ensemble members. Users choose ensemble members and then
navigate in a map. By dragging the slider bar, users can change the



current time step for display. The partition mode shows the distri-
bution of subregions with solid colors and allows users to highlight
locations of interests. Users can focus on a subregion by double-
clicking in the map view and submit the selected subregion to the
server side to query for retrieving data values. The focusing action
will be broadcast to the temporal view and the comparison view, to
update the current exploration status.

5.3 Comparison View

The comparison view enables two types of comparisons: an ensem-
ble member comparison on selected subregions, and a subregion
comparison on the selected ensemble run. Users can also examine
detailed information in the selected subregions for further analysis.
Both types of comparison were indicated by the domain scientists
in our study to be important.

We design the comparison view in a list style. Each list item
relates to one selected subregion. Inside each item is a thumbnail
map and a detailed visualization result. Thumbnails on the left side
give a preview of the location of corresponding subregions. The
same color scheme is used as the ones in the temporal view and the
spatial view. The ensemble members are shown on the right side of
the view, using area charts and pixel-based visualizations.

We provides three viewing modes for visualizing behaviors
of ensemble members for each highlighted subregion: (1) the
natural-anthropogenic mode compares natural influence and an-
thropogenic influence; (2) the domestic-foreign mode compares
emission influences from one area with ones from other areas; and
(3) the individual influence mode compares individual influences
through a pixel-based visualization. The natural-anthropogenic
mode takes the BASE run as the background chart and plots the an-
thropogenic influence (defined by the difference between the BASE
run and the GLOBE run) as the foreground. This lets users gain
knowledge about overall O3 concentration and the influence frac-
tion from human activities. Users can also switch the foreground
chart to the GLOBE run, to focus on the natural emission influences.
The domestic-foreign mode visualizes the domain-foreign ratio of
emission influences, which is calcualted by dividing domain emis-
sion influences (differences between the BASE run and perturbation
runs) by foreign emission influences (differences between individ-
ual runs and the GLOBE run). We use a red-to-blue color map for
this ratio as the foreground and a white-to-gray color map for total
anthropogenic influences in the background. The individual influ-
ence mode visualizes temporal distribution of influences from all
source regions. In the pixel-based table-style visual representation,
each row is one chart for the corresponding source region, while
each column represents the corresponding time step. Red means
positive values, and blue means negative values.

6 RESULTS

This section presents two case studies with EnsembleGraph: iden-
tifying source region emission influences of tropospheric O3 over
China in Case I and investigating spatial patterns in the Southern
Hemisphere in Case II. Both case studies use daily output from nine
simulation runs from MOZART-4, in the year 2000 (366 timesteps
in total). We use surface O3 concentration, with spatial resolution
at 192×96.

6.1 Case I: Analyzing Source Region Emission Influ-
ences on O3 over China

Scientists would like to analyze how O3 over China is influenced by
anthropogenic emissions from the Eurasian continent. Specifically,
they want to find out which places are more influenced by domestic
emissions and which places are influenced by foreign regions, and
how influences change over time. EnsembleGraph partitions the
area by relative importantce between regional anthropogenic emis-
sion influences. The partition map in the spatial view shows that

the area over China is covered mostly by three parititions. The first
one (the first row in Figure 1) covers eastern China area and neigh-
boring regions such as Japan and the Korean peninsula. The second
one (the second row in Figure 1) covers southwestern China, be-
ing connected to India. The third one (the third row in Figure 1) is
northwest China, connecting to middle Asia and Siberia. The parti-
tioning results agree with the geographical terrain: southwest China
is the Qinghai-Tibet plateau, and northwest China is separated from
eastern China by mountains.

From the visualization results we can observe and compare ac-
tual values inside these subregions. Inspired by the analysis tasks
of domain scientsits, we use the single-run mode (area charts in
Figure 1) to display the differences between the BASE run and the
GLOBE run, in order to show the total anthropogenic emission in-
fluences in each region. We find that in eastern China (the first
row), influences happen mostly in summer and almost disappear in
winter. In northwest China (the second row), most anthropogenic
influences appear in spring and summer. On the southwest direc-
tion (the third row) the anthropogenic influences last almost the
whole year. The multi-run mode (pixel-based table in Figure 1)
allows comparison for temporal distribution of each regional emis-
sion. The eastern China area is influenced almost only by east Asia
(the first row). In northwest China (the second row), Europe and
east Asia are the dominant emission source regions in spring and
summer. Emission influences over southwest China (the third row)
are totally different: the area largely affected by India throughout
the whole year, and occasionally affected by the middle East dur-
ing spring. These findings are similar to the previous work [17].
In their study, the researchers selected two box areas over Xinjiang
province (40◦N-45◦N, 84◦E-90◦E) and the Qinghai-Tibet Plateau
(29◦N-34◦N, 86◦E-92◦E). Eastern China suffers a higher domes-
tic pollutant influence of O3 concentration because of its industrial
prosperity. Western China, which is less industrialized, is influ-
enced mostly by foreign emissions of upwind neighbors, such as
India.

6.2 Case II: Observing Source Region Emission Influ-
ences on O3 over the Southern Hemisphere

This section shows how scientists use EnsembleGraph to study spa-
tial patterns over the Southern Hemisphere by different regional
emission patterns. First, by exploring the temporal view using pan-
ning and zooming, scientists can discover an obvious node chain
that stays throughout the whole year. It seems related to a very
large region indeed. Partition map in the spatial view shows that it
belongs to the largest segment covering the whole Southern Hemi-
sphere. It explains that most parts of the Southern Hemisphere
have similar ensemble behaviors. By double clicking on the South-
ern Hemisphere partition and submiting this selected region to the
server side, scientists can filter out all other unrelated regions, leav-
ing only a trunk with several branches in the graph, which indicates
that the Southern Hemisphere can be as considered as a whole re-
gion or separated into two or three regions according to the differ-
ent member behaviors. The counterpart subregions are shown in
the partitioning map in Figure 6 (thumbnails in the left side).

In the comparison view, we can find temporal member behavior
differences: Most southern and most northern areas of these three
subregions have higher O3 concentration in January and December.
Through the natural-anthropogenic comparison mode, however, we
found that O3 over the most southern subregion is caused by natural
emissions, when O3 over the latter subregion is affected by anthro-
pogenic emissions (see Figure 6). The most northern strip, although
it appears to have lower total O3 concentration, suffers from rela-
tively higher anthropogenic emission influences during the whole
year. The individual influence comparison mode shows the rela-
tive importance: for the most northern subregion, southern Asia
emissions have been the dominant source throughout the year, fol-



lowed by eastern Asia and the Middle East during the summer in the
Northern Hemisphere. The other two subregions in the south are
similarly more affected by southern Asia, eastern Asia and Siberia
during the summer.

Figure 6: Southern Hemisphere divided into three regions according
to ensemble behaviors.

6.3 Domain Scientists Review

We have worked with domain scientists to validate our findings and
evaluate our tool. For the first case, they confirmed our findings,
namely that eastern China is significantly influenced by its domain
emission, while northwestern and southwestern China are isolated
from those emissions because of mountains and plateaus, and are
more affected by the upwind areas. For the second case, the par-
titioning results can be interpreted as follows. The middle part
is located in the westerly of Southern Hemisphere, which has al-
most no land as obstacles and thus experiences strong wind con-
vection. That leads to similar emission influences around this lati-
tude and also isolates the air above the Antarctic continent, which is
the southernmost region in the partitioning results. To confirm the
influence mechanism from the Eurasian continent to the Southern
Hemisphere, we need more simulation data to apply to our frame-
work. We have also received positive feedback on the tool. The sci-
entists showed particular interests in the partitioning results, which
help them efficiently locate subregions with similar ensemble be-
haviors. Without such a visual analysis tool, it is time-consuming to
define a subregion to study the ensemble member similarities. The
tool also provides a flexible user interface to visualize the ensemble
value distributions and compare the ensemble members. Scientists
can locate the features that they have found with their traditional
workflows. Our tool has the potential to help them find even more
interesting features in their future experiments by adding more cus-
tomizable operators.

7 GENERAL APPLICATION CASE: ENSEMBLE LOCK-
EXCHANGE SIMULATION

Our next experiment involves an ensemble flow simulation to study
the model sensitivities to different pertubations. The simulation is
an experiment of the lock-exchange problem: a light fluid and a
heavy fluid are separated by a barrier at the start condition; at the
first time step, the barrier is removed, to allow the two fluids mix.
Scientists slightly change the initial density difference between the
two fluids to evaluate the sensitivity of flow mixing progress. In
our application we use the output fluid density and focus on density
similarities between ensemble members of different initial pertur-
bations. We use 100 runs of 100 time steps, with a spatial resolution
of 128×128 for analysis.

Figure 7 shows the visualization results of this data set. We use
the offset fluid density values from the mean values to quantify the
similarity of ensemble members: at each location, the behavior vec-
tor consists of the offset density values of all ensemble members,
and the ensemble member similarity between two locations is de-
fined as their Eucleadian distance. Higher similarities between two

Figure 7: Ensemble flow simulation process. First row: a detail part
at the end of the graph. Second row left: time series inside one
ellipse region; Second row right: spatial view at the two time steps.

locations mean similar output from the same run. EnsembleGraph
therefore groups such locations and describes the evolution of such
subregions during this ensemble flow mixing process. We observe
some relatively larger sized node paths, relating to the two sepa-
rated liquids that keep stable at first and then slowly start to rotate
and mix together in the simulation process. We also observe that
the graph becomes messy at the end of the simulation: many small
splitting regions and crossing edges appear. The first row shows a
detailed part at the end of the graph, and two time frames: One gray
high-speed ellipse region deviates from the large region and merge
at the other side with the purple region. On the symmetric side, the
dark blue ellipse region morphs into the larger red part. The sec-
ond row shows time series inside one ellipse region. Each row is
one run; red means positive values, and blue means negative val-
ues, comparing to the average. We can see that the value inside the
highlighted subregion is first below average, then suddenly rises to
a very high level, and finally slowly falls to a normal level. This be-
havior means that two rotating liquids with different densities pass
across the highlighted subregions during the experiments, and the
overall density gradually falls to average after mixing.

8 CONCLUSIONS AND FUTURE WORK

We present a visual analysis framework EnsembleGraph for ensem-
ble simulation data analysis. The goal of this work is to enable
interactive exploration of similarity patterns in spatiotemporal en-
semble domains. Our approach involves partitioning the data do-
main and then constructing a graph data structure to represent sub-
regions with similar ensemble values for visualization. The graph-
based user interface design with multiple linked views enables the
efficient spatiotemporal explanation of the data. Two application
cases are demonstrated: regional emission influences and ensemble
lock-exchange flow simulation. With emission simulation data, En-
sembleGraph enables scientists to evaluate and compare regional
anthropogenic emission influences on global tropospheric O3.

We plan to develop more domain-specific algorithms and a cus-
tomized interface for ensemble domain partitioning, in order to sup-
port more applications that incorprate ensemble simulations. Ex-
tending the framework to support large scale-data is also our future
work: The clustering algorithm for each time step is easily extend-
able to a parallel environment or Map/Reduce framework. We can
also compress large-scale data by grouping similar time steps and
downsampling the spatial resolution. We envision that our new vi-
sual analysis framework will be adopted for visual analysis of a
wider range of spatiotemporal data in different domains.
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