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Abstract Implicit–explicit (IMEX) time stepping methods can efficiently solve differential
equations with both stiff and nonstiff components. IMEX Runge–Kutta methods and IMEX
linear multistep methods have been studied in the literature. In this paper we study new
implicit–explicit methods of general linear type. We develop an order conditions theory for
high stage order partitioned general linear methods (GLMs) that share the same abscissae,
and show that no additional coupling order conditions are needed. Consequently, GLMs offer
an excellent framework for the construction of multi-method integration algorithms. Next,
we propose a family of IMEX schemes based on diagonally-implicit multi-stage integration
methods and construct practical schemes of order up to three. Numerical results confirm the
theoretical findings.

Keywords Implicit–explicit · General linear methods · DIMSIM · ODE

1 Introduction

Implicit–explicit (IMEX) time integration schemes are becoming increasingly popular for
solving multiphysics problems with both stiff and nonstiff components, which arise in many
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application areas such as mechanical and chemical engineering, astrophysics, meteorology
and oceanography, and environmental science. Examples of multiphysics problems with both
stiff and nonstiff components include advection–diffusion–reaction equations, fluid-structure
interactions, and Navier–Stokes equations. Such problems can be expressed concisely as the
system of ordinary differential equations (ODEs)

y′ = f (t, y)+ g(t, y) t0 ≤ t ≤ tF , y(t0) = y0, (1)

where f corresponds to the nonstiff term, and g corresponds to the stiff term. In case of sys-
tems of partial differential equations (PDEs) the system (1) appears after semi-discretization
in space.

An IMEX scheme treats the nonstiff term explicitly and the stiff term implicitly, therefore
combining the low cost of explicit methods with the favorable stability properties of implicit
methods. IMEX linear multistep methods have been developed in [2,14,19], and IMEX
Runge–Kutta methods have been built in [1,4,25,31].

The general linear method (GLM) family proposed by Butcher [6,9] generalizes both
Runge–Kutta and linear multistep methods. The added complexity improves the flexibility to
develop methods with better stability and accuracy properties. While Runge–Kutta and linear
multistep methods are special cases of GLMs, the framework allows for the construction of
many other methods as well. Here we focus on the diagonally implicit multistage integra-
tion methods (DIMSIM) [5], which are both efficient and accurate, and great potentials for
practical use. GLM can overcome the limitations of both linear multistep methods (lack of
A-stability at high orders) and of Runge–Kutta methods (low stage order leading to order
reduction). A complete treatment of GLMs can be found in the book of Jackiewicz [20].

In this study we develop the concept of partitioned DIMSIM methods, and develop an
order conditions theory for a family of such methods. This shows that partitioned GLM is
a great framework for developing multi-methods (composite methods). Next, we propose a
new family of implicit–explicit methods based on pairs of DIMSIMs, and develop second
and third order methods on this class.

In our earlier work [33,34] we have developed second order IMEX-GLM schemes. While
this paper was under study, we became aware of an effort to construct IMEX-GLM schemes
for Hamiltonian systems [13]. The theoretical results presented in this paper will be used by
the first two authors in the construction of extrapolation-based IMEX-GLM schemes [11].

The paper is organized as follows. Section 2 reviews the class of general linear methods.
The new concept of partitioned DIMSIM schemes is proposed in Sect. 3, and the order
conditions theory is developed. IMEX-DIMSIM schemes are constructed in Sect. 4. Linear
stability is analyzed in Sect. 4.5, and Prothero–Robinson (PR) convergence in Sect. 4.5. IMEX
methods of second and third order are built in Sects. 5.1 and 5.2, respectively. Numerical
results for van der Pol system and for the two dimensional gravity waves equations are
presented in Sect. 6. Section 7 draws conclusions and points to future work.

2 General Linear Methods

2.1 Representation of General Linear Methods

Consider the initial value problem for an autonomous system of differential equations in the
form

y′(t) = f (y), t0 ≤ t ≤ tF , y(t0) = y0, (2)
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with f : R
d → R

d and y(t) ∈ R
d . GLMs [20] for (2) can be represented by the abscissa

vector c ∈ R
s , and four coefficient matrices A ∈ R

s×s,U ∈ R
s×r ,B ∈ R

r×s and V ∈ R
r×r

which can be represented compactly in the following tableau

A U
B V.

On the uniform grid tn = t0 + nh, n = 0, 1, . . . , N , Nh = tF − t0, one step of the GLM
reads

Yi = h
s∑

j=1

ai, j f (Y j )+
r∑

j=1

ui, j y[n−1]
j , i = 1, . . . , s, (3a)

y[n]
i = h

s∑

j=1

bi, j f (Y j )+
r∑

j=1

vi, j y[n−1]
j , i = 1, . . . , r, (3b)

where s is the number of internal stages and r is the number of external stages. Here, h is
the step size, Yi is an approximation to y(tn−1 + ci h) and y[n]

i is an approximation to the
linear combination of the derivatives of y at the point tn . The method (3) can be represented
in vector form

Y = h (A ⊗ Id×d) F(Y )+ (U ⊗ Id×d) y[n−1], (4a)

y[n] = h (B ⊗ Id×d) F(Y )+ (V ⊗ Id×d) y[n−1], (4b)

where Id×d is an identity matrix of the dimension of the ODE system.

2.2 Stability Considerations

The linear stability of method (3) is analyzed in terms of its stability matrix

M(z) = V + z B (Is×s − zA)−1 U, (5)

and the corresponding stability function

p(w, z) = det(wIr×r − M(z)), (6)

where w, z ∈ C. A desirable property is the inherent Runge–Kutta stability [8,32]. This
means that the stability function (6) has the form

p(w, z) = ws−1 (w − R(z)
)
, (7)

where R(z) is the stability function of Runge–Kutta method of order p = s.

2.3 Accuracy Considerations

We assume that the components of the input vector y[n−1]
i for the next step in (3) satisfy

y[n−1]
i =

p∑

k=0

qi,khk y(k)(tn−1)+ O(h p+1), i = 1, . . . , r, (8)

for some real parameters qi,k, i = 1, . . . , r, k = 0, 1, . . . , p.
The method (3) has order p if the output vector y[n]

i satisfies

y[n]
i =

p∑

k=0

qi,khk y(k)(tn)+ O(h p+1), i = 1, . . . , r, (9)
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for the same parameters qi,k of (8).
The method (3) has stage order q if the internal stage vectors Y [n]

i are approximations of
order q to the solution at the time points tn−1 + ci h

Y [n]
i = y(tn−1 + ci h)+ O(hq+1), i = 1, . . . , s. (10)

We collect the parameters qi,k in the matrix W for convenience

W = [q0 q1 · · · qp] =

⎡

⎢⎢⎢⎣

q1,0 q1,1 · · · q1,p

q2,0 q2,1 · · · q2,p
...

...
. . .

...

qr,0 qr,1 · · · qr,p

⎤

⎥⎥⎥⎦ . (11)

Theorem 1 (GLM order conditions [20]) Assume that y[n−1] satisfies (8). Then the GLM
(3) has order p (9) and stage order q = p (10) if and only if

ecz = zAecz + Uw(z)+ O(z p+1), (12a)

ezw(z) = zBecz + Vw(z)+ O(z p+1), (12b)

where

ecz = [ec1z, . . . , ecs z]T , w(z) =
p∑

j=0

q j z j .

For stage order q = p − 1 condition (12a) is replaced by

ecz = zAecz + Uw(z)+
(

cp

p! − A c
(p − 1)! − Uqp

)
z p + O(z p+1). (12c)

Proof See Butcher and Jackiewicz [9] [20, Section 2.4].

It is shown in [5,20] that a GLM (3) has order p and stage order q with q = p = r = s
if and only if

B = B0 − AB1 − VB2 + VA, (13)

where the matrices B0,B1,B2 ∈ R
s×s are defined by

(B0)i, j =
∫ 1+ci

0 φ j (x)dx

φ j (c j )
, (B1)i, j = φ j (1 + ci )

φ j (c j )
, (B2)i, j =

∫ ci
0 φ j (x)dx

φ j (c j )
, (14)

with

φi (x) =
s∏

j=1, j �=i

(x − c j ), i = 1, . . . , s.

2.4 Starting and Ending Procedures

Assumption (8) requires to compute the initial vector y[0] by a starting procedure satisfying

y[0]
i =

p∑

k=0

qi,khk y(k)(t0)+ O(h p+1), i = 1, . . . , r. (15)
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Dense output is based on derivative approximations of the form

hk y(k)(tn) ≈
s∑

i=0

hβk,i f (Yi )+
r∑

j=0

γk, j y[n−1]
j , k = 0, 1, . . . , r. (16)

It is shown in [9,10] that (16) is accurate within O(h p+1) if and only if

[1, z, . . . , z p]T ez = zB̃ecz + Ṽw(z)+ O(z p+1) (17)

where B̃ = [βk,i ] and Ṽ = [γk,i ]. The finishing procedure uses (16) with k = 0 to generate
the solution at the last step

y(tn) ≈
s∑

i=0

hβ0,i f (Yi )+
r∑

j=0

γ0, j y[n−1]
j . (18)

2.5 Diagonally Implicit Multistage Integration Methods

Diagonally implicit multistage integration methods (DIMSIMs) are a subclass of GLMs
characterized by the following properties [9]:

1. A is lower triangular with the same element ai,i = λ on the diagonal;
2. V is a rank-1 matrix with the nonzero eigenvalue equal to one to guarantee preconsistency;
3. The order p, stage order q , number of external stages r , and number of internal stages s

are related by q ∈ {p − 1, p} and r ∈ {s, s + 1}.

In this work we focus on DIMSIMs with p = q = r = s,U = Is×s , and V = 1s v
T ,

where vT 1s = 1 [20]. DIMSIMs can be categorized into four types according to [9]. Type
1 or type 2 methods have ai, j = 0 for j ≥ i and are suitable for a sequential computing
environment, while type 2 and type 3 methods have ai, j = 0 for j �= i and are suitable for
parallel computation. Methods of type 1 and 3 are explicit (ai,i = 0), while methods of type
2 and 4 are implicit (ai,i = λ �= 0) and potentially useful for stiff systems.

3 Partitioned General Linear Methods

Consider the partitioned system of ODEs

y′ =
⎡

⎢⎣
y{1}
...

y{N }

⎤

⎥⎦

′

=
⎡

⎢⎣
f{1}(y{1}, . . . , y{N })

...

f{N }(y{1}, . . . , y{N })

⎤

⎥⎦ = f (y), (19)

where the solution vector is separated into components y{m},m = 1, . . . , N , each of which
may be itself a vector.

A partitioned general linear method solves (19) by applying a different GLM to each com-
ponent. If not explicitly stated otherwise , we use the subscript {m} to denote the coefficients
specific to the m-th component of the partitioned system. We have the following
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Definition 1 (Partitioned GLM) One step of a partitioned GLM has the form

Y{m}i = h
s∑

j=1

a{m}i, j f{m}(Y{1} j , Y{2} j , . . . , Y{N } j )+
r∑

j=1

u{m}i, j y[n−1]
{m} j , i = 1, . . . , s,

(20a)

y[n]
{m}i = h

s∑

j=1

b{m}i, j f{m}(Y{1} j , Y{2} j , . . . , Y{N } j )+
r∑

j=1

v{m}i, j y[n−1]
{m} j , i = 1, . . . , r,

(20b)

where a{m}i, j , u{m}i, j , b{m}i, j , and c{m}i for m = 1, . . . , N represent the coefficients of N
different GLMs.

Definition 2 (Internal consistency) A partitioned GLM (20) is internally consistent if all
component methods share the same abscissae, c{m}i = ci for m = 1, . . . , N .

Internal consistency means that all stage components approximate the solution compo-
nents at the same time point, i.e., [Y{1} j , . . . , Y{N } j ]T ≈ y(tn + c j h), for all j = 1, . . . , s.
An internally consistent partitioned GLM method (20) can be represented compactly as

c{m} = c,
A{m} U{m}
B{m} V{m}

. (21)

Definition 3 (Order of partitioned GLM) Assume that each component of the input vector
satisfies (8)

y[n−1]
{m} i =

p∑

k=0

q{m}i,khk y(k){m}(tn−1)+ O(h p+1), i = 1, . . . , r. (22)

The partitioned GLM (20) has order p if each component of the output vector satisfies

y[n]
{m} i =

p∑

k=0

q{m} i,khk y(k){m}(tn)+ O(h p+1), i = 1, . . . , r, m = 1, . . . , N , (23)

for the same parameters q{m}i,k as in (22). The partitioned GLM (20) has stage order q if
each component of the internal stages Y [n]

i satisfies

Y [n]
{m} i = y{m}(tn−1 + c{m}i h)+ O(hq+1), i = 1, . . . , s, m = 1, . . . , N . (24)

Theorem 2 (Order conditions for partitioned GLMs) Assume that each component y[n−1]
{m} j

satisfies (8). Then the internally consistent partitioned GLM (21) has order p (23) and stage
order q ∈ {p − 1, p} (24) if and only if each component method

(
A{m},B{m},U{m},V{m}

)

has order p (9) and stage order q (10).

Remark 1 Each component method needs to independently meet its own order conditions
(12). No additional “coupling” conditions are needed for the partitioned GLM (i.e., no order
conditions contain coefficients from multiple component schemes).

Proof We first prove the “only if” part: if the partitioned GLM satisfies (23)–(24)
with order p stage order q ∈ {p − 1, p}, then each component method satisfies its
own order conditions (9)–(10) with the same p and q . This can be seen immediately
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by employing the same component method for all partitions,
(
A{k},B{k},U{k},V{k}

) ≡(
A{m},B{m},U{m},V{m}

)
for k = 1, . . . , N . The partitioned method (21) is the traditional

GLM method
(
A{m} ,B{m},U{m}, V{m}

)
and has to satisfy the traditional order conditions

(9) and (10).
We next prove the “if” part: if each component method satisfies (9)–(10) with order p

stage order q ∈ {p − 1, p}, then the partitioned GLM (21) has order p and stage order q .
Denote

Y j =
⎡

⎢⎣
Y{1} j
...

Y{N } j

⎤

⎥⎦ , Y =
⎡

⎢⎣
Y1
...

Ys

⎤

⎥⎦ ,

and

y(tn−1 + c j h) =
⎡

⎢⎣
y{1}(tn−1 + c j h)

...

y{N }(tn−1 + c j h)

⎤

⎥⎦ , y(tn−1 + ch) =
⎡

⎢⎣
y(tn−1 + c1h)

...

y(tn−1 + csh)

⎤

⎥⎦ .

Consider the stage equations of the individual method m with exact solution arguments

y(tn−1 + ci h) = h
s∑

j=1

a{m}i, j f
(
y(tn−1 + c j h)

)

+
r∑

j=1

u{m}i, j

( p∑

k=0

q{m} i,khk y(k)(tn−1)

)
+ O (

hq+1) , i = 1, . . . , s.

(25)

The error size is given by the stage order q of each individual method (10). Using the
assumption (22) each component of the sum

∑p
k=0 q{m} i,khk y(k){m}(tn−1) can be replaced by

the numerical approximations y[n−1]
{m} j , which differ from their exact counterparts by O(h p+1);

therefore their use in (25) does not change the asymptotical error size. The m-th component
of relation (25) then reads

y{m}(tn−1 + ci h) = h
s∑

j=1

a{m}i, j f{m}
(
y(tn−1 + c j h)

)

+
r∑

j=1

u{m}i, j y[n−1]
{m} j + O (

hq+1) , i = 1, . . . , s.

(26)

Subtracting (26) from the stage Eq. (20a) gives

Y{m}i − y{m}(tn−1 + ci h) = h
s∑

j=1

a{m}i, j
(

f{m}(Y j )− f{m}(y(tn−1 + c j h))
) + O(hq+1)

and therefore
∥∥Y{m}i − y{m}(tn−1 + ci h)

∥∥∞ ≤ h
∥∥A{m}

∥∥∞ Lm ‖Y − y(tn−1 + ch)‖∞ + O(hq+1)

where Lm is the Lipschitz constant of f{m}. It follows that [20]

‖Y − y(tn−1 + ch)‖∞ = O(hq+1) (27)
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for all sufficiently small step sizes

h < τ =
(

max
m

∥∥A{m}
∥∥∞ Lm

)−1
.

Equation (27) proves the stage order of the partitioned GLM method.
Continuing, (27) implies that

h f{m} (Yi ) = h f{m} (y(tn−1 + ci h))+ O(hq+2),

= h f{m} (y(tn−1 + ci h))+ O(h p+1) (28)

where we have used the fact that q + 2 ≥ p + 1. Consider the solution step of the individual
method m with exact solution arguments

p∑

k=0

q{m} i,khk y(k)(tn) = h
s∑

j=1

b{m}i, j f
(

y(tn−1 + c j h)
)

+
r∑

j=1

v{m}i, j

( p∑

k=0

q{m} i,khk y(k)(tn−1)

)
+ O (

h p+1)

(29)

for i = 1, . . . , r , where the size of the error term reflects the fact that each individual method
has order p.

Use (28) and the assumption (22) into the m-th component of (29) to obtain

p∑

k=0

q{m} i,khk y(k)(tn) = h
s∑

j=1

b{m}i, j f
(

Y j )
) +

r∑

j=1

v{m}i, j y[n−1]
{m} j + O (

h p+1) , (30)

= y[n]
{m}i + O (

h p+1) i = 1, . . . , r, (31)

The last equality follows from the partitioned method solution Eq. (20b). This establishes
the order p of the partitioned GLM.

4 Implicit–Explicit General Linear Methods

4.1 Construction Procedure

The derivation of IMEX-GLM schemes relies on the partitioned GLM theory developed in
Sect. 3. We transform the additively partitioned system (1) into a component partitioned
system (19) via the following transformation [1]

y = x + z,

x ′ = f̃ (x, z) = f (x + z), (32a)

z′ = g̃(x, z) = g(x + z). (32b)
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Equation (32a) is discretized with an explicit (type 1) GLM

Xi = h
i−1∑

j=1

ai, j f (X j + Z j )+
r∑

j=1

ui, j x [n−1]
j , i = 1, . . . , s, (33a)

x [n]
i = h

s∑

j=1

bi, j f (X j + Z j )+
r∑

j=1

vi, j x [n−1]
j , i = 1, . . . , r. (33b)

Similarly, Eq. (32b) is discretized with an diagonally implicit (type 2) GLM

Zi = h
i∑

j=1

âi, j g(X j + Z j )+
r∑

j=1

ûi, j z[n−1]
j , i = 1, . . . , s, (34a)

z[n]
i = h

s∑

j=1

b̂i, j g(X j + Z j )+
r∑

j=1

v̂i, j z[n−1]
j , i = 1, . . . , r. (34b)

Combining (33) and (34) we obtain

Xi + Zi = h

⎛

⎝
i−1∑

j=1

ai, j f (X j + Z j )+
i∑

j=1

âi, j g(X j + Z j )

⎞

⎠

+
r∑

j=1

(
ui, j x [n−1]

j + ûi, j z[n−1]
j

)
, i = 1, . . . , s, (35a)

x [n]
i + z[n]

i = h

⎛

⎝
s∑

j=1

bi, j f (X j + Z j )+
s∑

j=1

b̂i, j g(X j + Z j )

⎞

⎠

+
r∑

j=1

(
vi, j x [n−1]

j + v̂i, j z[n−1]
j

)
, i = 1, . . . , r, (35b)

We consider pairs of explicit (33) and diagonally implicit (34) schemes that

• share the same abscissa vector c = ĉ so that the partitioned GLM is internally consistent,
and

• share the same coefficient matrices U = Û and V = V̂.

For this class of schemes all internal stage vectors can be combined. Specifically, let
Yi = Xi + Zi and yi = xi + zi . The scheme (35) becomes the following method.

Definition 4 (IMEX-GLM methods) One step of an implicit–explicit general linear method
applied to (1) advances the solution using

Yi = h
i−1∑

j=1

ai, j f (Y j )+ h
i∑

j=1

âi, j g(Y j )+
r∑

j=1

ui, j y[n−1]
j , i = 1, . . . , s, (36a)

y[n]
i = h

s∑

j=1

(
bi, j f (Y j )+ b̂i, j g(Y j )

) +
r∑

j=1

vi, j y[n−1]
j , i = 1, . . . , r. (36b)

We note that in (36) x [n]
i and z[n]

i need not to be known individually once they are initialized

in the first step. The combined solution y[n]
i = x [n]

i + z[n]
i is advanced at each step as regular
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GLMs do. The IMEX-GLM (36) is represented compactly by the Butcher tableau

c A Â U
B B̂ V

. (37)

4.2 Starting Procedures

An IMEX GLM (36) of order p requires a starting procedure that approximates linear com-
binations of derivatives as follows

x [0]
i =

r∑

k=0

qi,khk x (k)(t0)+ O(h p) and z[0]
i =

r∑

k=0

q̂i,khk z(k)(t0)+ O(h p) (38)

respectively, where the i-th column of coefficient matrix q and q̂, denoted by qi and q̂i for
short, can be computed by

q0 = 1s, qi = ci

i ! − A ci−1

(i − 1)! ; q̂0 = 1s, q̂i = ci

i ! − Â ci−1

(i − 1)! . (39)

Thus

y[0]
i = x [0]

i + z[0]
i

= x(t0)+ z(t0)+ qi,1hx ′(t0)+ q̂i,1hz′(t0)+
r∑

k=2

qi,khk x (k)(t0)+
r∑

k=2

q̂i,khk z(k)(t0)

= y0 + qi,1h f (y0)+ q̂i,1hg(y0)+
r∑

k=2

qi,khk x (k)(t0)+
r∑

k=2

q̂i,khk z(k)(t0).

Evaluation of the first three terms is straightforward. But approximations of the other terms
containing derivatives x (k)(t0) and y(k)(t0) for k ≥ 2 requires additional work if their ana-
lytical expressions are difficult to obtain.

To initialize an IMEX GLM we approximate independently the vectors hk x (k)(t0),
hk z(k)(t0), k = 1, . . . , r , using finite differences and the solution information provided by
several steps of an IMEX Runge–Kutta method.

For better accuracy, the IMEX RK method uses a small step size τ < h, and produces the
numerical solutions ystart

i ≈ y(t0 + iτ). In the following we show how to compute the terms
τ k x (k)(t0); each of these terms is then rescaled by (h/τ)k to reflect the integration step h. We
have that

⎡

⎢⎢⎢⎣

τ x ′(t0)
τ 2x ′′(t0)

...

τ r x (r)(t0)

⎤

⎥⎥⎥⎦ = τD

⎡

⎢⎢⎢⎣

x ′(t0)
x ′(t1)
...

x ′(tr )

⎤

⎥⎥⎥⎦ + O(τ r+1) = τD

⎡

⎢⎢⎢⎣

f (y0)

f
(
ystart

1

)

...

f
(
ystart

r

)

⎤

⎥⎥⎥⎦ + O(τ r+1) (40)

where the coefficient matrix D ∈ R
r×r is derived by expanding the right hand side in Taylor

series and comparing the coefficients of each term. For the cases r = 2 and r = 3 the
coefficients are

D|r=2 =
[

1 0
−1 1

]
and D|r=3 =

⎡

⎣
1 0 0

−3/2 2 −1/2
1 −2 1

⎤

⎦ ,
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respectively. The same procedure is applied to obtain τ k z(k)(t0). We note that the initialization
procedure requires the function values f (y) and g(y) evaluated at the starting solution steps
ystart

i , and that there is no need to compute xi or zi separately.

4.3 Finishing Procedures

If we choose the last abscissa coordinate cs to be 1, the approximation to the ODE solution
using IMEX GLMs with stage order q = p can be given by the final stage value to the
order p. But for IMEX GLMs with stage order q = p − 1, a finishing procedure need to be
constructed.

To generate the solution at the last time step y(tF ) using (18), a general finishing procedure
reads

y(tn) ≈
s∑

i=1

hβ0,i f (Yi )+
r∑

j=1

γ0, j x [n−1]
j +

s∑

i=1

hβ̂0,i g(Yi )+
r∑

j=1

γ̂0, j z
[n−1]
j . (41a)

In order to avoid the difficulty of evaluating of x [n−1]
j and z[n−1]

j separately we require that
γ0, j = γ̂0, j for all j . In this case the finishing procedure reads

y(tn) ≈
s∑

i=1

hβ0,i f (Yi )+
s∑

i=1

hβ̂0,i g(Yi )+
r∑

j=1

γ0, j y[n−1]
j . (41b)

The construction of the procedure can be simplified by choosing the abscissa vector
[0, c2, . . . , cs−1, 1]. For explicit (type 1) GLMs, c1 = 0 implies that q1,0 = 1 and q1, j = 0
for j ≥ 1 due to order conditions. According to the formula (9), the first element of the
output vector is exactly the solution at the current step, y[n]

1 ≈ y(tn). In this case, β0 is equal
to the first row of the coefficient matrix B, and γ0 is the first row of V. Similarly, c1 = 0
results in q̂1, j = 0 for j ≥ 1 for implicit (type 2) GLMs. According to the order condition
(12b), we have

ez
p∑

j=0

q̂1, j z j = z
s∑

j=1

b̂1,sec j z +
s∑

i=1

v1,i

p∑

j=0

q̂i, j z j + O(z p+1),

which can be written as

ez = z
s∑

j=1

b̂1,s ec j z − z q̂1,1 ez +
s∑

j=1

v1, j

p∑

j=0

q̂1, j z j + O(z p+1),

Comparing it with (17) and assuming cs = 1, we can simply use β̂0,i = b̂1,i for i =
0, . . . , s − 1, β̂0,s = b̂1,s − q̂1,1 and γ̂0 = γ0 to guarantee the finishing procedure gives
order p in accuracy for the implicit part. Consequently, we can use the following procedure
in practice for the IMEX schemes:

y(tn) ≈
s∑

i=1

h b1,i f (Yi )+
s∑

i=1

h b̂1,i g(Yi )− q̂1,1 g(Ys)

+
r∑

j=1

v1, j y[n−1]
j = y[n]

1 − q̂1,1 g(Ys). (42)
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Notice that it can also be used on IMEX GLMs with q = p though it is designed for the case
q = p − 1. But our experience shows that there is no obvious advantage doing so compared
with using the final stage value which can give very accurate approximations usually.

4.4 Linear Stability Analysis

For convenience, we write the IMEX-GLM (36) in the vector form

Y = hAF(Y )+ hÂG(Y )+ U y[n−1] (43a)

y[n] = hBF(Y )+ hB̂G(Y )+ V y[n−1]. (43b)

We consider the generalized linear test equation

y′ = ξ y + ξ̂ y, t ≥ 0, (44)

where ξ and ξ̂ are complex numbers. We consider ξ y to be the nonstiff term and ξ̂ y the stiff
term, and denote w = hξ and ŵ = hξ̂ .

Applying (43) to the test Eq. (44) leads to

Y = h
(
ξA + ξ̂ Â

)
Y + U y[n−1], (45a)

y[n] = h
(
ξB + ξ̂ B̂

)
Y + V y[n−1]. (45b)

Assuming Is×s − wA − ŵÂ is nonsingular we obtain

y[n] = M(w, ŵ) y[n−1],

where the stability matrix is defined by

M(w, ŵ) = V + (
wB + ŵ B̂

) (
Is×s − wA − ŵ Â

)−1
U. (46)

Let S ⊂ C and Ŝ ⊂ C be the stability regions of the explicit GLM and of the implicit GLM,
respectively. The combined stability region is defined by

{
w ∈ S, ŵ ∈ Ŝ : ρ(M(w, ŵ)

) ≤ 1
} ⊂ S × Ŝ ⊂ C × C. (47)

For a practical analysis of stability we define a desired stiff stability region, e.g.,

Ŝα = {ŵ ∈ Ŝ ∩ C
− : |Im(ŵ)| ≤ tan(α) |Re(ŵ)|},

and compute numerically the corresponding non-stiff stability region:

Sα = {
w ∈ S : ρ(M(w, ŵ)

) ≤ 1, ∀ ŵ ∈ Ŝα
}
. (48)

The IMEX-GLM method is stable if the constrained non-stiff stability region Sα is non-trivial
(has a non-empty interior) and is sufficiently large for a prescribed (problem-dependent) value
of α, e.g., α = 90◦.

4.5 Prothero–Robinson Convergence

We now study the possible order reduction for very stiff systems. We consider the PR [26]
test problem written as a split system (1)

y′ = μ (y − φ(t))︸ ︷︷ ︸
g(y)

+φ′(t)︸︷︷︸
f (y)

, μ < 0 , y(0) = φ(0) , (49)
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where the exact solution is y(t) = φ(t). A numerical method is said to be PR-convergent
with order p if its application to (49) gives a solution whose the global error decreases as
O(h p) for h → 0 and hμ → −∞.

Theorem 3 (Prothero–Robinson convergence of IMEX-GLM) Consider the IMEX GLM
method (36). Without loss of generality we consider that U = I. The explicit part is of order
p and stage order q ∈ {p − 1, p}, and the implicit part has order p̂ = p and stage order
q̂ ∈ {p − 1, p}. Assume that hμ ∈ Ŝ for all h > 0. Then the IMEX GLM method (36) is
PR-convergent with order min(p, q).

Remark 2 If the explicit stage order is q = p, then the PR order of convergence is p. It is
convenient to construct IMEX GLM methods (36) with explicit stage order q = p, even if
q̂ = p − 1, as such methods do not suffer from stiff order reduction on the PR problem.

Proof Let

φ[n] = φ (tn−1 + c h) = [
φ(tn−1 + c1 h), . . . , φ(tn−1 + cs h)

]T
.

and

ψ [n] =
[
φ(tn−1), h φ′(tn−1), . . . , h p φ(p)(tn−1)

]T
.

The method (36) applied to (49) reads:

Y [n] = h Aφ′[n] + h μ Â
(

Y [n] − φ[n]) + U y[n−1], (50a)

y[n] = h Bφ′[n] + h μ B̂
(

Y [n] − φ[n]) + V y[n−1]. (50b)

Consider the global stage errors

E [n] = Y [n] − φ[n].

To obtain the global error in y[n] we consider separately the global errors in the nonstiff and
stiff components:

enonstiff
n = x [n] −

∑
qk hk x (k)(tn),

estiff
n = z[n] −

∑
q̂k hk z(k)(tn) ,

= φ[n] − x [n] −
∑

q̂k hk
(
φ(k) − x (k)

)
(tn)

= φ[n] − x [n]

since the exact solution of the nonstiff system is x(t) = φ(t). Consequently, the total error is

en = enonstiff
n + estiff

n

= φ[n] −
∑

qk hk φ(k)(tn)

= φ[n] − Wψ [n].

Write the stage Eq. (50a) in terms of the exact solution and global errors

E [n] + φ[n] = h Aφ′[n] + h μ Â E [n] + en−1 + U
p∑

k=0

qk hk φ(k)(tn−1),
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to obtain
(
Is×s − h μ Â

)
E [n] = en−1 + h Aφ′ (tn−1 + c h) (51)

+U
p∑

k=0

qk hk φ(k)(tn−1)− φ(tn−1 + ch).

The exact solution is expanded in Taylor series about tn−1:

φ (tn−1 + c h)− 1s φ(tn−1) =
∞∑

k=1

hkck

k! φ
(k)(tn−1),

h φ′ (tn−1 + c h) =
∞∑

k=1

khkck−1

k! φ(k)(tn−1).

Inserting the above Taylor expansions in (51) leads to
(
Is×s − h μ Â

)
E [n] = en−1 − 1s φ(tn−1)+ Uq0 φ(tn−1)

+
∞∑

k=1

(
k A ck−1 + k! U qk − ck

) hk

k! φ
(k)(tn−1)

= en−1 + O (
hq+1)

where q is the stage order of the explicit method. We have used the facts that q0 = 1s,U 1s =
1s , and the order conditions (12a) and (12c) for the cases where q = p and q = p − 1,
respectively.

Similarly, we write the solution Eq. (50b) in terms of the exact solution and global errors:

en +
p∑

k=0

qk hk φ(k)(tn) = h Bφ′(tn−1 + ch)+ h μ B̂ E [n] + V e[n−1]

+V
p∑

k=0

qk hk φ(k)(tn−1).

After rearranging the expression we obtain

en =
(

h μ B̂
(
Is×s − h μ Â

)−1 + V
)

en−1 + h Bφ′(tn−1 + ch)+ V
p∑

k=0

qk hk φ(k)(tn−1)

−
p∑

k=0

qk hk φ(k)(tn)+ O (
hq+1) .

By Taylor series expansion we have

p∑

k=0

qk hk φ(k)(tn) =
p∑

k=0

(
k∑

�=0

qk−�
�!

)
hk φ(k)(tn−1)

and therefore

en = M̂(hμ) en−1 +
∞∑

k=1

(
k B ck−1 + k! V qk − k!

k∑

�=0

q̂k−�
�!

)
hk

k! φ
(k)(tn−1)+ O (

hq̂+1)

(52)
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The order condition (12b) of the nonstiff scheme reads

ezw(z) = zB ecz + Vw(z)+ O (
z p+1)

∑

�≥0

p∑

k=0

qk zk+�

�! =
∞∑

k=0

B
ck zk+1

k! +
p∑

k=0

Vqk zk + O (
z p+1) .

Identification of powers of zk leads to

k∑

�=0

p
q̂k−�zk

�! = B
ck−1zk

(k − 1)! + Vqk zk, k = 1, . . . , p.

The error recurrence (52) becomes

en = M̂(hμ) en−1 + O
(

hmin(q+1,p+1)
)
. (53)

Assume that the initial error is e0 = O(h p). The error amplification matrix M̂(hμ) is the
stability matrix of the implicit method. Therefore its spectral radius is uniformly bounded
below one for all argument values hμ of interest. By standard numerical ODE arguments
[18] the Eq. (53) implies convergence of global errors to zero at a rate ‖en‖ = O (

hmin(p,q)
)
.

5 Construction of Implicit–Explicit Methods of Orders Two and Three

We now construct IMEX-DIMSIM methods as summarized in Section 2.5. Specifically, we
focus on DIMSIMs with p = q = r = s,U = Is×s , and V = 1s v

T , where vT 1s = 1 [20].

5.1 Two-Stage, Second-Order Pairs with p = q = r = s = 2

The pair of explicit and implicit schemes developed in [34] is named IMEX-DIMSIM-2A
and consists of a type 2 DIMSIM from [9] with the same stability of SDIRK method of order
2, and a type 1 derived DIMSIM. Both of them share the same abscissa vector c = [0, 1]T

and the same coefficient matrix V. The IMEX-DIMSIM-2A coefficients in the tableau (37)
representation are

0 0 0 2−√
2

2 0 1 0

1 2 0 2
√

2+6
7

2−√
2

2 0 1

3
√

2−1
4

3−√
2

4
73−34

√
2

28
4
√

2−5
4

3
√

2−3
4

1−√
2

4

3
√

2−3
4

1−√
2

4
87−48

√
2

28
−45+34

√
2

28
3−√

2
2

√
2−1
2

.

The choice of λ = (2 − √
2)/2 ensures the type implicit part of IMEX-DIMSIM-2A is

L-stable. Inherited Runge–Kutta stability is a desirable property, but there are not enough
free parameters to enforce this property on both methods of the IMEX pair at the same time.

For a given implicit scheme we construct the explicit method by maximizing the con-
strained stability region (48). We have observed that simply maximizing the explicit stability
region S is insufficient and can lead to a very poor constrained stability region for the IMEX
method. The matrix B can be determined by A, c and V according to the order condition
(13). The only free parameter is a2,1 in matrix A, and it is chosen such as to maximize IMEX
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Fig. 1 Stability regions for the IMEX-DIMSIM-2B pair

stability. First, we use a Matlab Differential Evolution package 1 as a heuristic for global
optimization to generate a starting point. Then we run the Matlab routine fminsearch
multiple times until the result converges; each run is initialized with the previous result. The
resulting stability regions are reported in Fig. 1.

This procedure led to another explicit scheme that maximizes the IMEX stability

A =
[

0 0
1.5 0

]
, B =

⎡

⎣
√

2
2

3−√
2

4√
2−1
2

3−√
2

4

⎤

⎦ ;

U and V are the same. We call the new pair IMEX-DIMSIM-2B.

5.2 Three-Stage, Third-Order Pairs with p = q = r = s = 3

We construct two implicit–explicit pairs named IMEX-DIMSIM-3A and IMEX-DIMSIM-3B
starting from two existing implicit methods. All coefficients are obtained from the numerical
solution of order conditions using Mathematica. The calculations are performed with 24

1 http://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution

123

http://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution


J Sci Comput (2014) 61:119–144 135

Table 1 Coefficients of the implicit method of the IMEX-DIMSIM-3A pair

Table 2 Coefficients of the explicit method of the IMEX DIMSIM-3A pair

digits of accuracy such as to reduce the impact of roundoff errors on the resulting coefficient
values.

IMEX-DIMSIM-3A. According to [7] there are five A-stable type 2 DIMSIMs with the choice
λ = 1/2 and c = [0, 1/2, 1]T . We select the implicit component in Table 1 which has a
balanced set of coefficients.

The explicit component is obtained by a numerical maximization of the constrained sta-
bility region, as discussed in the previous section. The resulting coefficients are shown in
Table 2. The IMEX stability regions are drawn in Fig. 2.

IMEX-DIMSIM-3B. The choice of λ = 0.435866521508459 and c = [0, 1/2, 1]T leads
to the L-stable type 2 DIMSIM reported in [7]. The coefficients of the implicit component
and the explicit component are presented in Tables 3 and 4 respectively. The IMEX stability
regions are drawn in Fig. 3.

6 Numerical Results

We test the IMEX-GLM methods on two test problems. The first one is the van der Pol
equation, a commonly used small nonlinear ODE system that emphasizes convergence under
stiffness. The second test is a PDE problem arising in atmospheric modeling. We imple-
mented our algorithms in a discontinuous Galerkin finite element model developed by Blaise
et al. [3], which has efficient parallel scalability. We report the results obtained with IMEX-
DIMSIM-2B and IMEX DIMSIM-3B methods, since they have the better accuracy and
stability properties among their peers of the same order. Both IMEX Runge–Kutta methods
and IMEX BDF methods are included for comparison.

6.1 Van der Pol Equation

We consider the nonlinear van der Pol equation with a split right hand side

[
y′
z′

]
= f (y, z)+ g(y, z) =

[
z
0

]
+

[
0(

(1 − y2)z − y
)
/ε

]
(54)
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Fig. 2 Stability regions for the IMEX-DIMSIM-3A pair of schemes

on the time interval [0, 0.5], with initial values

y(0) = 2, z(0) = −2

3
+ 10

81
ε − 292

2187
ε2 − 1814

19683
ε3 + O(ε4). (55)

We consider ε = 10−6, a stiff case in which many methods suffer from order reduction [23].
The initialization (38) was done using the analytic derivatives. The reference solution is

obtained with Radau-5, a stiffly accurate method [18], with very tight tolerances of atol =
r tol = 5 × 10−15. We compare the new methods with IMEX-DIRK(3, 4, 3), a L-stable
three-stage third-order IMEX Runge–Kutta method proposed in [1], and IMEX-BDF3, a
third-order IMEX BDF method [19].

Figure 4 shows the global error, measured in the L2 norm, against step size h. A geometric
sequence of step sizes, τ, τ/2, τ/4 and so on, were used. Order reduction can be clearly
observed for the IMEX Runge–Kutta method, which yields second-order convergence. The
IMEX DIMSIM converges at the theoretical third order and gives more accurate result than the
other two methods compared when same step size is applied. Second-order IMEX DIMSIMs
also produced no order reduction; detailed results have been reported in [34]. These results
indicate that the high stage order of IMEX DIMSIMs make them particularly attractive for
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Table 3 Coefficients of the implicit method of the IMEX-DIMSIM-3B pair

Table 4 Coefficients of the explicit method of the IMEX DIMSIM-3B pair
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Fig. 3 Stability regions for the IMEX-DIMSIM-3B pair of schemes

solving stiff problems where Runge–Kutta methods may suffer from order reduction, and
IMEX DIMSIMs are also favourable for obtaining high accuracy with relatively large time
steps.
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Fig. 4 Convergence results for third-order IMEX schemes on the van der Pol Eq.

6.2 Gravity Waves

To assess the potential of the IMEX-DIMSIM schemes for solving partial differential equa-
tions, we consider the simulation of an idealized atmospheric phenomena: the propagation
of a two-dimensional inertia-gravity wave [29]. Such a phenomena can be described by the
compressible Euler equations, whose formulation is slightly modified to account for non-
hydrostatic atmospheric processes [17]:

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρu
∂t

+ ∇ · (ρuu + pI) = −ρĝez (56a)

∂ρθ

∂t
+ ∇ · (ρθu) = 0,

where ρ is the density, u is the two-dimensional xz−velocity, θ is the potential temperature,
and I is a 2 × 2 identity matrix. The gravitational acceleration is denoted g while êz is a unit
vector pointing upwards. The prognostic variables are ρ, ρu and ρθ . The pressure p in the
momentum equation is computed by the equation of state

p = p0

(
ρθRd

p0

) cp
cv
, (56b)

where p0 = 105 Pa is the surface pressure, Rd is the gaz constant, while cp and cv are the
specific heat of the air for constant pressure and volume. To maintain the hydrostatic state,
we follow the splitting introduced in [17]

ρ(x, t) = ρ̄(z)+ ρ′(x, t)

(ρθ)(x, t) = (ρθ)(z)+ (ρθ)′(x, t)

p(x, t) = p̄(z)+ p′(x, t),
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where the reference (overlined) values are in hydrostatic balance. The governing Eq. (56)
can then be rewritten as

∂ρ′

∂t
= −∇ · (ρu)

∂ρu
∂t

= −∇ · (ρuu + p′I
) − ρ′ ĝez (57a)

∂(ρθ)′

∂t
= −∇ · (ρθu) ,

closed by the equation of state

p′ = p0

(
ρθRd

p0

) cp
cv − p̄. (57b)

The equations are discretized in space using the discontinuous Galerkin method, whose usage
for geophysical simulations is gaining popularity, e.g. [3,12,17,24,30]. The model, based
upon the mesh database of the GMSH mesh generator code [15], has been used to solve
several PDEs, either in the domain of geophysics [22,27] and engineering [21,28].

The set of Eq. (57) applied to atmospheric flows is a good candidate for an IMEX time
discretization, because of the different temporal scales involved. In usual atmospheric con-
figurations, the acoustic waves are the fastest phenomena, with a propagation speed of about
340 ms−1. This high celerity restricts the explicit time step to a small value due to the CFL
stability condition. However, acoustic waves are generally not important for the modeler
who is more interested by advective timescales. The IMEX method allows to circumvent the
CFL condition by treating the linear acoustic waves implicitly, while the remaining terms are
explicit. For more details about the use of IMEX for equations set (57), see [16]. To apply
IMEX integration, the right-hand side of (57a) is additively split into a linear part responsible
for the acoustic waves and a nonlinear part. The linear term

−
⎡

⎣
∇ · (ρu)

∇ · (p′I
) + ρ′ĝez

∇ · (ρθ̄u
)

⎤

⎦ (58)

with the pressure linearized as

p′ = cp p̄

cvρθ
(ρθ)′

is solved implicitly, while the remaining (nonlinear) terms are solved explicitly.
The inertia-gravity wave test-case is described in [29]. It is started with an initial

atmosphere of constant horizontal velocity ux = 20 ms−1 and constant Brunt–Väisälä fre-

quency N = g d(lnθ)
dz = 10−2 s−1 in a channel of length L = 300 km and height H = 10 km.

The waves are excited by a initial perturbation of the potential temperature

θpert = �θ0
sin(π z/H)

1 + (x − xc)2/a2 , (59)

with �θ0 = 0.01 ◦C, a = 5 km and xc is located at 100 km at the right of the left bound-
ary. Figure 5 shows the initial solution and computational mesh with horizontal and vertical
resolutions of respectively 5 and 1.1 km. Third-order polynomials are used on each element,
corresponding to actual resolutions of about 1.7 km in the horizontal direction and 0.4 km in
the vertical direction. Radiative boundary conditions are considered for vertical boundaries,
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Fig. 5 Evolution of the gravity wave: perturbation of the potential temperature at the initial time (top), after
450 s (middle) and after 900 s (bottom). The computational mesh is visible on the first panel. The results are
obtained with a third-order discontinuous Galerkin space discretization and third-order IMEX DIMSIM time
integration. For visualization purposes, a stretch is applied in the vertical direction

while non-flux (i.e. wall) boundary conditions are used along the bottom and top boundaries.
Once the simulation is started, initial gravity waves are triggered by the initial perturbation
of the potential temperature and propagate towards the lateral boundaries (Fig. 5). The back-
ground velocity field has an influence on the solution by translating the perturbation towards
the right of the domain.

All the experiments are performed on a workstation with 4 Intel Xeon E5-2630 Processors
(24 cores in total) using 12 MPI threads. The parallelization is performed via a decomposition
of the spatial domain. However, it has an influence upon the efficiency of the time-stepping
because of the implicit system to solve which is distributed among the different proces-
sors. Note that it would be possible to keep the elements sharing the same column on the
same processor and only treat the vertical dynamics implicitly. Despite resulting in a more
restrictive time step condition, this technique would allow each implicit system to be solved
locally, one system corresponding to a column of element.

Here we compare the performance of IMEX methods for a simulation window of 30 s. The
second order methods are IMEX-DIMSIM-2B and L-stable, two-stage, second-order IMEX
DIRK(2, 3, 2) [1]. The third order methods are IMEX-DIMSIM-3B and IMEX DIRK(3, 4, 3)
[1]. The integrated L2 errors for all prognostic variables are measured against a reference
solution. The reference solution was obtained by applying an explicit RK method to solve
the original (non-split) model with a very small time step h = 0.005.

The error versus computational effort diagrams are shown in Fig. 6. All the methods
display the theoretical orders of convergence. IMEX DIMSIMs and IMEX RK methods
perform similarly, with IMEX DIMSIMs yielding slightly better accuracy when the same
time steps are chosen. Also, IMEX DIMSIMs are slightly more efficient in terms of CPU
time than the IMEX RK methods of the same order. Note that the termination procedure has
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Fig. 6 Integrated L2 errors against time steps (a) and CPU time (b) for difference IMEX schemes. The errors
are computed after 30 s of simulation. A geometric sequence of step sizes, τ, τ/2, τ/4 and so on, is used
(τ = 4 here)
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been applied after each each time step to recovered the solution. The implementation can be
optimized such as to apply the termination procedure only once at the end of the simulation;
this would result in additional savings in computational cost. As the order increases, the
number of stages required by an IMEX RK method grows rapidly due to order conditions,
while an IMEX DIMSIM typically uses a number of stages equal to its order. Consequently,
we expect that IMEX DIMSIM methods will become even more competitive for higher
orders.

7 Conclusions and Future Work

In this paper introduce a new family of partitioned time integration methods based on high
stage order general linear methods. We prove that the general linear framework is well
suited for the construction of multi-methods (composite methods). Specifically, owing to the
high stage orders, no coupling conditions are needed to ensure the order of accuracy of the
partitioned GLM.

We apply the partitioned general linear framework to construct new implicit–explicit GLM
pairs, together with appropriate starting and ending procedures. The linear stability analysis
proposes the use of constrained stability functions to quantify the joint stability of the IMEX
pair. A PR convergence analysis reveals that the order of an IMEX GLM scheme on very
stiff problems is dictated by the stage order of its non-stiff component; in particular, no order
reduction appears if the explicit method has a full stage order. This result indicates that IMEX
GLMs are particularly attractive for solving stiff problems, where other multistage methods
may suffer from order reduction.

We discuss the construction of practical IMEX GLM pairs starting from known implicit
schemes and adding an appropriate explicit counterpart. This strategy is applied to build
second and third order IMEX diagonally-implicit–explicit multi-stage integration methods.
Numerical experiments with the van der Pol equation confirm the fact that IMEX GLMs
converge at full order while IMEX RK methods suffer from order reduction. The two dimen-
sional gravity wave system is an important step towards solving real PDE-based problems.
The new IMEX-DIMSIM schemes perform slightly better than the IMEX RK methods of
the same order.

Future work will develop IMEX-GLMs of higher orders, will endow them with adaptive
time stepping capabilities, and will study their advantages compared to other existing IMEX
familiess. There are also implementation issues that deserve further exploration.
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