
Supplementary material for
“FATODE: a library for Forward, Adjoint, and

Tangent linear integration of ODEs”

Hong Zhang and Adrian Sandu

Computational Science Laboratory,
Department of Computer Science,

Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061

({zhang,sandu}@cs.vt.edu)

Supplementary material part A. Derivatives. Consider the following smooth
function

φ(y, p) : Rd+m → Rn

and its first and second order derivatives

φy =

(
∂φi
∂yj

)
1≤i≤n, 1≤j≤d

, φp =

(
∂φi
∂pj

)
1≤i≤n, 1≤j≤m

,

φy,y =

(
∂2φi
∂yj ∂yk

)
1≤i≤n, 1≤j,k≤d

, φy,p =

(
∂2φi
∂yj ∂pk

)
1≤i≤n, 1≤j≤d, 1≤k≤m

,

φp,p =

(
∂2φi
∂pj ∂pk

)
1≤i≤n, 1≤j,k≤m

, φp,y =

(
∂2φi
∂pj ∂yk

)
1≤i≤n, 1≤j≤m, 1≤k≤d

.

Let u, v ∈ Rd, u, v ∈ Rm, and z ∈ Rn. Hessian-vector products are matrices of the
form

φy,y · u =

(
d∑
k=1

∂2φi
∂yj ∂yk

uk

)
1≤i≤n, 1≤j≤d

, z · φy,y =

(
n∑
i=1

∂2φi
∂yj ∂yk

zi

)
1≤j,k≤d

,

and similar for all other derivatives. The derivatives of Jacobian-vector products are:(
d

dy
(φy · u)

)
· v =

(
d∑
k=1

d

dyk

(
d∑
i=1

∂φj
∂yi

ui

)
vk

)
1≤j≤n

=

 d∑
i,k=1

∂2φj
∂yi∂yk

ui vk


1≤j≤n

= (φy,y · u) · v ∈ Rn

= (φy,y · v) · u ∈ Rn .

(
d

dy

(
φTy · z

))
· u =

(
d∑
k=1

d

dyk

(
n∑
i=1

∂φi
∂yj

zi

)
uk

)
1≤j≤d

1

=

(
d∑
k=1

n∑
i=1

∂2φi
∂yj ∂yk

zi uk

)
1≤j≤d

= (z · φy,y) · u ∈ Rd

= (φy,y · u)
T · z ∈ Rd .

The derivatives of the Jacobian with respect to model parameters are(
d

dy
(φp · u)

)
· u =

(
d∑
k=1

d

dyk

(
m∑
i=1

∂φj
∂pi

ui

)
uk

)
1≤j≤n

=

(
m∑
i=1

d∑
k=1

∂2φj
∂pi∂yk

uk ui

)
1≤j≤n

= (φp,y · u) · u ∈ Rn

= (φy,p · u) · u ∈ Rn .

(
d

dy

(
φTp · z

))
· u =

(
d∑
k=1

d

dyk

(
n∑
i=1

∂φi
∂pj

zi

)
uk

)
1≤j≤m

=

(
n∑
i=1

d∑
k=1

∂2φi
∂pj ∂yk

uk zi

)
1≤j≤m

= (z · φp,y) · u ∈ Rm

= (φp,y · u)
T · z ∈ Rm .

(
d

dp
(φy · u)

)
· u =

(
m∑
k=1

d

dpk

(
d∑
i=1

∂φj
∂yi

ui

)
uk

)
1≤j≤n

=

(
d∑
i=1

m∑
k=1

∂2φj
∂pk∂yi

ui uk

)
1≤j≤n

= (φp,y · u) · u ∈ Rn

= (φy,p · u) · u ∈ Rn .

(
d

dp

(
φTy · z

))
· u =

(
m∑
k=1

d

dpk

(
n∑
i=1

∂φi
∂yj

zi

)
uk

)
1≤j≤d

=

(
n∑
i=1

m∑
k=1

∂2φi
∂pk ∂yj

uk zi

)
1≤j≤d

= (z · φy,p) · u ∈ Rd

= (z · φp,y)
T · u ∈ Rd

= (φy,p · u)
T · z ∈ Rd .

They are used to express derivatives of Jacobian-vector products as follows:(
d

dy
(φy · u)

)
· v = (φy,y · u) · v = (φy,y · v) · u ∈ Rn ,

2

(
d

dy

(
φTy · z

))
· u = (z · φy,y) · u = (φy,y · u)

T · z ∈ Rd ,(
d

dp
(φp · u)

)
· v = (φp,p · u) · v = (φp,p · v) · u ∈ Rn ,(

d

dp

(
φTp · z

))
· u = (z · φp,p) · u = (φp,p · u)

T · z ∈ Rm ,(
d

dy
(φp · u)

)
· u = (φp,y · u) · u = (φy,p · u) · u ∈ Rn ,(

d

dy

(
φTp · z

))
· u = (φp,y · u)

T · z ∈ Rm ,(
d

dp
(φy · u)

)
· u = (φy,p · u) · u ∈ Rn ,(

d

dp

(
φTy · z

))
· u = (φy,p · u)

T · z ∈ Rd .

Consider now the extended ODE (2.7). The right hand side function has the
following extended Jacobian

d [f, 0, r]

d [y, p, q]
= J(t, y, p) =

 fy(t, y, p) fp(t, y, p) 0(d,1)

0(m,d) 0(m,m) 0(m,1)

ry(t, y, p) rp(t, y, p) 0(1,1)

 ,(A.1)

JT (t, y, p) =

 fTy (t, y, p) 0(d,m) rTy (t, y, p)
fTp (t, y, p) 0(m,m) rTp (t, y, p)

0(1,d) 0(1,m) 0(1,1)

 .
The extended Hessian times vector terms reads: u

u
û

 · H̃
 ·

 v
v
v̂

 =
d

d [y, p, q]

 fTy 0 rTy
fTp 0 rTp
0 0 0

 ·
 u
u
û

 ·
 v
v
v̂

(A.2)

=

 (fy,y · v)
T · u+ (fy,p · v)

T · u+ (ry,y · v)
T · û+ (ry,p · v)

T · û
(fp,y · v)

T · u+ (fp,p · v)
T · u+ (rp,y · v)

T · û+ (rp,p · v)
T · û

0

 .

3

Supplementary material part B. Fatode implementation of forward
model integration.

Fatode provides a high quality solvers for the forward ODE problem (1.1). Even
without the sensitivity analysis capabilities it can be used as a generic ODE solution
library. In this section we discuss the efficient implementation of different Runge-
Kutta and Rosenbrock methods for solving (1.1). The implementation of forward
solvers is inspired by [13, 14].

B.1. Explicit Runge-Kutta methods. The implementation of explicit meth-
ods is based on (2.2). The stage vectors are computed in succession using

Y1 = yn ; Yi = yn + h

i−1∑
j=1

ai,j f(Tj , Yj) , i = 2, . . . , s .(B.1)

B.2. Matrices for solving implicit methods. The implementations of im-
plicit methods use the following matrices

R (γ, t, y) = I(d,d) − h γ fy(t, y) ,(B.2a)

R̃ (γ, t, y) =
1

h γ
I(d,d) − fy(t, y) ,(B.2b)

R̂n =

 1− h a1,1 fy(T1, Y1) · · · −h a1,s fy(Ts, Ys)
...

. . .
...

−h as,1 fy(T1, Y1) · · · 1− h as,s fy(Ts, Ys)

 ∈ Rds×ds .(B.2c)

Replacing each fy(Ti, Yi) in (B.2c) by fy(tn, tn) leads to the approximation:

Rn = I(ds,ds) − hA⊗ fy(tn , yn) ≈ R̂n ,(B.2d)

where ⊗ is the matrix Kronecker product [14].

B.3. Implicit Runge-Kutta methods. To reduce the influence of round-off
errors, we apply the transformation zi = Yi− yn [14] in the formulas (2.2) to obtain

Ti = tn + ci h , zi = h

s∑
j=1

ai,j f(Tj , yn + zj) , i = 1, . . . , s ,(B.3a)

yn+1 = yn +

s∑
i=1

di zi .(B.3b)

The new coefficients are

d = [di]1≤i≤s , dT = bT ·A−1 .(B.4)

B.4. Singly diagonally implicit Runge-Kutta methods. The stage equa-
tions (B.3a) read

zi = h

i−1∑
j=1

ai,j f(Tj , yn + zj) + h γ f(Ti , yn + zi) .(B.5)

4

The nonlinear systems of equations (B.5) are solved in succession for each stage i =
1, . . . , s by simplified Newton iterations of the form

R (γ, tn, yn) ·∆z[k]i = z
[k]
i − h

i−1∑
j=1

ai,j f(Tj , yn + zj)

z
[k+1]
i = z

[k]
i −∆z

[k]
i , k = 0, 1, · · · .(B.6)

The same matrix is shared for all iterations and all stages, so that only one LU
decomposition of R is performed in each time step.

B.5. Fully implicit Runge-Kutta methods. Fully implicit Runge-Kutta meth-
ods require the solution of the ds×ds nonlinear system (B.3a) [22]. With the compact
notation

Z =
[
zT1 · · · zTs

]T
, F (Z) =

[
fT (T1, yn + z1) · · · fT (Ts, yn + zs)

]T
,(B.7)

where Z,F (Z) ∈ Rds, the nonlinear system (B.3a) can be written as

Z =
(
A⊗ I(d,d)

)
· F (Z) .(B.8)

The system (B.8) is solved by simplified Newton iterations [14],

Rn ·∆Z [k] = Z [k] − (hA⊗ I(d,d)) · F (Z [k])

Z [k+1] = Z [k] −∆Z [k] , k = 0, 1, · · · .(B.9)

Note that only the Jacobian at the beginning of the time step is used in Newton’s
iterations. Following [14], our implementation of the fully implicit s-stage Runge-
Kutta method uses a transformation of the system (B.9) to a complex form such that
the costly ds-dimensional real LU decomposition is replaced by d-dimensional LU
decompositions of matrices of the form R (λi, tn, yn), where λi are the eigenvalues of
A. For the 3-stage methods implemented in fatode the coefficient matrices A have
one real and two complex conjugate eigenvalues, which leads to solving one real and
one complex d-dimensional systems.

B.6. Rosenbrock methods. For implementation purpose, we use the alterna-
tive formulation [13] of the formula (2.4)

Ti = tn + αih , Yi = yn +

i−1∑
j=1

αi,j kj ,(B.10a)

R̃ (γ, tn, yn) · ki = f (Ti, Yi) +

i−1∑
j=1

ci,j
h
kj + h γi ft (tn, yn) ,(B.10b)

yn+1 = yn +

s∑
i=1

mi ki ,(B.10c)

where a = [ai,j]1≤i,j≤s, c = [ci,j]1≤i,j≤s, m = [mi]1≤i≤s, are defined by

a = α · γ−1 , c = diag(γ−1)− γ−1 , m = γ−T · b .(B.11)

At each stage (B.10b) the solution of a linear system of dimension d× d is required.

The same matrix R̃ is shared by all the stages and one LU decomposition per step is
required.

5

Supplementary material part C. Fatode implementation of tangent lin-
ear model integration.

Tangent linear models are derived for direct sensitivity analysis with each of the
families of methods in fatode. Highly efficient implementations are obtained by re-
using the LU decompositions from the forward solution on the sensitivity equations
[8].

C.1. Tangent linear Runge-Kutta methods. A tangent linear Runge-Kutta
(2.2) method reads

Yi = yn + h

s∑
j=1

ai,jf(Tj , Yj), Ẏi = ẏn + h

s∑
j=1

ai,j fy(Ti , Yi) · Ẏi,(C.1a)

yn+1 = yn + h

s∑
i=1

bif(Ti, Yi), ẏn+1 = ẏn + h

s∑
i=1

bi fy(Ti , Yi) · Ẏi .(C.1b)

Similar to the implementation of implicit forward integrators, we introduce the sen-
sitivity stage variables żi = Ẏi − ẏn and the sensitivity part becomes

żi − h
s∑
j=1

ai,j fy(Tj , Yj) · żj = h

s∑
j=1

ai,j fy(Tj , Yj) · ẏn , i = 1, · · · , s ,(C.2a)

ẏn+1 = ẏn +

s∑
i=1

di żi .(C.2b)

Using the compact notation (B.7) and the matrix (B.2c) the stage equations (C.2a)
can be written as

R̂n · Ż =
(
I(sd,sd) − R̂n

)
· (1s ⊗ ẏn) .(C.3)

C.2. Explicit RK methods. For ERK methods the equations (C.1a) are solved
successively for each stage i = 1, · · · , s, using

Ẏ1 = ẏn ; Ẏi = ẏn + h

i−1∑
j=1

ai,j fy(Tj , Yj) · Ẏj , i = 2, · · · , s .

C.3. Singly diagonally implicit Runge-Kutta methods. For SDIRK meth-
ods the system (C.2a) reduces to s independent d-dimensional linear systems that are
solved successively for each stage i = 1, · · · , s

R (γ, Ti, Yi) · żi = h

i−1∑
j=1

ai,j fy(Tj , Yj) · (ẏn + żj) + h γ fy(Ti , Yi) · ẏn .

fatode allows users to choose to solve the linear system (C.4) directly at the expense
of an additional LU decomposition of the matrix R (γ, Ti, Yi) per stage, or to apply
simplified Newton iterations of the form

R (γ, tn, yn) ·∆ż[m]
i = ż

[m]
i − h

i∑
j=1

ai,j fy(Tj , Yj) · (ẏn + ż
[m]
j)

ż
[m+1]
i = ż

[m]
i −∆ż

[m]
i , m = 0, 1, · · · .(C.4)

6

The LU decomposition of the matrix R (γ, tn, yn) is also necessary in forward inte-
gration. Equations (C.4) re-use the LU decomposition which is available after the
equations (B.6) are calculated in each step. Fatode controls the iteration number,
and possibly the step size, such that the iteration error in (C.4) is smaller than the
local truncation error at the current step. When (C.4) is used the accuracy of the
sensitivity coefficients is of the same order as the local truncation error. The reuse of
the forward LU factorization can save considerable CPU time.

C.4. Fully implicit Runge-Kutta methods. For fully implicit Runge-Kutta
methods two options are available for solving the system (C.3). One is to construct
the ds×ds linear system (C.3) explicitly and solve it directly by factorizing the matrix

R̂n.
The other is to apply simplified Newton iterations of the form

Rn ·∆Ż [m] = R̂n ·
(
1s ⊗ ẏn + Ż [m]

)
− 1s ⊗ ẏn

Ż [m+1] = Ż [m] −∆Ż [m] , m = 0, 1, · · · .(C.5)

The matrix Rn of the resulting ds × ds linear system is available from the forward
solution process, i.e., the calculations of the equations (B.9). The real and complex
LU decompositions can be reused. According to our experience, the second option is
usually more efficient than the first one for large systems.

C.5. Rosenbrock methods. The tangent linear Rosenbrock method consists
of the formula formula (B.10) plus the sensitivity part, which is obtained by differen-
tiating the formula (B.10). In each step we solve the combined set of equations

R̃ (hγ, tn, yn) · ki = f (Ti, Yi) +

i−1∑
j=1

ci,j
h
kj + hγikift(tn, yn) ,(C.6a)

R̃ (hγ, tn, yn) · k̇i = fy (Ti, Yi) ·

ẏn +

i−1∑
j=1

ai,j k̇j

+

i−1∑
j=1

ci,j
h
k̇j(C.6b)

+ (ẏn · fy,y(tn, yn)) · ki + h γi fy,t(tn, yn) · ẏn ,

yn+1 = yn +

s∑
i=1

mi ki,(C.6c)

ẏn+1 = ẏn +

s∑
i=1

mi k̇i .(C.6d)

The stage vectors k̇i are obtained in succession by solving a sequence of linear sys-
tems, all of which re-use the LU decomposition of R̃ (hγ, tn, yn) performed in (B.10).
Formula (C.6b) involves the Hessian tensor fy,y(tn, yn). In practice, an analyti-
cal Hessian tensor is difficult to obtain, and its evaluation is costly in both CPU
time and memory storage. Note that the above equation only needs the product
(ẏn · fy,y(tn, yn)) · ki. Such terms can be obtained efficiently using automatic differ-
entiation [4, 11] twice, in forward over reverse mode.

7

Supplementary material part D. Fatode implementation of discrete
adjoint model integration: sensitivities with respect to initial conditions.

Fatode implements discrete adjoints of all the methods. Such discrete adjoints
have good theoretical properties, in the sense that they are consistent discretizations
of the adjoint ODE [19, 20]. This section discusses the adjoint sensitivities with
respect to initial conditions.

The discrete adjoint Runge-Kutta method [12] solving the discrete adjoint equa-
tions (2.15) reads

ui = hfTy (Ti, Yi) ·

biλn+1 +

s∑
j=1

aj,iuj

 , i = s, . . . , 1 ,(D.1a)

λn = λn+1 +

s∑
j=1

uj .(D.1b)

The stage equations (D.1a) form a ds× ds linear system involving the transpose
of matrix (B.2c):

U =
[
uT1 · · ·uTs

]T
,

R̂T
n · U = h

[
b1λ

T
n+1 fy (T1, Y1) · · · bsλTn+1 fy (Ts, Ys)

]T
.(D.2)

For bi 6= 0 one can rewrite (D.1) as another Runge-Kutta method [12] applied to the
adjoint ODE

`i = fTy

(
tn+1 − cih, Ys+1−i

)
·

λn+1 + h

s∑
j=1

ai,j`j

 , i = s, . . . , 1 ,

λn = λn+1 + h

s∑
i=1

bi `i ,

where bi = bs+1−i , ci = 1− cs+1−i , ai,j =
as+1−j,s+1−i · bs+1−j

bs+1−i
.

(D.3)

The method (Ā, b̄, c̄) is called the formal adjoint of the Runge-Kutta method (A, b, c)
[19]. The formal adjoint of Radau-2A is Radau-1A, vice versa. Lobatto-3C, Gauss
and SDIRK-3a are formally self-adjoint.

D.1. Explicit Runge-Kutta methods. The stage equations (D.1a) are solved
in succession for stages s down to 1:

us = h bs f
T
y (Ts, Ys)λ

n+1 ,

ui = hfTy (Ti, Yi) ·

bi λn+1 +

s∑
j=i+1

aj,i uj

 , i = s− 1, . . . , 1 .(D.4)

Each stage i requires the computation of the Jacobian fy(Ti, Yi), forming the vector
bi λ

n+1 +
∑s
j=i+1 aj,iuj from previously computed stages us . . . ui+1, and performing

one Jacobian vector product.

8

D.2. Singly diagonally implicit Runge-Kutta methods. For SDIRK meth-
ods the s stages of the system (D.1a) are solved successively from the last stage to
the first. Each stage requires the solution of a different linear system:

R(γ, Ti, Yi) · ui = hfTy (Ti, Yi) ·

bi λn+1 +

s∑
j=i+1

aj,iuj

 , i = s, . . . , 1 .(D.5)

Fatode offers two options: to form and solve one linear system (D.5) per stage, or to
employ simplified Newton iterations of the form (C.4) and re-use the LU decomposi-
tion of R(γ, tn, yn) for all stages. When the iterative approach is used the accuracy
of the gradients is of the same order as the local truncation error. Considerable CPU
time can be saved if checkpointing the forward LU factorization is feasible from a
storage perspective.

D.3. Fully implicit Runge-Kutta methods. For the fully implicit Runge-
Kutta methods the ds×ds system (D.2) is fully coupled. fatode offers two approaches
to solve it. The first is to build and solve directly (D.2) via a ds×ds LU decomposition

of R̂n. The second approach uses simplified Newton iterations of the form (C.3), where

R̂n is replaced by Rn in (D.2), and the transformation to real and complex systems
is performed. The real and complex LU factorizations associated with the matrix Rn

are re-used in all iterations. These factorizations are computed during the forward
solution, and in principle they can be checkpointed. The tradeoff between the size of
the LU factorizations to store and the time needed to recompute them will determine
the best strategy.

D.4. Rosenbrock methods. The discrete Rosenbrock adjoint [1] reads

R̃T (hγ, tn, yn) · ui = mi λn+1 +

s∑
j=i+1

(
aj,i vj +

cj,i
h
uj

)
,(D.6a)

vi = fTy (Ti , Yi) · ui , i = s, . . . , 1 ,(D.6b)

λn = λn+1 +

s∑
i=1

(ui · fy,y(tn, yn)) · ki + hfTy,t(tn, yn) ·
s∑
i=1

γiui +

s∑
i=1

vi .(D.6c)

The linear system (D.6a) can be solved directly at each stage. Users have to supply
a routine for calculating the term (ui · fy,y(tn, yn)) · ki, whose meaning is explained
in Appendix A. Automatic differentiation tools like tamc [11] provide considerable
help: the product between the Hessian transposed times vector can be obtained by
two consecutive runs of tamc in forward mode.

9

Supplementary material part E. Discrete adjoint sensitivities with re-
spect to parameters: general approach. Consider a numerical solution of (2.7):

yn+1 = Φn (yn, pn) ,

pn+1 = pn,(E.1)

qn+1 = qn + Ωn (yn, pn) , n = 0, . . . , N − 1 ,

together with the numerical evaluation of the cost function (2.8)

Ψ = g (yN , p) + qN .(E.2)

Replacing pn = p for all n in (E.2) leads to the discrete forward model:

yn+1 = Φn (yn, p) ; qn+1 = qn + Ωn (yn, p) , n = 0, . . . , N − 1 .(E.3)

Differentiating (E.3) in the direction ṗ yields the discrete tangent linear model:

ẏ0 = 0, ṗ0 = ṗ, q̇0 = 0(E.4)

ẏn+1 = Φny (yn, pn) · ẏn + Φnp (yn, pn) · ṗn,
ṗn+1 = ṗn,

q̇n+1 = q̇n + Ωny (yn, pn) · ẏn + Ωnp (yn, pn) · ṗn.

Replacing pn = p and ṗn = ṗ for all n leads to (E.5)

ẏ0 = 0 , q̇0 = 0 ,

ẏn+1 = Φny (yn, p) · ẏn + Φnp (yn, p) · ṗ ,(E.5)

q̇n+1 = q̇n + Ωny (yn, p) · ẏn + Ωnp (yn, p) · ṗ .

From (E.2) we define the co-state variables at tN = tF λN
µN
θN

 =

(
dΨ

d[yN , pN , qN]

)T
=

 gTy (yN , p)
gTp (yN , p)

1

 .(E.6)

The backwards in time evolution of the adjoint variables is governed by the discrete
adjoint equations obtained by differentiating and transposing (E.2) λn

µn
θn

 =

 Φny (yn, p) Φnp (yn, p) 0
0 I 0

Ωny (yn, p) Ωnp (yn, p) I

T  λn+1

µn+1

θn+1

 , n = N − 1, . . . , 1 .(E.7)

or  λi
µi
θi

 =

 Φiy(yi, p) 0 Ωiy(yi, p)
Φip(yi, p) I Ωip(yi, p)

0 0 Ωiz

  λi+1

µi+1

θi+1

 , i = N − 1, . . . , 1.

or, equivalently,

λn =
(
Φny (yn, pn)

)T · λn+1 +
(
Ωny (yn, pn)

)T · θn+1 ,

µn = µn+1 +
(
Φnp (yn, p)

)T · λn+1 +
(
Ωnp (yn, p)

)T · θn+1 ,

θn = Ωnq (yn, p, qn) θn+1 .

10

and finally

λn =
(
Φny (yn, p)

)T
λn+1 +

(
Ωny (yn, pn)

)T
θn+1 ,

µn = µn+1 +
(
Φnp (yn, pn)

)T
λn+1 +

(
Ωnp (yn, pn)

)T
θn+1 ,(E.8)

θn = θn+1 .

From (E.6) and (E.7) one infers that θn = 1 for all n. Using this fact, a rearrangement
of (E.7) leads to the discrete adjoint equations

λN = gTy (yN , p) , µN = gTp (yN , p) ,

λn =
(
Φny (yn, p)

)T · λn+1 +
(
Ωny (yn, p)

)T
,(E.9)

µn = µn+1 +
(
Φnp (yn, p)

)T · λn+1 +
(
Ωnp (yn, p)

)T
, n = N − 1, . . . , 0 .

The adjoint values at the initial time represent the sensitivities of the numerical cost
function (E.2) with respect to the initial conditions and with parameters, respectively:(

∂Ψ

∂y0

)T
= λ0 ,

(
∂Ψ

∂p

)T
= µ0 .(E.10)

For details on derivation see [19].

11

Supplementary material part F. Fatode implementation of discrete ad-
joint model integration: sensitivities with respect to a vector of parame-
ters.

We now consider the case where the adjoint sensitivity is computed with respect to
a time-independent vector of parameters p ∈ Rm which appears in the right hand side
of (1.1). We consider a scalar quantity of interest having the general form (2.6) (with
the number of outputs o = 1). As shown in Appendix E the numerical solution of
(2.7) provides the discrete yn and qn. The discrete adjoint model equations calculate
the adjoint variables λn and µn backward in time, such that

λN = gTy (yN , p) , µN = gTp (yN , p) ; λ0 = (∂Ψ/∂y0)
T
, µ0 = (∂Ψ/∂p)

T
.(F.1)

For details on derivation see [19] and Appendix E.

F.1. Runge-Kutta methods. Consider the Runge-Kutta method (2.2) applied
to the extended ODE system (2.7)

Yi = yn + h

s∑
j=1

ai,j f (Tj , Yj , p) , i = 1, . . . , s ,(F.2a)

yn+1 = yn + h

s∑
j=1

bj f (Tj , Yj , p) ,(F.2b)

qn+1 = qn + h

s∑
j=1

bj r (Tj , Yj , p) .(F.2c)

Note that, since r does not depend on q, there is no need to compute the stage values
for the quadrature variable.

Using the extended co-state vector and the extended Jacobian (A.1), the discrete
adjoint (E.7) of a Runge-Kutta method is ui

vi
wi

 = h

 fTy (Ti, Yi, p) 0(d,m) rTy (Ti, Yi, p)
fTp (Ti, Yi, p) 0(m,m) rTp (Ti, Yi, p)

0(1,d) 0(1,m) 0(1,1)

(F.3a)

·

bi
 λn+1

µn+1

θn+1

+

s∑
j=1

aj,i

 uj
vj
wj

 , i = s, . . . , 1 ,

 λn
µn
θn

 =

 λn+1

µn+1

θn+1

+

s∑
j=1

 uj
vj
wj

 .(F.3b)

From the last equation of (F.3a) we see that wi = 0 for all i, and from (F.3b) we infer
that θn = θn+1 = · · · = θN = 1. The discrete adjoint Runge-Kutta method (F.3) can
be rewritten as

ui = hfTy (Ti, Yi, p) ·

bi λn+1 +

s∑
j=1

aj,i uj

+ h bi r
T
y (Ti, Yi, p) ,(F.4a)

vi = hfTp (Ti, Yi, p) ·

bi λn+1 +

s∑
j=1

aj,i uj

(F.4b)

12

+h bi r
T
p (Ti, Yi, p) , i = s . . . 1 ,

λn = λn+1 +

s∑
j=1

uj ,(F.4c)

µn = µn+1 +

s∑
j=1

vj .(F.4d)

The stages ui are obtained by solving the system in a similar way as solving system
(D.4) and the implementation differs between SDIRK and fully implicit 3-stage Runge-
Kutta method. Then vi can be readily obtained from the right-hand side calculation.

Sensitivities with respect to initial conditions are obtained by setting all deriva-
tives with respect to parameters to zero in (F.4), to obtain (D.1).

F.2. Rosenbrock methods. Applying the Rosenbrock method (B.10) to the
extended system (2.7) gives the following formula for evaluating the quadrature term
in the cost functional (2.6):

k̂i = hγ

r(Ti, Yi) +

i−1∑
j=1

ci,j
h
k̂j + hγirt + ry · ki

 ,(F.5a)

qn+1 = qn +

s∑
i=1

mik̂i .(F.5b)

Equation (F.5) is evaluated simultaneously with the ODE integration.
The discrete adjoint (E.7) of a Rosenbrock method is
I(d,d)
hγ − f

T
y (tn, yn, p) 0 −rTy (tn, yn, p)

−fTp (tn, yn, p)
I(m,m)

hγ −rTp (tn, yn, p)

0 0 1
hγ

 ·
 ui
ui
ûi

 = mi

 λn+1

µn+1

θn+1


+

s∑
j=i+1

aj,i
 vj
vj
v̂j

+
cj,i
h

 uj
uj
ûj

 ,

 vi
vi
v̂i

 =

 fTy (Ti, Yi, p) 0 rTy (Ti, Yi, p)
fTp (Ti, Yi, p) 0 rTp (Ti, Yi, p)

0 0 0

 ·
 ui
ui
ûi

 , i = s, s− 1, · · · , 1 ,

 λn
µn
θn

 =

 λn+1

µn+1

θn+1

+

s∑
i=1

 ui
ui
ûi

 · H̃
 ·

 ki
ki
k̂i


+h

 fTy,t(tn, yn, p) 0 rTy,t(tn, yn, p)
fTp,t(tn, yn, p) 0 rTp,t(tn, yn, p)

0 0 0

 · s∑
i=1

γi

 ui
ui
ûi

+

s∑
i=1

 vi
vi
v̂i

 .
Using the derivative notation in Appendix A, this equation can be written component
by component as follows:

1

hγ
ûi = mi θn+1 +

s∑
j=i+1

(
aj,i v̂j +

cj,i
h
ûj

)
,

13

(
I(d,d)

hγ
− fTy (tn, yn, p)

)
ui = rTy (t, y, p) ûi +mi λn+1 +

s∑
j=i+1

(
aj,i vj +

cj,i
h
uj

)
,

1

hγ
ui = fTp (tn, yn, p)ui + rTp (tn, yn, p) ûi +mi µn+1 +

s∑
j=i+1

(
aj,i vj +

cj,i
h
uj

)
,

vi = fTy (Ti, Yi, p)ui + rTy (Ti, Yi, p) ûi ,

vi = fT
p (Ti, Yi, p)ui + rTp (Ti, Yi, p) ûi ,

v̂i = 0 ,

λn = λn+1 +

s∑
i=1

(
(ui · fy,y) · ki + (ui · fy,p) · ki + (ûi · ry,y) · ki + (ûi · ry,p) · ki

)
,

+hfTy,t(t, y, p) ·
s∑
i=1

γiui + h rTy,t(t, y, p) ·
s∑
i=1

γiûi +

s∑
i=1

vi ,

µn = µn+1 +

s∑
i=1

(
(ui · fp,y) · ki + (ui · fp,p) · ki + (ûi · rp,y) · ki + (ûi · rp,p) · ki

)
,

+hfTp,t(t, y, p) ·
s∑
i=1

γiui + h rTp,t(t, y, p) ·
s∑
i=1

γiûi +

s∑
i=1

vi ,

θn = θn+1 +

s∑
i=1

v̂i .

This equation can be simplified using the following facts.
• Note that θn = 1 for all n and v̂i = 0 for all i, therefore the numbers ûi can

be computed by the simple recurrence

1

hγ
ûi = mi +

s∑
j=i+1

(cj,i
h
ûj

)
⇔ û = h γ

(
I(s,s) − γ cT

)−1
m .(F.6)

Equations (F.6) and (B.11) lead to

û = hb .

• Equation (B.10c)  yn+1

pn+1

qn+1

 =

 yn
pn
qn

+

s∑
i=1

mi

 ki
ki
k̂i

(F.7)

indicates that ki = 0 for all time steps since pn+1 = pn = p. The vector

ki and k̂i are obtained from the solution of the extended form of forward
integration (B.10b) and (F.5).

• The equation for calculating the quantity u is not needed to update the adjoint
variables λ and µ so that the third equation can be omitted.

With the above simplifications, and using (A.2) and the derivative notation of Ap-
pendix A, the discrete adjoint Rosenbrock method can be written in a component-wise
manner as follows:

1

hγ
ûi = mi +

s∑
j=i+1

(cj,i
h
ûj

)
14

(
I(d,d)

hγ
− fT

y (tn, yn, p)

)
ui = ûi r

T
y (tn, yn, p) +mi λn+1 +

s∑
j=i+1

(
aj,i vj +

cj,i
h
uj

)
vi = fT

y (Ti, Yi, p) · ui + ûi r
T
y (Ti, Yi, p)

vi = fT
p (Ti, Yi, p) · ui + ûi r

T
p (Ti, Yi, p)

λn = λn+1 +

s∑
i=1

(
(ui · fy,y) · ki + (ûi · ry,y) · ki

)
+hfTy,t(tn, yn, p) ·

s∑
i=1

γiui + h rTy,t(tn, yn, p) ·
s∑
i=1

γiûi +

s∑
i=1

vi

= λn+1 +

s∑
i=1

(
(fy,y · ki)T · ui + ûi (ry,y · ki)T

)
+hfTy,t(tn, yn, p) ·

s∑
i=1

γiui + h rTy,t(tn, yn, p) ·
s∑
i=1

γiûi +
s∑
i=1

vi

µn = µn+1 +

s∑
i=1

(
(ui · fp,y) · ki + (ûi · rp,y) · ki

)
+hfTp,t(tn, yn, p) ·

s∑
i=1

γiui + h rTp,t(tn, yn, p) ·
s∑
i=1

γiûi +

s∑
i=1

vi

= µn+1 +

s∑
i=1

(
(fp,y · ki)T · ui + ûi (rp,y · ki)T

)
+hfTp,t(tn, yn, p) ·

s∑
i=1

γiui + h rTp,t(tn, yn, p) ·
s∑
i=1

γiûi +

s∑
i=1

vi .

The result is

R̃T (γ, tn, yn) · ui = h bi r
T
y +mi λn+1 +

s∑
j=i+1

(
aj,i vj +

cj,i
h
uj

)
(F.8a)

vi = fT
y (Ti, Yi, p) · ui + h bi r

T
y (Ti, Yi, p)(F.8b)

vi = fT
p (Ti, Yi, p) · ui + h bi r

T
p (Ti, Yi, p)(F.8c)

λn = λn+1 +

s∑
i=1

(fy,y · ki)T · ui + h

s∑
i=1

bi (ry,y · ki)T(F.8d)

+hfTy,t ·
s∑
i=1

γiui + h2 ρ rTy,t +

s∑
i=1

vi

µn = µn+1 +

s∑
i=1

(fp,y · ki)T · ui + h

s∑
i=1

bi (rp,y · ki)T(F.8e)

+hfTp,t ·
s∑
i=1

γiui + h2 ρ rTp,t +

s∑
i=1

vi ,

where ρ =
∑s
i=1 γi bi and all derivatives are evaluated at (tn, yn, p), unless their

arguments are explicitly shown.
When all partial derivatives with respect to parameters are set to zero in (F.8)

15

one obtains the discrete Rosenbrock adjoint (D.6), which calculates sensitivities with
respect to initial conditions.

16

Supplementary material part G. Fatode error estimation and step size
control.

Variable step size control is routinely adopted by general ODE solvers to control
numerical errors and maximize efficiency. Fatode’s forward integrators use estimates
of the truncation error to decide whether to accept or reject the step, and to compute
the next step size. The maximum number of integration steps before an unsuccessful
return can be specified by the user.

For the ERK, SDIRK, and Rosenbrock methods the classical error estimators
based on embedded solutions are implemented; they proved to work well in practice.
Two different error estimation options are provided for fully implicit Runge-Kutta
methods. One is the classical error estimation [14] which uses an embedded third
order method based on an additional explicit stage. The second estimator uses two
additional stages: an explicit stage at the beginning of the time step and another
SDIRK stage which re-uses the LU decomposition from the solution of the main
integrator. The coefficients are chosen such that the order of consistency of the
embedded solution ŷn+1 is p̂ = p − 1, where p is the order of yn+1. The difference
vector Est = ŷn+1− yn+1 is used as a local error estimator. Our experience indicates
that the SDIRK error estimator yields better results overall.

The local error test is performed as follows. Let Tolk = atolk + rtolk · |yn+1,k|,
where atol and rtol are the absolute and relative error tolerance specified by user, and
|yn+1,k| is the absolute value of the k-th component of yn+1. The relative and absolute
error tolerances can be either vector or scalar (in which case the same tolerance values
are used for all components k). The local error test takes the form [14]

Err =

√√√√1

d

d∑
k=1

(
Estk
Tolk

)2

< 1 .(G.1)

If the test passes the step size is accepted, otherwise it rejected and the step is re-
computed. The new step size, for both accepted and rejected cases, is given by [14]

hnew = hold ·min
(
Fmax,max

(
Fmin,Fsafe · Err−1/(p̂+1)

))
,

where Fmax is the upper bound on step increase factor, Fmin the lower bound on step
decrease factor, and Fsafe is a safety factor. The default values of these factors depend
on the specific method. All of them can be changed by the user in the parameter
settings. If the step size is rejected at the first step, the step increase factor Fmax is
set to 1, and the step size is reduced by a factor of 10. Furthermore, the step size can
be constrained by minimum (hmin) and maximum (hmax) values. The starting step
size hstart can be specified by the user.

For the tangent linear model integration fatode provides two options for con-
trolling errors in the sensitivities. The first option is to use only the forward error
estimates for step size control. The second option is to estimate the truncation errors
for both the forward solution and the tangent linear model solution. The solution er-
ror is taken as the maximum between the forward truncation error and the truncation
error of any column of the sensitivities. This solution error is then used to control the
step size.

The discrete adjoint model integration traces the same sequence of steps as the
forward integration, in reverse order. Therefore, the choice of the step sizes is com-
pletely determined during the forward integration, and the accuracy of the adjoint
solution will depend on the error control performed during the forward run.

17

G.1. Computing derivatives required by fatode. The implicit formula-
tion of the stiff solvers, as well as the formulation of the tangent linear and adjoint
methods, require the computation of various derivatives, summarized in Appendix
A. These derivatives include the Jacobians of the ODE function with respect to the
state fy, e.g., in equations (B.2); gradients of the quadrature function rTy , rTp , e.g., in
(F.4); Jacobian times vector products, e.g., fyu in (C.1); transposed Jacobians times
vector products, e.g., fTy u and fTp u in (F.8b)–(F.8c); Hessian times vector products,

e.g., (fy,yk)u in (C.6b) and (fp,yk)
T
u, (rp,yk)

T
u in (F.8); and time derivatives of

Jacobians transposed times vectors, e.g., fTp,t u in (F.8d). Among the methods imple-
mented in fatode, the Rosenbrock family requires the calculation of most derivatives,
including Hessian vector products.

The derivatives supplied to fatode can be obtained analytically, by finite differ-
ences, or by automatic differentiation. The errors in the derivative terms should be
smaller than the local truncation error of the integrator, otherwise a loss of accuracy
in the computed sensitivities will be experienced. Therefore utmost care must be
exercised with the use of finite difference approximations. If analytical derivatives are
not available, automatic differentiation tools like tamc [11] can provide considerable
help. For example, a Jacobian vector product is obtained by one tamc run in forward
mode, a transposed-Jacobian vector product by one tamc run in reverse mode, and
the product between the Hessian transposed times vector can be obtained by two
consecutive runs of tamc in forward mode.

18

Supplementary material part H. Linear solvers in fatode. The most
computationally intensive part in solving large-scale ODE systems by implicit methods
is the solution of linear systems at each step. Linear systems arise from the simplified
Newton iterations applied to solve the nonlinear systems in case of fully implicit
Runge-Kutta methods and SDIRK methods. For Rosenbrock methods, linear systems
appear directly in the formula (2.4). In general, all implicit time stepping methods in

fatode require the solution of linear systems with matrices R or R̃ defined in (B.2).
These matrices inherit the sparsity structure of the system Jacobian.

The best efficiency is achieved when taking advantage of the problem-specific
characteristics. Consequently, fatode was designed to allow users to provide their
own linear solvers and sparse data structures. We have incorporated three direct
methods in current version of fatode. For dense systems calls to lapack [3] rou-
tines are provided. For large sparse systems, substantial memory and execution time
benefits can be gained by calling the direct sparse solvers umfpack [6] and superlu
[7] and representing the sparse matrices in a compressed column format. Interfaces
to both these codes are provided.

All the relevant information is encapsulated in a linear algebra module, as ex-
plained in Section 4. The module contain interfaces to the following four generic
routines: LS Init (initialization and memory allocation required by the specific linear
solver), LS Decomp (LU decomposition), LS Solve (solves the triangular systems by
substitution), and LS Free (frees the memory allocated and clears the objects created
during the initialization stage). The time integrators make calls to these functions
without having to consider the underlying solver details. The user can choose one
of the linear solvers provided (lapack, umfpack, superlu), or can use them as
templates and add a new linear solver to the module. For example adding an itera-
tive solver requires to provide a data structure for the Jacobian, and a corresponding
Jacobian-vector product routine; LS Decomp remains empty, while the iterative solver
is called from within LS Solve. All the required code modifications are within the lin-
ear algebra module.

19

Supplementary material part I. Numerical experiments with stiff solvers
on the two dimensional shallow water problem.

I.1. Forward solution. In our test, we choose the option of the BDF method
for the comparison with implicit methods in fatode. From each family of implicit
integrators in fatode we select several representative methods with different orders
for the tests: Lobatto3C, Radau2A, and Gauss (fully implicit Runge-Kutta); Ros3 and
Ros4 (Rosenbrock); Sdirk4a, Sdirk2a (singly diagonally implicit Runge-Kutta). The
Gustafsson predictive error controller is used for all integrators. An additional SDIRK
stage was used in the error estimator in the fully implicit Runge-Kutta integrator.

Since solution of linear systems dominates the computational cost of implicit
integration, especially for large-scale ODE systems, it is necessary to use the same
linear solvers for both cvode and fatode for a fair performance comparison. In our
comparison experiments we use the direct linear solver (dgetrf and dgetrs) from
lapack simply for comparison purposes. Note that sparse linear solvers should be
used in practice for best efficiency. In all cases, the full Jacobian is supplied.

We vary both absolute and relative error tolerances from 10−2 to 10−7 to obtain
solutions of different levels of accuracy (the absolute and relative error tolerances are
equal to each other). The simulation time interval is [t0, tF] = [0, 0.02] time units. A
reference solution is obtained by using lsode [18], a well known but relatively slow
ODE solver, with a very tight relative and absolute tolerances of 10−14. The relative
error is defined by (5.2).

The work-precision diagrams for the stiff solvers are shown in Figure I.1. The re-
sults indicate that singly diagonally implicit and fully implicit Runge-Kutta methods
implemented in fatode outperform the BDF method implemented in cvode, requir-
ing fewer time steps and considerably smaller CPU times to reach a desired accuracy.
The Rosenbrock method is also more efficient than cvode for accuracy levels below
10−6.

2 4 8 16 33 66 133 267 537
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of steps

R
e
la

ti
v
e
 e

rr
o
r

Lobatto3C
Radau2A

Gauss
Sdirk2a

Sdirk4a
Ros3

Ros4
CVODES

(a) Relative error vs number of steps

40 63 100 159 251 398 630 997 1579 2500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

CPU time (in seconds)

R
e

la
ti
v
e

 e
rr

o
r

Lobatto3C
Radau2A

Gauss
Sdirk2a

Sdirk4a
Ros3

Ros4
CVODES

(b) Relative error vs CPU time

Fig. I.1. Forward integration of the shallow water equations (5.2) using stiff integrators. Com-
parison is made between FIRK, SDIRK, and Rosenbrock methods in fatode with the BDF method
in cvode. Different points on the plots correspond to different absolute and relative tolerances levels
in the range 10−2, . . . , 10−7.

I.2. Direct sensitivity analysis. We now calculate the sensitivities of all solu-
tion components at the final time with respect to the initial value of the first solution
component ∂yi(tF)/∂y1(t0), i = 1 . . . n using tangent linear model integration. The

20

2 4 6 11 20 35 63 111 197
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of steps

R
e
la

ti
v
e
 e

rr
o
r

Lobatto3C_TLM
Radau2A_TLM

Gauss_TLM
Sdirk2a_TLM

Sdirk4a_TLM
Ros3_TLM

Ros4_TLM
CVODES

(a) Relative error vs number of steps

40 61 93 142 217 332 506 772 1179 1800
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

CPU time (in seconds)

R
e

la
ti
v
e

 e
rr

o
r

Lobatto3C_TLM
Radau2A_TLM

Gauss_TLM
Sdirk2a_TLM

Sdirk4a_TLM
Ros3_TLM

Ros4_TLM
CVODES

(b) Relative error vs CPU time

Fig. I.2. Tangent linear model integration of the shallow water equations (5.2) using stiff
solvers. Comparison is made between implicit methods in fatode with the BDF method in cvodes.
Different points on the plots correspond to different absolute and relative tolerances levels in the range
10−2, . . . , 10−6. The tangent linear model computes the sensitivity ∂yi(tF)/∂y1(t0), i = 1 . . . d.

fatode results are compared against those obtained with cvodes [24], an extension
of cvode capable to perform sensitivity analysis. The lapack linear solvers are used
in both cvodes and fatode.

Tangent linear model results with the stiff integrators are shown in Figure I.2.
The three implicit methods in fatode requires considerably fewer steps than cvodes.
The performance of the SDIRK and Rosenbrock methods is comparable to that of the
BDF method in cvodes in terms of accuracy versus CPU time. The fully implicit
Runge-Kutta method is nearly three times more expensive since it solves either a large
real-valued system or a complex-valued system at each step.

I.3. Adjoint sensitivity analysis. We calculate the sensitivities of the first
solution component at the final time with respect to all initial values ∂y1(tF)/∂yi(t0),
i = 1 . . . d using adjoint model integration. Work-precision diagrams for the implicit
solvers are shown in Figure I.3. All implicit methods in fatode outperform cvodes
in terms of both number of steps and CPU time required for a given solution accuracy.
The highest efficiency is achieved by the Rosenbrock method, despite the computation
of Hessian-vector products.

21

6 9 15 23 37 57 90 142 223 350
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of steps

R
e

la
ti
v
e

 e
rr

o
r

Lobatto3C_ADJ
Radau2A_ADJ

Gauss_ADJ
Sdirk2a_ADJ

Sdirk4a_ADJ
Ros3_ADJ

Ros4_ADJ
CVODES

(a) Relative error vs number of steps

60 113 213 402 757 1427 2689 5068 9551 18000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CPU time (in seconds)

R
e
la

ti
v
e
 e

rr
o
r

Lobatto3C_ADJ
Radau2A_ADJ

Gauss_ADJ
Sdirk2a_ADJ

Sdirk4a_ADJ
Ros3_ADJ

Ros4_ADJ
CVODES

(b) Relative error vs CPU time

Fig. I.3. Adjoint integration of the shallow water equations (5.2) using stiff solvers. Compari-
son is made between implicit methods in fatode with the BDF method in cvodes. Different points on
the plots correspond to different absolute and relative tolerances levels in the range 10−2, . . . , 10−6.
The adjoint model computes the sensitivity ∂y1(tF)/∂yi(t0), i = 1 . . . d.

22

Supplementary material part J. The Carbon Bond-IV (CBM-IV) chem-
ical mechanism.

Table J.1
List of species in CBM-IV

No. Species
Initial concentrations Absolute tolerances

(in molecules/cm3) (ATOL0)

1 O1D 3.65E−2 1E−9
2 H2O2 3.47E11 1E4
3 PAN 2.56E3 1E−4
4 CRO 3.35E−23 1E−30
5 TOL 5.29E−20 1E−27
6 N2O5 1.31E7 1
7 XYL 0 1E−14
8 XO2N 1.99E1 1E−6
9 HONO 3.84E8 1E1
10 PNA 2.68E8 1E1
11 TO2 1.59E−24 1E−31
12 HNO3 1.19E12 1E5
13 ROR 4.89E−5 1E−12
14 CRES 5.46E−21 1E−28
15 MGLY 1.94E−23 1E−30
16 CO 2.33E12 1E5
17 ETH 2.11E−30 1E−37
18 XO2 5.51E8 1E1
19 OPEN 2.63E−21 1E−28
20 PAR 8.12E3 1E−4
21 HCHO 3.00E10 1E3
22 ISOP 0 1E−14
23 OLE 0 1E−14
24 ALD2 2.69E2 1E−5
25 O3 2.06E12 1E5
26 NO2 1.56E10 1E3
27 OH 3.67E7 1
28 HO2 9.89E8 1E1
29 O 1.25E4 1E−3
30 NO3 3.36E7 1
31 NO 2.73E9 1E2
32 C2O3 6.53 1E−7

Table J.2
The first 6 dominant eigenvalues of Jacobian matrix in CBM-IV

Rank Eigenvalues

1 −1.404 53E9
2 −7.219 91E4
3 −3.749 62E3
4 −4.222 09
5 −2.272 99
6 −2.442 18E−1

23

Table J.3
List of reactions in CBM-IV

No. Reactions No. Reactions

1 NO2+hv=NO+O 42 ALD2+O=C2O3+OH
2 O+O2+M=O3 43 ALD2+OH=C2O3
3 O3+NO=NO2 44 ALD2+NO3=C2O3+HNO3
4 O+NO2=NO 45 ALD2+hv+2O2=HCHO+XO2+CO+2HO2
5 O+NO2=NO3 46 C2O3+NO=HCHO+XO2+HO2+NO2
6 O+NO=NO2 47 C2O3+NO2=PAN
7 O3+NO2=NO3 48 PAN=C2O3+NO2
8 O3+hv=O 49 2C2O3=2HCHO+2XO2+2HO2
9 O3+hv=O1D 50 C2O3+HO2=0.79HCHO+0.79XO2+0.79HO2+0.79OH
10 O1D=O 51 OH=HCHO+XO2+HO2

11 O1D+H2O=2OH 52
PAR+OH=0.87XO2+0.13XO2N+0.11HO2+0.11ALD2

+0.76ROR-0.11PAR

12 O3+OH=HO2 53
ROR=1.1ALD2+0.96XO2+0.94HO2+0.04XO2N

+0.02ROR-2.10PAR
13 O3+HO2=OH 54 ROR=HO2
14 NO3+hv=0.89NO2+0.89O+0.11NO 55 ROR+NO2=PROD

15 NO3+NO=2NO2 56
O+OLE=0.63ALD2+0.38HO2+0.28XO2+0.3CO

+0.2 HCHO+0.02XO2N+0.22PAR+0.2OH
16 NO3+NO2=NO+NO2 57 OH+OLE=HCHO+ALD2+XO2+HO2-PAR

17 NO3+NO2=N2O5 58
O3+OLE=0.5ALD2+0.74HCHO+0.33CO+0.44HO2

+ 0.22XO2+0.1OH-PAR

18 N2O5+H2O=2HNO3 59
NO3+OLE=0.91XO2+HCHO+ALD2+0.09XO2N

+NO2-PAR
19 N2O5=NO3+NO2 60 O+ETH=HCHO+0.7XO2+CO+1.7HO2+0.3OH
20 2NO=2NO2 61 OH+ETH=XO2+1.56HCHO+HO2+0.22ALD2
21 NO+NO2+H2O=2HONO 62 O3+ETH=HCHO+0.42CO+0.12HO2
22 OH+NO=HONO 63 OH+TOL=0.08XO2+0.36CRES+0.44HO2+0.56TO2
23 HONO+hv=OH+NO 64 TO2+NO=0.9NO2+0.9OPEN+0.9HO2
24 OH+HONO=NO2 65 TO2=HO2+CRES
25 2HONO=NO+NO2 66 OH+CRES=0.4CRO+0.6XO2+0.6HO2+0.3OPEN
26 OH+NO2=HNO3 67 NO3+CRES=CRO+HNO3
27 OH+HNO3=NO3 68 CRO+NO2=PROD

28 HO2+NO=OH+NO2 69
OH+XYL=0.7HO2+0.5XO2+0.2CRES+0.8MGLY
+1.10 PAR+0.3TO2

29 HO2+NO2=PNA 70 OH+OPEN=XO2+C2O3+2HO2+2CO+HCHO
30 PNA=HO2+NO2 71 OPEN+hv=C2O3+CO+HO2

31 OH+PNA=NO2 72
O3+OPEN=0.03ALD2+0.62C2O3+0.7HCHO+0.03XO2

+0.69CO+0.08OH+0.76HO2+0.2MGLY
32 2HO2=H2O2 73 OH+MGLY=XO2+C2O3
33 2HO2+H2O=H2O2 74 MGLY+hv=C2O3+CO+HO2

34 H2O2+hv=2OH 75
O+ISOP=0.6HO2+0.8ALD2+0.55OLE+0.5XO2

+0.5CO+0.45ETH+0.9PAR

35 OH+H2O2=HO2 76
OH+ISOP=HCHO+XO2+0.67HO2+0.4MGLY

+0.2C2O3+ETH+0.2ALD2+0.13XO2N

36 OH+CO=HO2 77
O3+ISOP=HCHO+0.4ALD2+0.55ETH+0.2MGLY

+0.06CO+ 0.1PAR+0.44HO2+0.1OH
37 HCHO+OH=HO2+CO 78 NO3+ISOP=XO2N
38 HCHO+hv+2O2=2HO2+CO 79 XO2+NO=NO2
39 HCHO+hv=CO 80 2XO2=PROD
40 HCHO+O=OH+HO2+CO 81 XO2N+NO=PROD
41 HCHO+NO3=HNO3+HO2+CO

24

Table J.4
List of reaction rates in CBM-IV

No. Reaction rate No. Reaction rate

1 (8.89E−3)∗SUN 42 ARR2(1.2E−11, −9.86E2)
2 ARR2(1.4E3, 1.175E3) 43 ARR2(7.0E−12, 2.5E2)
3 ARR2(1.8E−12, −1.37E3) 44 2.5E−15
4 9.3E−12 45 (4.0E−6)∗SUN
5 ARR2(1.6E−13, 6.87E2) 46 ARR2(5.4E−12, 2.5E2)
6 ARR2(2.2E−13, 6.02E2) 47 ARR2(8.0E−20, 5.5E3)
7 ARR2(1.2E−13, −2.45E3) 48 ARR2(9.4E16, −1.4E4)
8 (3.556E−4)∗SUN 49 2.0E−12
9 (2.489E−5)∗SUN 50 6.5E−12
10 ARR2(1.9E8, 3.9E2) 51 ARR2(1.1E2, −1.71E3)
11 2.2E−10 52 8.1E−13
12 ARR2(1.6E−12, −9.4E2) 53 ARR2(1.0E15, −8.0E3)
13 ARR2(1.4E−14, −5.8E2) 54 1.6E3
14 (1.378E−1)∗SUN 55 1.5E−11
15 ARR2(1.3E−11, 2.5E2) 56 ARR2(1.2E−11, −3.24E2)
16 ARR2(2.5E−14, −1.23E3) 57 ARR2(5.2E−12, 5.04E2)
17 ARR2(5.3E−13, 2.56E2) 58 ARR2(1.4E−14, −2.105E3)
18 1.3E−21 59 7.7E−15
19 ARR2(3.5E14, −1.0897E4) 60 ARR2(1.0E−11, −7.92E2)
20 ARR2(1.8E−20, 5.3E2) 61 ARR2(2.0E−12, 4.11E2)
21 4.399 99E−40 62 ARR2(1.3E−14, −2.633E3)
22 ARR2(4.5E−13, 8.06E2) 63 ARR2(2.1E−12, 3.22E2)
23 (1.511E−3)∗SUN 64 8.1E−12
24 6.6E−12 65 4.2
25 1.0E−20 66 4.1E−11
26 ARR2(1.0E−12, 7.13E2) 67 2.2E−11
27 ARR2(5.1E−15, 1.0E3) 68 1.4E−11
28 ARR2(3.7E−12, 2.40E2) 69 ARR2(1.7E−11, 1.16E2)
29 ARR2(1.2E−13, 7.49E2) 70 3.0E−11
30 ARR2(4.8E13, −1.0121E4) 71 (5.334E−5)∗SUN
31 ARR2(1.3E−12, 3.8E2) 72 ARR2(5.4E−17, −5.0E2)
32 ARR2(5.9E−14, 1.15E3) 73 1.7E−11
33 ARR2(2.2E−38, 5.8E3) 74 (1.654E−4)∗SUN
34 (6.312E−6)∗SUN 75 1.8E−11
35 ARR2(3.1E−12, −1.87E2) 76 9.6E−11
36 2.2E−13 77 1.2E−17
37 1.0E−11 78 3.2E−13
38 (2.845E−5)∗SUN 79 8.1E−12
39 (3.734E−5)∗SUN 80 ARR2(1.7E−14, 1.3E3)
40 ARR2(3.0E−11, −1.55E3) 81 6.8E−13
41 6.3E−16

1. The coefficient SUN is updated with time. It is 0 during the night. During daytime,
it is computed as (1 + cos(π ∗ ((2 ∗ tl − tsr − tss)/(tss− tsr))2))/2 where tl is the
local time, tsr and tss correspond to the sunrise time and sunset time respectively.
In our experiments, we use tsr = 4.5 (4:30am) and tss = 19.5 (7:30pm).

2. Function ARR2(a, b) is defined as a ∗ exp(b/temperature).

25

Supplementary material part K. Numerical experiments with stiff solvers
on the CBM-IV problem.

Table K.1
The sensitivities of five species to reaction rates at a temperature of 298K

Reaction No. N2O5 HONO HNO3 O3 NO2

4 −8.28E13 2.36E15 −2.21E16 −1.44E19 −2.10E14
11 1.39E16 5.36E17 −1.72E18 −1.27E21 3.03E17
18 −1.21E27 −4.39E27 2.10E29 −1.61E31 −1.85E29
21 2.14E37 1.52E41 −1.50E41 −1.15E42 −3.57E39
24 −3.28E15 −8.91E18 8.89E18 1.64E20 2.78E17
25 −4.94E16 −1.79E20 1.70E20 −2.62E21 6.06E18
36 −6.93E18 −1.11E20 −1.37E20 −2.57E23 −1.03E20
37 −4.24E16 −4.69E17 −1.79E18 −1.73E21 −4.20E17
41 −1.88E19 2.88E20 −5.84E20 −2.93E24 −2.43E21
44 3.67E9 −6.93E10 2.35E12 6.27E14 −2.94E11
49 −8.63E2 2.03E4 −1.85E5 −1.65E8 2.35E3
50 −2.18E8 5.25E9 2.64E11 −4.40E13 −4.22E10
52 −6.94E8 9.39E10 1.21E13 −3.66E14 −3.30E11
54 −1.43E−6 −1.45E−5 −5.27E−2 −7.29E−2 −6.78E−4
55 −3.65E5 −3.03E6 −1.26E10 −1.95E10 −1.66E8
64 2.53E−16 4.80E−16 9.13E−12 1.95E−11 1.17E−13
65 −4.88E−28 −9.26E−28 −1.76E−23 −3.76E−23 −2.26E−25
66 5.67E−15 1.39E−14 1.74E−10 4.38E−10 2.24E−12
67 −1.05E−14 −2.54E−14 −3.22E−10 −8.15E−10 −4.15E−12
68 −5.72E−20 −1.94E−19 −5.36E−18 −4.71E−15 −1.93E−19
70 −3.25E−17 −9.29E−16 2.15E−15 3.86E−13 −8.02E−16
74 6.77E−19 9.25E−18 3.11E−17 3.12E−14 7.26E−18
79 4.82E16 −1.73E18 1.53E19 8.36E21 −1.37E17
81 3.86E6 2.99E8 −4.22E10 −3.63E11 6.04E9

26

Supplementary material part L. Results with different approaches to
solve the adjoint system within each step.

Table L.1
Timings and accuracy of the CBM-IV test and the shallow water test solving the linear adjoint

system directly (or via simplified Newton iterations)

Method
Tolerances

Relative error CPU time
Rtol Atol

CBM-IV

Sdirk4a
1E-3 atol0 4.307E-6 (1.933E-5) 52.25ms (93.43ms)
2E-4 0.2 × atol0 5.757E-6 (1.231E-5) 77.41ms (14.73ms)

Radau2A
1E-3 atol0 3.047E-6 (2.997E-6) 55.95ms (69.99ms)
2E-4 0.2 × atol0 1.454E-6 (1.436E-6) 61.04ms (73.25ms)

Shallow water

Sdirk4a
1E-2 1E-2 2.697E-2 (2.697E-2) 14.41s (11.68s)
1E-3 1E-3 8.349E-2 (8.349E-2) 20.22s (17.37s)

Radau2A
1E-2 1E-2 8.669E-2 (8.669E-2) 160.06s (32.85s)
1E-3 1E-3 3.170E-2 (3.170E-2) 203.75s (39.82s)

27

Acknowledgements. This work is supported by the National Science Foundation
through the awards NSF DMS–0915047, NSF CCF–0916493, NSF OCI–0904397, NSF
CMMI–1130667, NSF CCF–1218454, AFOSR FA9550–12–1–0293–DEF, and AFOSR
12–2640–06.

28

