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Abstract. In the numerical solution of partial differential equations using a method-of-lines
approach, the availability of high order spatial discretization schemes motivates the development of
sophisticated high order time integration methods. For multiphysics problems with both stiff and
nonstiff terms implicit-explicit (IMEX) time stepping methods attempt to combine the lower cost ad-
vantage of explicit schemes with the favorable stability properties of implicit schemes. Existing high
order IMEX Runge-Kutta or linear multistep methods, however, suffer from accuracy or stability
limitations. This work shows that IMEX general linear methods (GLMs) are competitive alterna-
tives to classic IMEX schemes for large problems arising in practice. High order IMEX-GLMs are
constructed in the partitioned GLM framework developed earlier by the authors [J. Sci. Comput.,
61 (2014), pp. 119-144]. The stability regions of the new schemes are optimized numerically. The
resulting IMEX-GLMs have similar stability properties as IMEX Runge-Kutta methods, but they
do not suffer from order reduction and are superior in terms of accuracy and efficiency. The new
IMEX-GLMs have considerably better stability properties than the IMEX linear multistep methods.
Numerical experiments with two- and three-dimensional test problems illustrate the potential of the
new schemes to speed up complex applications.
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1. Introduction. Many problems in science and engineering are modeled by
time-dependent systems of equations involving both stiff and nonstiff terms. Exam-
ples include advection-diffusion-reaction equations, fluid-structure interactions, and
Navier—Stokes equations, and they arise in application areas such as mechanical and
chemical engineering, astrophysics, meteorology and oceanography, and environmen-
tal science.

A method-of-lines approach is frequently employed to separate the spatial and
temporal terms in the governing partial differential equations (PDEs). After the
spatial terms are discretized by techniques such as finite differences, finite volumes,
and finite elements, the resulting system of ordinary differential equations (ODEs)
is integrated in time. Stiffness may result from different time scales involved (e.g.,
convective versus acoustic waves), from local processes such as chemical reactions,
and from grids with complex geometry [29].

Explicit numerical integration schemes have maximum allowable time steps
bounded by the fastest time scales in the system; for example, the time steps are
restricted by the CFL stability condition. Implicit integration schemes can avoid the
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step size restrictions but require the solution of large nonlinear systems at each step
and are therefore computationally expensive. It is therefore of considerable interest
to construct numerical integration schemes that avoid the time step restrictions while
maintaining a high computational efficiency. In the implicit-explicit (IMEX) frame-
work computational efficiency is achieved by performing an implicit integration only
for the stiff components of the system.

IMEX methods treat the nonstiff term explicitly and the stiff term implicitly,
therefore attempting to combine the low cost of explicit methods with the favorable
stability properties of implicit methods. The development of IMEX linear multistep
methods and IMEX Runge-Kutta (RK) methods has been reported in [4, 20, 27, 3,
12, 35, 40].

High order methods usually yield more accuracy and better efficiency than low
order methods. Many modern PDE solvers are able to employ high order spatial
discretizations, e.g., by using high degree polynomials in a discontinuous Galerkin
(DG) approach. There is a need to develop high order time stepping formulas to be
used in conjunction with high order spatial discretizations. This need motivates the
current work.

Existing high order IMEX methods face challenges when applied to practical
problems. High order IMEX linear multistep methods suffer from a marked reduction
of the stability region with increasing order. IMEX-RK methods of order greater
than two are known to suffer from possible order reduction for stiff problems, which
reduces the efficiency of high order methods to that of low order methods. Common
sources of stiffness in PDEs are due to small grid sizes, to the relaxation in hyperbolic
systems, and to inhomogeneous boundary conditions. The order reduction due to stiff
relaxation can be alleviated by incorporating additional order conditions [11]. A third
order additive Runge-Kutta (ARK) scheme was introduced in [12] and demonstrated
no order reduction when used for the time evolution of hyperbolic PDEs [10]. But
methods of such type with order higher than 3 are not available. A considerable
increase in the number of coupling conditions would make their construction difficult.
Some possible remedies for applying RK methods to problems with inhomogeneous
boundary conditions have also been proposed in [17]. However, these strategies require
special treatment of boundaries, which brings in additional computational cost and
complexity; moreover, they merely work for linear boundary conditions. So to the
best of our knowledge, there is no effective and computationally efficient way for
IMEX-RK methods to handle order reduction due to all types of stiffness.

Boscarino gave the theoretical global error estimates of several popular IMEX-RK
methods for stiff systems in [9] and proved the connection between the stage order
and these global error estimates (see Theorems 3.1 and 3.2 and Corollary 3.1 in [9]).
The test results in [10] show that several third-order ARK schemes designed to have
stage order two outperform classical ARK schemes, which has further confirmed the
theory. Previous work clearly demonstrated that high stage order plays an important
role in avoiding order reduction.

This work develops and tests new high order time stepping schemes with high
stage order in the framework of IMEX general linear methods (IMEX-GLMs) that we
have recently developed [42, 43]. The GLM family proposed by Butcher and Jack-
iewicz [13] generalizes both RK and linear multistep methods. The added complexity
gives the flexibility to develop methods with better stability and accuracy properties.
While RK and linear multistep methods are special cases of GLMs, the framework al-
lows for the construction of many other methods as well. In [43, 42] we have developed
second- and third-order IMEX-GLM schemes that showed considerable promise.
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This study develops fourth- and fifth-order IMEX-GLMs with optimized stability
properties. Numerical experiments confirm that these methods do not suffer from
order reduction and are considerably more efficient than IMEX-RK methods on a suite
of problems ranging from two-dimensional (2D) Allen—-Cahn and Burgers equations
to 3D compressible Euler equations.

The paper is organized as follows. Section 2 reviews the class of general linear
methods. The construction of high order IMEX-GLMs with desired stability proper-
ties is discussed in section 3. This section first introduces desirable stability properties
building upon existing stability theory for Runge-Kutta methods. Numerical results
are reported in section 4. Conclusions are drawn in section 5.

2. IMEX general linear methods. IMEX time stepping methods are used to
solve systems of ODEs of the form

(2.1) Y = f(ty) +gty), to<t<tp, ylto)=yocR?,

where f is a nonstiff term, and g is a stiff term. Many systems of PDEs solved in
the methods of lines framework lead to partitioned ODE systems (2.1) after semidis-
cretization in space. The nonstiff and stiff driving physical processes are captured by
f and g, respectively.

Partitioned and IMEX general linear methods were developed in [43, 42]. An
IMEX-GLM applied to (2.1) advances the solution for one step using

(2.2a) -—hZa”f —&-hZa”g -)+iui7jy;n_l], i=1,...,s,

(22b _hZ(b,jf +b1]g )+ZU2jyjn 1], izl,...77‘.

Such a method is denoted IMEX-GLM(p, q, s,7) (p, g, s, and r stand for order, stage
order, number of internal stages, and number of external stages, respectively) as
defined in [28]. The implicit and the explicit components share the same abscissa
vector ¢ and the same coefficients U and V. The IMEX-GLM (2.2) is represented
compactly by the Butcher tableau

cl| A
B

U

(2.3) .
A%

o >

To study the method (2.2) in [43, 42] the additively partitioned original system (2.1)
is written in an equivalent component partitioned form [3]:

(2.4b) o = f(x,2) = flz+2),
(2.4c) 2 =g, 2) =gz +2).

The external vector y[nfl]

i is defined as a pth-order approximation of linear com-
binations of derivatives

(2.5 yzn U= Zq whFz® (¢, 1)—i—Z@,khkz(k)(tn,l)—|—(9(hp+1), i=1,...,m
k=0
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for some real parameters g; , i = 1,...,r, k =0,1,...,p. Note that in (2.2) :cgn} and
[n]
in
the combined external vector y,

how regular GLMs proceed.

To initialize yz[] the starting procedure developed in [43] advances the ODE

solution by taking r — 1 steps with a small step size 7 to obtain the solutions

Yo, Y5t L ystrt . The derivative terms are approximated using only the function

0] .

need not to be known individually once they are initialized in the first step. Only

n] En] + zl[n] is advanced at each step, similar to

evaluations at these  points. The starting value for the external vector y, = is calcu-

lated via the formula
yzm = Yo + qi, 1hf(y0) + Gi,1hg(yo)

+qulkhk/7'k 1dk,;f start +qulkhk/7'k 1dk]g( btdrt)

k=2 j=1 k=2 j=1

In vector form it can be written as
(2.6)

¥ = 1,®y0+7 (QD & Lyxa) (R ® Lgxa) F) 7 (QD ® Idxd) (R®Igxq)G™™),

where FS% and G*'%'% consist of function values evaluated at the r starting points,

e.g., Fstart _ [f (y(s)tart) f (y;tart) e f (y:t_art)]
The r X r coefficient matrices Q, D, and R are computed as follows:

1. Q, Q are determined by the method coefficients A, A and the abscissa vector
c. These matrices can be computed columnwise via the order conditions [13]

P Aci-1 R R ¢ Aci-l

27 :15’ P = T T T o s :157 = — .
@27 = (i—1)! 1 “= (i—1)!

2. Starting with the approximation

7293 '(to) ' (to)
"y o' (t
(28) :( 0) - D (:t ) + O(TT+1),
r2() (t) 2t 1)

expanding the right-hand side in Taylor series, and comparing the coefficients
of each term allows us to identify each entry of D.
3. R is a diagonal rescaling matrix which has the form

(2.9) R = diag (h/7,h*/7%,...,h" /7).

Note that this starting procedure enables us to compute the initial approximations
with a smaller step size 7 < h. The initial approximations can be computed with a
regular method of choice; the very small time steps ensure accurate initial solutions
and also circumvent possible numerical stability issues with the auxiliary scheme.
The starting procedure used for the experiments in this paper employs the IMEX-
RK scheme. Considering the possible low accuracy caused by order reduction, in the
starting procedure we use a step size half as large as the step size for the following
integration. We point out that using the same step size typically works well based on
our experience.
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3. Construction of high order IMEX-GLMs. We now consider the con-
struction of high order IMEX-GLMs. The partitioned GLM theory developed in [43]
ensures that if the stage order is high, the IMEX-GLM method has the desired order
without the need for coupling conditions. One imposes the order and stage order
conditions independently on the implicit and on the explicit component GLMs.

The order conditions for constructing arbitrary GLMs are complicated. In this
paper we choose the explicit and implicit components from a subclass of GLMs, named
diagonally implicit multistage integration methods (DIMSIMs), for which the order
conditions are more manageable. DIMSIMs are a subclass of GLMs characterized by
the following properties [13]:

1. A is lower triangular with the same element a; ; = A on the diagonal;
2. V is a rank-1 matrix with the nonzero eigenvalue equal to one to guarantee
preconsistency;
3. The order p, stage order ¢, number of external stages r, and number of internal
stages s are related by ¢ € {p — 1,p} and r € {s,s+ 1}.
DIMSIMs can be categorized into four types according to [13]. Type 1 and type 2
methods have a; ; = 0 for j > ¢ and are suitable for a sequential computing environ-
ment, while type 2 and type 3 methods have a; ; = 0 for j # i and are suitable for
parallel computation. Methods of types 1 and 3 are explicit (a;; = 0), while methods
of types 2 and 4 are implicit (a;; = A # 0) and potentially useful for stiff systems.

Following [43] we are particularly interested in DIMSIMs with p = ¢ = r = s,
U = I« and V = 1,07, where vT 1, = 1 [28]. The order conditions are satisfied if
the coefficient matrix B is computed from the relation

(3.1) B =B, - AB, — VB, + VA,

where the matrices By, B1,Bs € R**® have entries

folﬂi ¢ (x)dx y ¢i(x)da
oy B gy B =T

and ¢;(x) are defined by ¢;(z) = [[;; j.i(x —¢;) (cf. [13, Thm. 5.1], [28, Thm.
3.2.1]). Therefore to obtain high order DIMSIMs there is no need to solve complex
nonlinear systems as one usually does in the construction of RK methods.

The important challenge that remains in the construction of IMEX-GLM methods
is to achieve the desirable stability properties. This section first introduces desirable
stability properties building upon existing stability theory for RK methods. A nu-
merical optimization process used to maximize the IMEX stability regions is then
discussed. Two new IMEX-DIMSIM methods of orders four and five are presented at
the end.

(Bo); ; = - fsll+a)

3.1. Stability considerations.
A-stability, L-stability, and inherited RK stability. The classical linear stability
theory [26] considers the scalar test problem whose solution decays to zero,

(3.2) Yy =Xy, t>0, Re(\)<0.

A numerical method is stable if when applied to solve the test problem (3.2) for one
step of length h it generates a solution of nonincreasing size. A GLM (A,B,U,V)
(2.3) applied to the test problem gives a solution

(3.3) Yyt = M(2) g, M(2) =V +2B (Iiws —2A) "' UL
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Here M(z) is the stability matrix and has a corresponding stability function
(3.4) p(w, z) = det(wl,», — M(z)),

where w, z € C and z = \h.

A-stability requires that the method is unconditionally stable independent of the
size of the time step h, i.e., the spectral radius of the stability matrix p(M(z)) < 1
for any z. L-stability further requires that p(M(z)) — 0 when z — oo [26]. L-
stable methods damp components of high frequencies and are particularly useful for
stiff problems. Since IMEX-GLM schemes are designed to treat stiff parts of a given
problem implicitly, we want the implicit component to be L-stable, or at least A-stable.
Imposing L-stability directly on the GLM coeflicients leads to a difficult analysis, with
complexity increasing dramatically as the order increases.

The inherited RK stability property [41, 16] provides a practical way to achieve
L-stability. This property requires that the stability function (3.4) has the form

(3.5) plw,z) =w*" (w— R(2)),

where R(z) is the stability function of an RK method of order p = s. When (3.5)
holds the existing L-stability theory for RK methods can be applied to GLMs. Note
that conditions (3.5) lead to additional nonlinear constraints on method coefficients;
these constraints need to be solved accurately in practice.

Stability analysis for IMEX-GLMs. To study the linear stability of IMEX-GLM
schemes we consider the following generalized linear test equation [43]:

(3.6) Y =¢&y+&y, t>0, Re(£),Re(§)<0.

This test problem mimics the structure of (2.1). We consider £y to be the nonstiff
term and Ey the stiff term and denote w = h€ and W = hg. R
Applying (2.2) to the test equation (3.6) and assuming Isxs — wA — WA is non-
singular lead to
Y = M(w, @)y,

where the stability matrix is defined by [43]

(3.7) M(w,@):v+(wB+m§) (ISXwaAf@A)_lU.

Let S C C and S C C be the stability regions of the explicit GLM component and of
the implicit GLM component, respectively. The combined stability region is defined
by [43]

(3.8) C:{wES,@egzp(M(w,@))<l}CS><§C(C><(C.

For a practical analysis of stability we define a desired stiff stability region, e.g.,
S,={0eSNC~ : |Im(d)| < tan(a) [Re(®)|},

and compute numerically the corresponding constrained nonstiff stability region:

(3.9) So = {w €S : p(M(w,w)) <1 Vie ga} .

The IMEX-GLM method is stable if the constrained nonstiff stability region S, is
nontrivial (has a nonempty interior) and is sufficiently large for a prescribed (problem-
dependent) value of «, e.g., « = 7/2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/24/16 to 130.202.98.208. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A1436 HONG ZHANG, ADRIAN SANDU, AND SEBASTIEN BLAISE

3.2. Finding high order IMEX-DIMSIMs with large stability regions.
The implicit component of the IMEX-GLM is constructed first, and the desired L-
stability property is imposed. L-stable GLMs existing in the literature can also be
used as implicit components in the combined IMEX scheme.

L-stability indicates that @w in the nonstiff stability definition (3.9) can be any
value on the negative half-plane. So the constrained region with o = 7/2 is

Srj2 = {w €S : p(M(w,reie)) <1l Voe [—g,g} , Vre [O,—oo)} .

The corresponding explicit component is constructed next based on the following
criteria: it shares the coefficients ¢, U,V with the implicit component, it satisfies the
desired order conditions, and it results in a large constrained stability region (3.9).

According to the order conditions in [43], B depends on A and c. Thus the
only free parameters in determining the explicit part are the s(s — 1)/2 elements of
matrix A. The problem of finding IMEX-DIMSIMs can be regarded as a numerical
optimization problem to find the entries of A such as to maximize the area of the
constrained stability region Sy /5.

We discretize the region Sy /o using finite sets of points in polar coordinates

Sryo {w es : p(M(w,rew)) <1 VOeo:C {—g,g} , Vre R C (—oo,O]} .
For example, Ry = [0,—1073,—-1072,...,—10%] and O are a set of equally spaced

points between —7/2 and /2.

We next determine the boundary 08y, of the constrained stability region. For
this we consider the points of intersection of the boundary with vertical lines on the
negative half-plane with abscissae x. An intersection point Wy = (x,yr) should
satisfy

~ i0
(3.10) Teg%)é@fp(M(wk,re )) = 1.
Note that since the stability region is symmetric, we only need to consider the part
above the real axis.

Starting with an initial point on the vertical line, e.g., zy + iy., where y, is
large enough to make the point outside the stability region, we apply the bisection
Algorithm 1 to find the first point w = a3, + ¢y along the vertical line such that

~ 0
(3.11) Telr%rfl%égfp(M(w,re )) <1

A similar idea can be used to find the intersection of the stability region and the
real axis, which is assumed to be the leftmost point of the stability region. Then
we can determine the boundary with the above-mentioned algorithm. Algorithm 2
summarizes the procedure to approximate the area of the stability region.

As we can see, the objective function that approximates the area of the stability
region is highly nonlinear and computationally expensive, especially for the construc-
tion of high order methods. The optimization problem is in general difficult to solve
numerically. First we transform the maximization problem to a minimization prob-
lem by minimizing the negative of the objective function. Then we use a combination
of the MATLAB genetic algorithm function ga and the MATLAB local minimizer
fminsearch. We repeatedly apply the two optimization routines one after another
using one’s result as the starting point of the other. Each optimizer is run multiple
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Algorithm 1. Bisection algorithm for finding the points of intersection.

Initialize Ytop <= Yo Yoot < 0
while Yiop — Ybot > tol do

Ymid = (ytop + ybot)/2
if W < ¢+ i Ymia satisfies the condition (3.11) then

Ybot = Ymid
else
Ytop = Ymid
end if
end while

return Ypot

Algorithm 2. Algorithm for computing the area of constrained stability regions.

1: Find the point x; of intersection of the stability region and the = axis using a
bisection strategy similar to Algorithm 1

2: Generate m vertical lines with abscissae xj linearly spaced between z;, and 0

3: Find the points of intersection of these lines and the stability region

4: Approximate the area of the stability region using the trapezoidal method

times until the results converge; each run is initialized with the previous result. We
terminate the procedure when the result does not change across multiple runs for
both optimizers.

3.3. New IMEX-GLMs. The construction of DIMSIMs starts with choosing
the abscissa vector ¢ [14]. A natural choice is a vector of values equally spaced in the
interval [0, 1]. For DIMSIMs of order p and stage order ¢ = p, the last value ¢ = 1
allows us to use the last stage value as the ODE solution at the next time step. This
advantage also applies to IMEX-DIMSIM. Here we choose the common abscissae for
the IMEX pairs equally spaced in [0, 1] and including 0 and 1. There is no evidence
so far that other choices would lead to better schemes.

3.3.1. A fourth-order IMEX-DIMSIM pair. We start with the construction
of the implicit part of the IMEX pair. Butcher and Jackiewicz [14] report a failed
attempt to construct DIMSIMs with inherited RK stability, p =q=1r = s = 4, and
¢ =[0,1/3,2/3,1]. Surprisingly we succeeded in solving the nonlinear system that
comes from the stability constraints by using Mathematica software. For detailed
information on the nonlinear system, we refer to [14]. The coefficients of the type
2 (implicit) DIMSIM we found are given in Figure 1. The choice of the diagonal
element of A equal to 0.572816062482135 ensures that the implicit method is L-stable,
following the classic theory of RK methods [26]. We remark that this new implicit
DIMSIM method can be used by itself due to its favorable stability properties.

The optimization problem formulated in section 3.2 for maximizing the con-
strained stability regions has six free variables, which are lower triangular entries
of the coefficient matrix A. The maximal area of the constrained stability region of
the explicit method on the negative plane is approximately 1.34. Figure 2 shows the
stability regions of the implicit component S, of the explicit component S, as well as
the constrained stability regions S, for a = /2, 7/3, /4.

We will refer to the resulting method as IMEX-DIMSIM4. The coefficients of the
explicit method to 15 accurate digits are given in Figure 1.
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FiG. 2. Stability regions for the fourth-order IMEX-DIMSIM pair withp =q =1 = s =4 and
c=1[0,1/3,2/3,1]. From left to right are stability region S of the implicit method, stability region
S of the explicit method, and constrained stability regions Sa (with o = w/2,7/3,7/4 from interior
toward exterior, respectively).
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Fic. 3. Stability regions for the fifth-order IMEX-DIMSIM pair withp = q =1 = s =15 and
¢ =[0,1/4,1/2,3/4,1]. From left to right are stability region S of the implicit method, stability
region S of the explicit method, and constrained stability regions S, (with a = w/2,7/3,7/4 from
interior toward exterior, respectively).

3.3.2. A fifth-order IMEX-DIMSIM pair. An L-stable fifth-order type 2
(implicit) DIMSIM with p = ¢ = r = s = 5 and ¢ = [0,1/4,1/2,3/4,1] was con-
structed by Butcher [15]. We have obtained its coefficients with improved accuracy
from 6 to 15 decimal digits by solving the nonlinear conditions using the Levenberg—
Marquardt algorithm implemented by the MATLAB routine fsolve.

The corresponding explicit component is obtained by the numerical optimization
procedure described in section 3.2. The maximal area of the constrained stability
region of the explicit method on the negative plane is approximately 0.83 and is
smaller than the area of the fourth-order pair. Figure 3 shows the stability regions
of the implicit component S, the explicit component S, and the constrained stability
regions Sy, for o = 7/2,7/3, /4.

We will refer to the resulting method as IMEX-DIMSIMb5. The coefficients of the
method to 15 accurate digits are given in Figure 4 (compare the implicit coefficients
to [15]).
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4. Numerical tests. We consider several test problems that are motivated by
different application areas such as material science, fluid mechanics, and atmospheric
modeling. All problems are governed by PDE and contain both stiff components and
nonstiff components. The first two test cases are implemented in MATLAB using finite
difference schemes for space discretization. The time integration is performed with the
two high order IMEX general linear methods IMEX-DIMSIM4 and IMEX-DIMSIM5.
We compare these methods against several classic IMEX schemes of the same order,
including two IMEX additive RK methods, ARK4(3)6L[2]SA and ARK5(4)8L[2]SA,
from Kennedy and Carpenter [33], and against two IMEX multistep methods from
Hundsdorfer and Ruuth [27]. We also include the BHR553 IMEX RK method with
stage order two from Boscarino [10], which satisfies a few additional coupling order
conditions and exhibits no order reduction in the experiments with two stiff test
problems [10]. Note that the order of the method is only three, and higher order
methods of this type are not available at this time. All three chosen ARK methods
have a stiffly accurate implicit component and their implicit part and explicit part
share the same abscissa ¢ = ¢ as our IMEX-DIMSIMs do.

We have also implemented the IMEX-DIMSIM schemes in the discontinuous
Galerkin solver GMSH-DG [7] and applied them to the 3D compressible Euler equa-
tions coming from multiscale nonhydrostatic atmospheric simulations. The goal is to
assess the performance of the high order IMEX-DIMSIMs and other IMEX methods
including IMEX-RK methods and IMEX linear multistep methods on both 2D and
3D simulations. Besides the methods mentioned in the previous tests, we also include
low order methods here for comparison in order to show the full advantage of high
order methods. Specifically, we have considered a second-order ARK method (named
IMEX-ARK?2) developed particularly for the 3D compressible Euler equations in [24]
and two classic methods of orders 2 and 3 from Ascher, Ruuth, and Spiteri (ARS)
[3] that we denote by IMEX-ARS222 and IMEX-ARS343, respectively. The ARK
schemes are constructed with L-stable, first-stage explicit, singly diagonal implicit
RK (ESDIRK) methods and second stage order that alleviates the order reduction
when applied to stiff problems. The ARS schemes also have L-stable implicit parts
which can be cast into the form of ESDIRK by padding the Butcher table with zeros,
but their stage order is lower. All the IMEX multistep methods we have used are
IMEX-BDFs from Hundsdorfer and Ruuth [27]. With regard to conservation prop-
erties, all the IMEX-RK methods except ARS222 preserve linear invariants, whereas
the IMEX-BDF's cannot preserve linear invariants [24]. It is noteworthy that some of
the methods chosen here have been applied to a similar problem in [24], where con-
tinuous Galerkin methods are used for spatial discretization; the boundary conditions
are simpler, leading to a less challenging test.

The first two experiments were performed on a workstation with four Intel Xeon
E5-2630 processors. The GMSH-DG code was run on a workstation with 64 GB RAM
and four AMD Opteron 6168 processors, each with 12 cores.

4.1. Allen—Cahn equation. We consider the 2D reaction-diffusion Allen—Cahn
problem [18], which describes the process of phase transition in materials science.

0
(4.1) %zaVQu—l—B(u—u:j)—i—f, 0<zy<1l, 0<t<0.5,
where the parameters are « = 0.1, § = 3, and f(¢,2,y) is a source term that is
consistent with the exact solution u(t,z,y) = 2 + sin(27(x — t)) cos(3n(y — t)). Time
varying Dirichlet boundary conditions (that represent the exact solution evaluated at
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Fia. 5. Comparison of high order IMEX-DIMSIM, IMEX-ARK, and IMEX-BDF for the 2D
Allen—Cahn equation (4.1). Shown are the temporal discretization errors corresponding to the solu-
tion at the final time t = 0.5.

the boundaries) are imposed. The spatial discretization is performed using a second-
order central finite difference scheme on a uniform grid with Az = Ay = 1/40.

Explicit time stepping methods have a maximal allowable time step b oc Az? due
to the CFL condition related to diffusion. To overcome this limitation we treat the
stiff diffusion term implicitly and the remaining terms explicitly. Since the discrete
diffusion term is linear we perform a single LU factorization of the matrix I — h~vyJ
and reuse it throughout the simulation; here « is a method coefficient and J is the
Jacobian of the stiff diffusion.

The reference solution u,es is obtained using the MATLAB routine ode15s with
very tight tolerances AbsTol = RelTol = 3 x 107, The absolute solution error
magnitude is measured in the Lo norm:

(4.2) E = [|u—u,.

Figure 5(a) shows the errors at the final time for solutions computed using dif-
ferent numbers of steps. All three IMEX-ARK methods show mild order reduction—
one order lower than the theoretical order. There is no order reduction for the
IMEX-DIMSIM schemes; IMEX-DIMSIM4 displays the theoretical order while IMEX-
DIMSIMS5 shows a higher convergence than the theoretical order. The IMEX-DIMSIMs
give considerably more accurate results than the IMEX-ARK methods. Surprisingly
BHRA553 is unable to avoid order reduction, although it has stage order of two. There-
fore, higher stage order may still be demanded, but improving stage order beyond two
for ARKs, if possible, would be difficult considering the complexity brought by addi-
tional coupling conditions. IMEX-BDF's do not lead to order reduction but generally
produce larger errors than IMEX-DIMSIMs given the same step size.

The corresponding work-precision diagrams of errors versus CPU time are shown
in Figure 5(b) and reveal a sizable gap in efficiency between IMEX-DIMSIMs and
IMEX-ARKs. This can be expected because of the gap in accuracy observed in
Figure 5(a) and the fact that IMEX-DIMSIMs have fewer stages than the IMEX-
ARK methods of the same order and therefore require fewer function evaluations and
linear solves per step. IMEX-BDFs solve the problem most efficiently with a low to
medium level of accuracy mainly because only one linear solve, which usually takes
most of the computation time, is needed at each time step. Figure 6 shows the spatial
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F1a. 6. Absolute temporal errors at the final time t = 0.5 for various IMEX schemes on the 2D
Allen—Cahn equation (4.1). A fized time step of size h = 1/50 is used. IMEX-ARK methods show
large errors originating near boundaries and evenly distributed small errors in the interiror of the
domain.

distribution of the absolute errors |tunumerical — Ureference| @t final time; this is only the
temporal discretization error as we compare against a reference solution that uses the
same spatial discretization. IMEX-ARK methods give large errors near boundaries
and relatively smaller errors in the interior of the domain are evenly distributed. The
order reduction phenomenon of IMEX-ARK methods originates with errors at the
boundaries but plague the whole domain as the time evolves.

4.2. Burgers equation. The 2D viscous Burgers equation [5]

1
(4.3) %+§V(u-u)zl/v2u, r=01, 0<z,y<1l, 0<t<1,

is a simplification of the 2D Navier—Stokes equations which admits the analytic solu-
tion

uanalytic(t7 z, y) _ (1 e m+2y;t ) -1 .

The initial conditions and the Dirichlet boundary values correspond to the analytic
solution. Spatial derivatives are discretized with second-order central finite differences
on a uniform grid with resolution Az = Ay = 1/50.

The application of the IMEX integration treats the diffusion term implicitly and
the convective term explicitly. We compare the numerical solutions against a reference
solution computed with MATLAB routine odel5s with tolerances AbsTol = RelTol =
3 x 10~ that uses the same spatial discretization. Therefore the errors (4.2) reported
here are only due to the temporal discretization.

Figure 7 compares the performance of various IMEX schemes. The convergence
diagram in Figure 7(a) shows that the three IMEX-ARKSs exhibit order reduction to
order two. The IMEX-DIMSIMs and IMEX-BDF4 converge with their theoretical
orders. IMEX-BDF5 clearly suffers from poor stability for large step sizes, which is
indicated by the outlier points on the plot. If step size becomes too small, round-off
errors may dominate. So the range of useful step sizes for IMEX-BDFS5 is limited,
making it difficult to show its full order in this convergence test. The efficiency dia-
gram in Figure 7(b) illustrates again a gap in performance between IMEX-DIMSIMs
and IMEX-ARKSs, with IMEX-DIMSIMs demonstrating a considerably better effi-
ciency than IMEX-ARKs. IMEX-BDF's are the most efficient—for step sizes where
they are stable.

Figure 8 shows the spatial distribution of absolute errors at the final time. The
boundary errors dominate the accuracy of the results for all schemes. The boundary

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/24/16 to 130.202.98.208. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Al1444 HONG ZHANG, ADRIAN SANDU, AND SEBASTIEN BLAISE

10 T 10 . .
¥ o Ve
-2 g %-- -2 \ =3 \ﬁ“ﬁ
10 TEeLm TR, 1 10 \ TR, s
\ ﬂ\*é\lg;_:g‘ _order=2.4 \ BBeg o TR,
» \ ~“#order=1.8 » \ TR
10 " B _ \ order=2.11 10 LN \ 1
B - X h\\u *
- — \‘D
£10° - 210" e
-4~ IMEX= "%~ order=4.0 -4~ IMEX-BHR558
10® | -9~ IMEX-AR ] 10® | -=-IMEX-ARK4
- %- IMEX-ARKS g order=4.3 - %- IMEX-ARK5
—=— IMEX-DIMSIM4 order=4.2 —&—IMEX-DIMSIM4
10""°} —*—IMEX-DIMSIM5 1 107"’} ——IMEX-DIMSIM5
—&— IMEX-BDF4 der=5.2 —=— IMEX-BDF4
1| —* IMEX-BDF5 P IMEX-BDF5
10 et ; 2 . . . .
60 79 104 137 180 237 312 410 250 500 1000 2000 4000 8000
No. of steps CPU time (in ms)
(a) Convergence diagram (b) Work-precision diagram

Fic. 7. Comparison of high order IMEX-DIMSIM and IMEX-ARK results for the 2D wviscous
Burgers equation (4.3). The integration time interval is [0,1]. Shown are the temporal discretization
errors corresponding to the solution at the final time t = 1.

IMEX-BHR553 -6 IMEX-ARK4 -7 IMEX-ARKS -8
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F1a. 8. Absolute temporal errors at the final time t = 1 for various IMEX ARK schemes on
the 2D wviscous Burgers equation (4.3). A fized time step of size h = 1/180 is used. All methods
show larger errors concentrating near the top and right boundaries.

conditions for this PDE may be more challenging than the previous one since they
affects both spatial derivative terms in (4.3). Nevertheless, the error magnitude is
much smaller for the IMEX-DIMSIM solutions.

4.3. Application to atmospheric simulations.
4.3.1. Compressible Euler equations. The dynamics of nonhydrostatic at-

mospheric processes can be described by the compressible Euler equations [25]:

0
L4V (pu) =0,

ot
0 .
(4.4a) % + V- (puu +pl) = —pge,,
apb
W+V-(p9u)—0,

where p is the density, u = (u,v,w)? is the velocity vector, w being used in 3D

case, 6 is the potential temperature, and I is the identity matrix. The gravitational
acceleration is denoted by g, while €, is a unit vector pointing upward. The prognostic
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variables are p, pu, and pf. The pressure p in the momentum equation is computed
by the equation of state

(4.4b) D= o <p93d) "
Po

where pg = 10° Pa is the surface pressure, Ry is the ideal gas constant, and ¢, and ¢,
are the specific heat of the air for constant pressure and volume. To better maintain
the hydrostatic state we follow the splitting introduced by Giraldo and Restelli [25],
p(x,1) = 5(z) + p/(x,1),
(p9)(x, 1) = (pB)(2) + (p8)'(x, 1),
p(x,1) = p(2) +p'(x,1),

where the overlined values are in hydrostatic balance. The governing equation (4.4)
can then be rewritten as

op
ot = -V - (pu),
0 .
(4.5a) aLt“ ==V (puu+p'T) - p'ge,,
o(pd)
(at) ==V (pbu)
and closed with
R4\
(4.5b) P =po (p d) —p
Po

The equations are discretized in space using the discontinuous Galerkin method, whose
usage for geophysical simulations is gaining popularity, e.g., [19, 8, 34, 39, 25, 36, 22,
1, 32]. The model, based upon the mesh database of the GMSH mesh generator code
[21], has been used to solve several PDEs, in the domains of geophysics [37, 31] and
engineering [38, 30]. For more information about the space discretization, refer to [7].
The set of equations (4.5) applied to atmospheric flows is a good candidate for
an IMEX time discretization, because of the different temporal scales involved. In
usual atmospheric configurations, the acoustic waves are the fastest phenomena, with
a propagation speed of about 340 ms~!. This high celerity restricts the explicit time
step to a small value due to the CFL stability condition. However, acoustic waves
are generally not important for the modeler who is more interested in advective time
scales. The IMEX method allows one to circumvent the CFL condition by treating
the linear acoustic waves implicitly, while the remaining terms are explicit. According
to Giraldo, Restelli, and Lauter [23], the right-hand side of (4.5a) is additively split
into a linear part responsible for the acoustic waves and a nonlinear part. The linear
term
V- (pu)
(4.6) — V- (') + p'ge,
- (pbu)

with the pressure linearized as

o
P = 2 (o)’
cypf

is treated implicitly, while the remaining (nonlinear) terms are treated explicitly.
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4.3.2. Test cases. In this paper we consider 2D and 3D rising thermal bubble
test cases slightly modified from the ones introduced in [25].

2D case. The motion of the air is driven by a time varying potential temperature
perturbation from the bottom boundary,

0 for r > r.,
% (1 + cos (f—f)) sin? (g—t) for r<r,

where 0. = 5°C, r = \/(z — x.)2, r. = 250 m, and (z, 2) € [0,1000]? with ¢ € [0, 200]
s and x. = 500 m. No-flux boundaries are used for the other three boundaries. The
computational domain is a 2D uniform mesh with actual resolution of 152 elements.
Fourth-order polynomials are used on each element, yielding a grid resolution of about
13.3 m and an ODE system that contains ~ 2.3 x 10* variables.

3D dimensional case. The bottom boundary is also imposed as (4.7) with r =
V(@ =202+ (y — ye)?, e = 250m, (z,y,2) € [200,800]? x [0,600] m, and (z.,y.) =
(500, 500) m. The integration time interval is [0, 150] s. No-flux boundaries are used
for all the other boundaries. A 3D uniform mesh grid with actual resolution of 83
elements each with fourth-order polynomials is used. So the grid resolution is about
15 m, and the resulting ODE system has 3.2 x 10° degrees of freedom. Diffusion terms

V- (uVp')
(4.8) V- (uV(pu))
V- (uV(p0)')

with g = 0.4m?s™! are added to the right-hand side of (4.5a) to limit the oscillations
resulting from a high order spatial discretization of a complex flow on a coarse grid.
Figure 9 shows the reference solutions at the final time for 2D and 3D cases.
The 2D simulation is run in serial while the 3D simulation uses 16 MPI (message-
passing interface) processes due to the much larger scale. The linear system arising in
the 2D case is solved with the direct LU solver in PETSc [6]. For efficiency, the linear
system from the 3D case is solved using the direct MUMPS [2] solver through PETSc.
We have chosen a direct solver rather than an iterative solver for the following reasons:

e Integration with a fixed time step using singly diagonally schemes allows us
to perform LU decomposition only once in the beginning of the simulation
and reuse the result across all the time steps. This is particularly beneficial
for long-time simulations.

e Direct solvers do not require one to consider issues such as initial guess,
stopping criterion, and preconditioners, which, however, are critical for the
performance of iterative solvers.

e Direct solvers could provide accurate solution so that the error from solv-
ing the linear system would influence less on the convergence study of time
stepping methods.

(4.7) 0 =

4.3.3. Numerical results. The relative Ly errors for each of the prognostic
variables

(4 9) E(q) _ fQ(qnumeriCal _ qreference)QdQ
. fQ (qreference)QdQ

are measured against a reference solution obtained by applying the classic fourth-
order explicit RK method to solve the original (nonsplit) model with a very small
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o

(a) 2D solution at final time ¢t = 200s. (b) 3D solution at final time ¢ = 150s.

F1G. 9. Perturbation of potential temperature (in °C) from the simulation of thermal rising
bubble governed by (4.5). The background mesh is displayed in wireframe.

time step h = 0.005s. Since the time varying boundary conditions imposed on the
temperature 6 only affect the momentum equations of (4.5), we discuss the results
for the variables pu. For the 3D case, the v and w components in u are considered
due to symmetry of u and v.

Figure 10 compares the convergence results and efficiency for various IMEX meth-
ods for the 2D simulations. Each method is tested with nine different time step sizes,
generating nine points if there is no stability issue. Any missing point on the plots,
typically corresponding to a large time step, indicates that the solution explodes due
to the stability restriction. This experiment leads to the following conclusions:

o As expected, all IMEX-DIMSIMs display their theoretical orders of accuracy.

e However, all IMEX-RK schemes of theoretical order higher than two show a
clear order reduction, which translates into a loss of computational efficiency.

e The second-order IMEX-RK methods preserve their second order. Among
them, ARS222 [3] yields poor accuracy and achieves only the level of 1074
even when the time step becomes as small as 200/10248 ~ 0.02 s.

e ARK2 [24] and BHR553 [10] have limited stability (as illustrated by the first
four points missing from its curve).

e We have also tested IMEX-BDFs of orders two, three, and four [27]. Only
BDF2 can solve this problem correctly; the others are unstable for all the
selected time steps. This is not surprising since the Jacobian eigenvalues
have large imaginary parts, as seen in Figure 11, and the implicit parts of
higher order BDF methods are not A-stable. Among the three second-order
methods, BDF2 is slightly more efficient than ARS222 but obviously less
efficient than DIMSIM?2.

e We note that high order methods are more efficient than low order methods;
the new fourth-order method DIMSIM4 performs the best overall.

e We have also tested large step sizes and found that the maximal allowable
step sizes for ARK4 and DIMSIM4 are both approximately equal to 1.0 s.
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(b) Work-precision diagram

Fic. 10. Comparison of warious IMEX time integration methods for the 2D rising
bubble simulation (4.5). The integration time interval is [0,200] s and is divided into
400, 600, 900, 1350, 2025, 3037, 4555, 6832, and 10,248 equal time steps to obtain the points in the
diagrams. Temporal errors for all the variables (4.9) are computed for the solution at the final time.

This agrees with the prediction of the stability analysis in section 3.1 which
shows that the IMEX-DIMSIM has a good stability property.
The 3D results given in Figure 12 lead to the following conclusions:

e IMEX-BDFs of orders three and four cannot solve this problem. This is due
to the Jacobian eigenvalues having large imaginary parts. The efficiency of
BDF2 is comparable to DIMSIM?2 at a low accuracy level but becomes worse
at a high accuracy level.

e ARK2 and BHR553 also fail for all the selected time steps, including the
smallest value of 150/1200 = 0.125 s. This is likely due to their poor stability
properties, as already indicated by the 2D results.

e The relative efficiency of different methods are the same as the 2D results.
DIMSIM4 is still the winner. Some methods such as BDF2, ARS222, ARS343,
and DIMSIM4 have a leftmost point which is obviously off track. This is
because the methods are getting close to instability. It also affects the work-
precision diagram in Figure 12. At these points, the linear system is becoming
close to singular.

e Neither ARK5 nor DIMSIMS is a suitable solver for this test problem because
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Fic. 12. Comparison of various IMEX time integration methods for the 3D ris-
ing bubble (4.5). The integration time interval is [0,150] s and s divided into

150, 200, 250, 300, 350, 400, 600, 900, and 1350 equal time steps to obtain the points in the diagrams.
Temporal errors for all the variables (4.9) are computed for the solution at the final time. BHR533
and ARK?2 fail for any tested time steps due to instability and are therefore not present on this plot.
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Fi1c. 13. Conservation properties of various IMEX time integration methods with different step
sizes for the 2D rising bubble simulation (4.5). The integration time interval is [0,200] s. and is
divided into 400, 800, 1600, 3200, 6400, and 12,800 equal time steps to obtain the data points in the
diagrams.

the maximal step sizes for them are restricted to values that are too small
to make them competitive. For efficiency, a stability region covering a large
part of the imaginary axis is required, since there are many eigenvalues of the
Jacobian close to the imaginary axis.

Finally, we investigate the ability of the time integration methods to conserve
mass and energy. Because the system has mass and energy exchanges at the bottom
boundary, the above test problem is not a good one for testing the conservation
properties. Alternatively we use the test case in [25], which is slightly different from
ours; in that test case, the initial condition is

for r > re,

0
r_
(4.10) o= { % (1 + cos (’;—:)) for r <7,
and no-flux boundaries are used at all sides. The mass and energy loss are defined as

Mass(ts) — Mass(to) /
Mass(t) = 7A9]
Mass(tg) ’ ass(t) Q P

Energy(ts) — Energy(ﬁo)7 Energy(#) = / pedQ.
Energy(to) 0
respectively. The total energy is defined as the sum of internal, kinetic, and potential
energies e(t) = ¢, T(t) + (u-u)/2+ gz. The governing equations for this test conserve
both mass and energy.

Figure 13 shows the mass and energy loss evaluated at the end of the simulation
for all the IMEX methods with different step sizes. All the time integration methods
can conserve mass up to machine precision. All of the methods except IMEX-BDF
also conserve energy quite well, though not to machine precision. The exact mass
conservation can be expected, because the continuity equation is treated implicitly
in the IMEX splitting and the implicit parts of all the tested IMEX methods can
preserve linear invariants. Furthermore, we can actually expect that if the mass is
included partially in the implicit part and partially in the explicit part of the IMEX
settings, ARS222 and IMEX-BDF's will not conserve mass because they do not satisfy
the mass conservation conditions as explained in [24]. All proposed IMEX-DIMSIMs
still conserve mass.

and
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5. Conclusions and future work. Multiscale problems in science and engi-
neering are modeled by time-dependent systems of equations involving both stiff and
nonstiff terms. IMEX time stepping schemes perform an implicit integration only for
the stiff components of the system and thus combine the low cost of explicit methods
with the favorable stability properties of implicit methods.

Many modern PDE solvers use high order spatial discretization schemes, e.g., the
discontinuous Galerkin approach with high degree polynomials. Often the high order
of spatial discretization is paired with a low order traditional time stepping scheme. It
is therefore of considerable importance to develop high order time stepping algorithms
that match the accuracy of the spatial discretization.

This paper addresses the need for high order IMEX temporal discretizations in
large-scale applications. We construct new fourth- and fifth-order IMEX DIMSIM
schemes based on L-stable implicit components and with the explicit components
optimized such as to maximize the constrained stability regions. The new methods
have good stability properties and can take large step sizes for stiff problems.

Several test problems from different application areas that can benefit from IMEX
integration are considered. These problems are the 2D Allen—Cahn and Burgers equa-
tions with finite difference spatial discretizations, and 2D and 3D compressible Eu-
ler equations with discontinuous Galerkin space discretizations. The performance of
the new fourth- and fifth-order IMEX-DIMSIMs is compared against existing IMEX
schemes including multistage methods and multistep methods. While the IMEX BDF
methods work best on the simpler test problems, IMEX DIMSIM methods show the
best performance for the complex flow simulations. In all cases the IMEX-DIMSIMs
can use large step sizes—similar to those taken by traditional IMEX-RK methods.
However, the high stage order enables our methods to avoid the order reduction that
plagues classic IMEX-RK methods when applied to stiff systems or to problems with
complex boundary conditions. Their stability properties allow them to solve prob-
lems where high order IMEX BDFs fail. In all cases IMEX-DIMSIMs are considerably
more efficient than the other methods. In addition, IMEX-DIMSIMs show mass con-
servation within roundoff errors and show good behavior of the energy conservation
even if the methods have not been specifically designed for this.

Typically multiscale flow simulations are carried out using fixed, predefined time
steps. This is the approach taken in this paper as well. Ongoing work by the first two
authors focuses on the development of adaptive stepsize IMEX-GLM schemes.

The high order IMEX-GLM schemes proposed herein are of interest not only
to multiscale nonhydrostatic atmospheric simulations but also in many other fields
where large-scale multiscale simulations are carried out with high order spatial dis-
cretizations. IMEX-GLMs can prove especially useful in situations where IMEX-
RK methods suffer from order reduction; specific examples include stiff systems of
singular perturbation type or problems with challenging time-dependent boundary
conditions.
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