&y

Large-Scale Graph Traversal
Algorithms on Multi-core
Clusters

Speaker: Huiwei Lu
Advisor: Prof. Ninghui Sun
-.> - »
tTRMIEATRA LA LA

Argonne National Laboratory, Feb. 2013

lvhuiwel@gmail.com

Gordon Bell Prize Winners

o 1 GFlop/s; 1988 el B |
Static finite element
analysis

e 1 TFlop/s; 1998 Cray Y-MP: 8 Cray T3E: 1024 Cray XT5: 1.5x105
I\/Iodeling of metallic Processors Processors Processors
magnet atoms

e 1 PFlop/s; 2008 "
Superconductive ortons o e
materials 1(:0:.?:::)/; *1 + - Gordon

10 Tflop/s +’ + el

Winners

@ 1 EFIOp/S, 2018 11%155} + ¥t oo

= 1 Gflop/s
100 Mflop/s

1x107 Processors(10°
th readS) Source: Dongarra SC’09

Machine? Application? "
: @ P AL

— o~ AN AN AN NN NN NN

INSTITUTE OF COMPUTING
TECHNOLOGY

Application Driven Research

Motif/Dwarf: Common Computational Methods
(Red Hot — Blue Cool)

1 Finite State Mach.
2 Combinational

4 Structured Grid

5 Dense Matrix

6 Sparse Matrix

7 Spectral (FFT)

8 Dynamic Prog

9 N-Body

10 MapReduce

11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

-y &
w4 s
INSTITUTE OF COMPUTING
TECHNOLOGY

(Source: Demmel 2009)

Application Background of Graph Algorithms 7L 7E

* Applications
Genome assembly, social network,
web search, shortest path

Social network: community
identification, targeted advertising,
information spreading

Image Source: Nexus (Facebook application)
(Slides from Kamesh Madduri, CS267/EngC233 Spring 2010)

Biology computation: predicting
new interactions, functional
annotation of novel proteins,
identifying metabolic pathways,
identifying new protein complexes B B

Image Source: Giot et al., “A Protein Interaction
Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

(Slides from Kamesh Madduri, C5267/EngC233
Spring 2010)

e Breadth-first search of an scale-free undirected graph

e Data-intensive, augment to Top 500
— evaluate memory access (TEPS)

e Announced at ISC’'10, first list at SC’'10

______|GTEPS Site ____________Machine |Cores |Nodes

GR

Nov 2010 6.6 Argonne National Laboratory 32000 8192

Jun 2011 40.4 Moscow State University Lomonosov 8192 4096

Nov 2011 236 NNSA and IBM Research, T.J. BlueGene/Q 65536 4096
Watson

Jun 2012 3541 Argonne National Laboratory BlueGene/Q 524288 32768
& LLNL

Nov 2012 15363 DOE/NNSA/LLNL BlueGene/Q 1048576 15363

Jun 1.3 Rank 15 of 29, Institute of Computing SuperDragon-1 384 32

2011 Technology

Jun 12.1 Rank 20 of 80, National Nebulae 6144 512

2012 Supercomputing Centre in Shenzhen

hH B

e e -
== SRS FUITSU (l@ @ <> comvey. Sugon

Breadth-First Search as a Building Block &%

BFS: explores the edges of G to "discover"

e BFSis a subroutine for every vertex that is reachable from s.
many algorithms

Betweenness centrality
Maximum flows

Connected components

Spanning forests
* Characteristics of BFS

irregular
‘ frontier vertex

‘ visited vertex

low-arithmetic
abundant parallelism

Outline L7

Background
Algorithm 1: Hybrid MPIl/Pthreads Parallel BFS

Algorithm 2: Reducing Communication in
Distributed BFS

Conclusion & Future Works

Motivation /L .

ARCHITECTURES
§ SIMD

Cluster still dominates A
Top500 and Graph500

#Cores/Socket increases
7.44 (Top100, Nov11)

CLUSTERS

Smp

116 (Graph500, Nov11, 28 machines) : SINGLE

Memory Parallelism in State- |

of-art Processors [Agarwal —=Top500 -#-Top100

increase #memory reads by
8x using software pipeline 5 82

A great opportunity for
Hybrid Programming

MPI for inter-node; OpenMP
or Pthreads for intra-node

#Cores / Sacket

Motivation (cont.)

L7

TEPS

Algorithms Tested:
Graph500 MPI
impl. & OpenMP
impl. on a single
node with two
Westmere CPUs.

2.5e+8

T T T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1024 2048

#Threads or # Processes

multi-threaded

MPI

* For Breadth-First Search on a single-node, multi-
threaded version is more effective than MPI

version

Compressed Sparse Row Format

12113 |16|17|18

6(0(3(4]5

Compressed
Sparse Row

A compressed form of adjacent
matrix; store non-zero edges only

Row: index, start & end position
Column: vertex number

E.g. v,'s neighbor locates in
column|[O, 2)

@

1
1111
1 1
1
111 1
1

Adjacent
Matrix

Sequential BFS on CSR format é/ﬂ: l‘?

o * 1.forallvin Q,
col ﬁnd Its
O © neighbors N
* 2.insert N into
0 - Frontier queue Q

* loop until Q'is
empty

MPI-only BFS Z

outbufl1

outbuf?

* 1.forallvin CQ,
find its neighbors
N

* foreachuin N
2. insert to NQ
3. insert to outbuf

* 4. send outbuf,
check recvbuf

* exchange CQ
with NQ, loop
until CQ is empty

MPI v.s. Threads on a share memory

node
MPI » Threads
Memory Copy Memory Memory
Process Mocess
* Threads

from process to more light-weighted threads 2
increased bandwidth (memory-level parallelism)

remove extra memory copy in MPI

Hybrid MPI/Pthreads BFS %2

Critical sections recvbu

&

In parallel

* 1.forallvin CQ,
find its neighbors
N

* foreachuin N
2. insert to NQ
3. insert to outbuf

* 4. send outbuf,
check recvbuf

* exchange CQ
with NQ, loop
until CQ is empty

Lock-free Multi-Producer Single- @
Consumer Queue

Master thread
(consumer)

MPI_Isend
e

Computing
threads
(producers)

yield when full

* Lock-free queue
— Producers: use fetch add to get index, then insert data

— Consumer: round-robin check all the buffers,
communicate with other processes

Hybrid v.s. MPI-only, 32 nodes

L7

TEPS

32-node cluster, for
each node there are two
Intel Westmere CPUs
connected using QPI.
Nodes are connected
using InfiniBand

1.6e+9

1.4e+9 4

1.2e+9 ~

1.0e+9 A

8.0e+8 +

6.0e+8 -

4.0e+8

2.0e+8 -

MPI

1.9x faster

Hybrid

MPI-only VV.S. Hybrid

* Hybrid is 1.9x faster than MPI-only at 32 nodes

Hybrid v.s. CombBLAS, 512 nodes é/ﬂl?

6e+9

1.49x faster

5e+9 -

4e+9 -

Fig. Weak scaling
performance comparison
of CombBLAS MPI-
only and our hybrid BFS
algorithm. Fixed
problem size per node is
used.

3e+9 -

TERS

2e+9

1e+9 -

0 T T T T
24 (24) 96 (26) 384 (28) 1536 (30) 6144 (32)

#Cores (Problem Scale)

* Hybrid is 1.49x faster than MPIl-only CombBLAS BFS
Algorithm at 6,144 cores. (Graph 500 MPI-only version
does not finish because out of memory)

Benefit 1: Better Bandwidth 7/ nof £

3.5e+8 14
3 0e+8 - —— TEPS - 12
—O— Bandwidth
10
2.5e+8 A
0
8 m
4 O
i 2.0e+8 NP
o £
LUl 6 ©
T 15e+8 - =
L 4 %
oM
1.0e+8 -
2
5.0e+7 -
0
0.0

T T T T T T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1024 2048 4096
#Threads

* Increased bandwidth improves BFS performance
* Benefits from multi-threading

Benefit 2: Better load balancing @

Master Thread: send/recv Slave Threads: computing
7e+10 7e+10
6e+10 - B check 6e+10 4 . (ocal
I isend 3 outbuf
[send loop B barrier trav
- 9e+10 1 1 barrier all —~ 5e+10] barrier all
5 B others % B others
~ =
5 4e+10 - - 4e+10 -+
[o
o &)
£ 3e+10 | o £ 3e+10 -
o ess waltin [0}
= & g
P 2e+10 4 P s
1e+10 - 1e+10 -
0 0 i
32P4T 32P4096T 32P4T 32P4096T
Versions Versions

* |Increased #threads improve load balancing
* Aggregated waiting time of master thread reduced by 73%
* Aggregated waiting time of slave thread reduced by 94%

Outline @
Background

Algorithm 1: Hybrid MPI/Pthreads Parallel BFS

Algorithm 2: Reducing Communication in
Parallel BFS

Conclusion

Motivation L7

100.0
80.0 -
= B communication
> 1 computation
g 60.0 -
>
2 Experiment: Time
g 4001 breakdown of a baseline
g Graph 500 BFS algorithm in
200 a weak scaling experiment
that use fixed problem size
per node (each node has
0.0 - about 16M vertices).

8 32 128 512

Number of Nodes

* Replicated-csr BFS in Graph 500, weak scaling
* ~70% time spent on communication

Breadth-First Search (BFS)
Described in Linear Algebra

L7

Level 0 Level |

=

e e 11 1 1
1
1
Q e 1 1 1)1
1
1 1
1 1
0 7 1 111
o Adjacent Matrix

Frontier

* Traversing one level as one Sparse Matrix-

Vector Multiplication (SpMV)

Graph Partitioning in T
Distributed BES

Level 0
11| |1 -+ L p 0.1
1 1
1 117 P, {23}
1 1
1 1 1 P; {45}
1 1
1 111 P,:{6,7}
Adjacent Matrix Frontier

* Vertices, edges and frontier are partitioned among
processors

for undirected graph, each edge is stored twice

* To get the global frontier information, MPI collective
communication such as MPI Allgather is needed

Communication in Baseline Z=2
BES

- P; P, P; P,
P, 1] o] Sendbuf

o £ 5 f £ (before)

* MPI Allgather

Communication in Baseline Z=2
BES

- P; P, P; P,

P, (1] o] pendout

o OA [5 f £ (before)

_Pi) Allgather()

P; 17700 00 00 0] Recvbuf

' jfj ol [or [or] foi| (after)
4 £ L00 00 00 00

T A

* The frontier vector is stored in bitmap
* Observation I: frontier is sparse
* Compress it!

Communication in Baseline Z=2
BES

(PI lig. s Py S dbp
(] [o1] enebu
£ 5 f £ (before)

Allgather()
ﬁ 00 00 00 00
fol 1 11 11 I:>> «. | Recvbuf
J3 o 01 01 o1 | (after)
ﬂ 00 00 00 00
\ y

o Observation 2: broadcast causes
waste

e.g. send v, to P, is unnecessary
>+ Sieve it before communication!

MPI Allgather

4/.0“ @8& . Averz.lget. .
% oo sllies e 12

000 (00O 0800 CO@D Afe

W W Before
MPI Allgather
Communication:
@00 (OO0 COOO OCeO - Afte
Sieve (local)
s (00D
‘))))
000
200
Compress (local)
°© 8
O
MPI_Alltoally Average
4'// . .
Communication:

.

3

2.75

Weak Scaling Performance @

1.4e+10

—e— DIR-WAH
el 4 @ WAH 2.2x

—wv— BIT

1.0e+10 -

0 8.0e+9 -
o
L
F 6.0+ -
Experiment: fixed
0018 1 problem size per
node (each node
2.0e+9 -
- has about 16 M
00 4 l . vertices)

8 32 128 512

Number of Nodes

 WAH is 1.69x faster than BIT
 DIR-WAH is 1.33x faster than WAH, 2.2x faster than BIT
* More benefits for larger scale

Time Breakdown L7

- . : oaset

T
B traversing |
25 B reducing :
8 communicatidn
compression .& sieve

I
I
1
1
I
I
1
I
1
I
I
I

N
o
1

79.0% ~" 52.4%

Time (in seconds)
o
1

KX
5 - ooy
O]
B

8 32 128 512
DIR-WAH

8 32 128 512
WAH

Number of Nodes

 WAH reduce communication time by 52.4% compared to BIT

 DIR-WAH reduce communication time by another 55.9%
compared to WAH, a total 79.0% reduction compared to BIT

8 32 128 512
BIT

T

T

1

|

|

|

|

T

1

|

|
N
10 - N
BSOS |
1

1

1

i

1

|

|

|

|

1

|

|

|

e R e T

TEPS

Difference compression

methods

good and fast compression

1.4e+10

1.2e+10 A

1.0e+10 A

8.0e+9 A

6.0e+9 A

4.0e+9 A

2.0e+9 A

0.0

—&— DIR-WAH
RS DIR-ZLB-BC
st ;2 DIR-ZLB-BS

— —-wv— - DIR-ZLB-DF

ZLB-BC

— — e ———
—_— —

Both compression and sieve trade computation for communication

32

128 512

Number of Nodes

~\

176.4

I communicatiol

@z compressi sieve

¢ ° o @]

S ,0? S (¢}
AP 220
o of

>“P~

o &
& \ \
o D \?ﬂ«

Compression Methods

Zlib default(DIR-ZLB-DF): best compression ratio but its
performance is not best

WAH has the best performance because it has the best tradeoff

between compression time and ratio

best compression ratio but slow

Conclusion /LT

* Hybrid MPI/Pthreads BFS

explores core-level, memory-level and pipeline-
level parallelism

better bandwidth and load balance

1.9x v.s. Graph 500 MPI-only on 32 nodes, 1.49x
v.s. CombBLAS MPI-only on 512 nodes

* Compression and Sieve help
trade computation for communication

reduce communication time by 79.0%, improve
performance 2.2x on 512 nodes

Ongoing Work

= KMI: K-mer Matching Interface for Genome Assembly in
Terascale

— Huiweilu, Fangfang Xia and Pavan Balaji

= Goal:

— Terascale genome assembly on Bluegene/P in 2 hours

— Petascale genome assembly on Mira in 2 days (long term)

S Huiwei Lu, Visiting Student of Argonne National Laboratory

Motivation

Terabytes of genome datasets
need distributed storage and Kiki |ABySS| Ray |SWAP
processing

The fundamental operation is
k-mer matching

KMI library

— k-mer: DNA sequence of length k

The problem of current
genome assemblers

— Reinventing the wheels: k-mer
matching

— Inefficiency

Huiwei Lu, Visiting Student of Argonne National Laboratory

A

= KMl is a distributed query

K-mer Matching Interface

processing system for
managing and matching
DNA sequence strings at
scale.

Data Model

— {query : string} = {read:
string, count : int, rc
count : int}

— Reads from the datasets
are stored in a database. A

query search the database.

Huiwei Lu, Visiting Student of Argonne National Laboratory

Example:
Search all the strings with prefix “AACC”
queries | records | reads
| |)
| | AACCGGGG |
AACC [—=| AACCGGGG |4 |2 T ;
|| AATTCCCC |20 CCCCGGTT ||
GTCA | B \\
\\ Tablo1 | | AATTCCCC }
N GreagTea |1 (o0 H— GTcagTCA
| |
| Table 2 |
Database Datasets

Levels of abstraction

= Records

— The unit for rebalance

and query queries | records | reads
| | i
] Tables | | IAACCGGGG -
U e thei AACC |— ™| AACCGGGG |4 |2 T{ i
— ser can organize their -
. . | AATTCCCC |20 CCCCGGTT
data into tables, e.g., :
dﬁ . GTCA | “es . . |
ifferent species can Table1 | | AATTCCCC W
have different tables | |
GTCAGTCA |1(0 GTCAGTCA
= Database | 1!
| Table 2 |
Database Datasets

S Huiwei Lu, Visiting Student of Argonne National Laboratory

Y

Query
Step 1: locate the processor Step 2: locate the record
queries splitter vector local hashtables
AAC buckets entries
ACA 1 ___ 000 x| AAC [1]2
s 1\ 00 a—
ACC 006 002 P,
009
003 |[e}—»{e] ACA [1]1
004 v
005 x| ACC |10
P

Huiwei Lu, Visiting Student of Argonne National Laboratory

Huiwel Lu

Advisor: Prof. Ninghui Sun
FRMIEATREEE G

INSTITUTE OF COMPUTING TECHNOLOGY , CHINESE ACADEMY OF SCIENCES

lvhuiwel@gmail.com

Backup Slides @

Mapping BFS to Memory Hierarchy @

ga—

1 cycle

-

O ~4 cycles

&

) ~10 cycles

2 -

= ~40 cycles

Q — . L

= threading+pipeline

<

v Local Memory \>15° cycles
message compression & sieve hybrid programming

>4000 cycles

MPI

* Multi-threading & pipeline: hide memory latency
* Compression & Sieve: trading comp. for comm.

Publications L7

Understanding Parallelism in Graph Traversal on Multi-core Clusters, 1SC’'12

Reducing Communication in Parallel Breadth First Search on Distributed
Memory Systems. (In Submission)

P-GAS: Parallelizing a Cycle-Accurate Event-Driven Many-Core Processor
Simulator Using Parallel Discrete Event Simulation. PADS 2010

Simulation of Many-core Processor and Many-core Clusters. JCRD. 2013

Co-author:

Evaluation and Optimization of Breadth-First Search on NUMA Cluster. |EEE
Cluster 2012

HPPNetSim: A Parallel Simulation of Large-scale Interconnection Networks.
SpringSim '09
SimK: A Large-Scale Parallel Simulation Engine. JCST 2009

Awards L7

* Institute Chief Award (Top 3%), 2011

* QOutstanding research assistant of the Computer
Architecture Laboratory, ICT, 2010

* Triple-A outstanding student of the Chinese
Academy of Sciences, 2012, 2009, 2008

* Qutstanding class leader of the Chinese Academy
of Sciences, 2008

e Social Activities

President of the Open Source Software Community of
the Chinese Academy of Sciences (One of Top 10
Outstanding Communities of the Year), 2008

