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Abstract. The pseudozero set of a system f of polynomials in n complex

variables is the subset of Cn which is the union of the zero - sets of all poly-

nomial systems g that are near to f in a suitable sense. This concept is made

precise and general properties of pseudozero sets are established. In partic-

ular it is shown that in many cases of natural interest, the pseudozero set is

a semialgebraic set. Also, estimates are given for the size of the projections

of pseudozero sets into coordinate directions. Several examples are presented

illustrating some of the general theory developed here. Finally, algorithmic

ideas are proposed for solving multivariate polynomials.

1. Introduction

1.1. Summary. The study of systems of polynomial equations in several variables

is important in computer science and engineering because of applications in diverse

areas such as robot motion and computer vision. Developing fast and reliable

methods for solving polynomial systems is a high priority. Broadly speaking, there

are two general approaches: symbolic and numeric. Among the former belong

methods from the theory of Gr�obner bases (see [5]) and methods based on the

theory of resultants; see [6, 13]. Among the latter are methods based on iteration,

such as Newton's method, and homotopy continuation methods; see [7, 11, 18, 34].

Lately, there have been serious e�orts to implement systems that combine both

methods; see e.g. [19, 23].

In practically all situations arising in science or engineering, the data are known

only to limited accuracy. For a system modeled by polynomial equations this means

that the coeÆcients of those polynomials are known only to within certain toler-

ances. Thus it is important to understand the variation of the roots of a polynomial

system in the presence of uncertainty of the coeÆcients. For systems of linear equa-

tions this is a classical subject in Numerical Analysis. For nonlinear systems, new

phenomena occur, whose study is rather recent. See for instance [4, 15, 16], and

[25, chapter 5]. One key concept for this study is that of a pseudozero of a sys-

tem of polynomials, which has been studied in [3, 22, 27, 28, 29, 33]. The present

work is an outgrowth of a previous investigation of the third author of this paper

[33], which dealt with pseudozeros only of univariate polynomials. In this paper

we begin an investigation of pseudozeros of multivariate polynomial systems. Some

of this work has an overlap with previous investigations. Especially relevant are

the papers of Stetter just cited, but as will become clear, our viewpoint is quite

di�erent.
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Recall that the pseudozero set of a system polynomials f(z) in several complex

variables z = (z1; :::; zn) is the subset of complex n - space Cn which consists of

the union of the zero sets of all polynomial systems g(z) whose coeÆcients di�er

from those of f(z) by no more than some speci�ed amount. The motivation for

studying this set is that the roots of many polynomials are extremely sensitive

to small changes in the coeÆcients. Often in practice, the coeÆcients are known

only approximately or, even if they are known exactly, roundo� errors occurring

in the course of numerically solving may have an e�ect equivalent to introducing

small changes. In either case, we can get a damaging fuzziness in the roots from

seemingly harmless deformations of the coeÆcients, and in numerical applications

it is important to understand the range over which roots may thus vary. In fact, as

we will show, this even leads to useful algorithmic ideas for the robust computation

of roots. As is pointed out in the introduction to [28], the idea of a pseudozero

belongs to the philosophy of backward error analysis, in which an exact solution to

a nearby problem is regarded as meaningful.

The mathematical domains that study polynomial systems are Algebraic Geom-

etry and Commutative Algebra. The particular study of variation of polynomial

systems belongs to Deformation Theory. We bring in several nontrivial tools from

these disciplines in order to understand pseudozeros. This has the disadvantage

that several sections of this paper are rather abstract. We have tried to counter-

balance the abstraction by the consideration of examples. At any rate, we believe

that a true understanding of the phenomena that can appear in solving systems of

polynomial equations requires some of the powerful machinery of these subjects.

We now outline the contents of this paper. The latter sections of the introduction

present notation and background information, including a brief reminder of the

standard notations for projective space. Let f be a system of polynomials in any

number of variables. In section 2, we de�ne Z(f;B; "), the "-pseudozero set of f ,

relative to a linear deformation space. It is diÆcult to compute Z(f;B; ") directly

from the de�nition, since it involves an existential quanti�er. In Proposition 2.1,

we show that Z(f;B; ") can be described by a system of inequalities that is easily

computed from the data de�ning the pseudozero set. This result is the key to our

further investigations. Actually, our Proposition 2.1 is a special case of a more

general result of Stetter's (see [27], and Remark 2.1). In section 2.2, we consider

generalizations of the de�nition of pseudozero set that retain the useful property

of being semialgebraic. In section 2.3, we examine pseudozero sets in projective

space, where it is possible to generalize some results obtained by Mosier in the one-

variable case. We �nish this section with an example that shows how the projective

completion of a pseudozero set repairs pathology that arises in aÆne space.

Section 3 treats problems related to estimating the size of pseudozero sets. We

begin with some general observations that are based on properties of semialgebraic

sets. In particular, we examine how the diameter d of a projection of Z(f;B; ")

onto a lower dimensional subspace varies with the parameter ". In the case of

an isolated zero, we show that there are positive rational constants c and � such

that d � c"� . This is based on a powerful and general inequality of H�ormander

and  Lojasiewicz, but it is rather diÆcult to calculate the exponent � from this.

Therefore we give a di�erent, more e�ective proof of this result in the case of an

isolated zero in section 3.2. The optimal possible value of � depends on the direction

of projection. Roughly speaking what is important are various tangency conditions
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of the de�ning equations with the projection direction, but the exact formulation is

rather subtle. In section 3.2 we give a theoretical analysis of some local properties of

the pseudozero set that are used to derive estimates for these projections. In section

3.3 we illustrate the abstract theory with some of the examples that are later studied

using the computer visualization tools. Our experiments provide vivid illustrations

of the theory we have developed.

A motivation for the special study of projections of pseudozero sets is that one

of the methods for solving multivariate polynomial systems is via successive pro-

jections onto spaces of lower dimension, for instance by means of Gr�obner basis

techniques or by resultants. In fact the examples worked in section 3.3 were done

with the aid of a multiresultant package written in Mathematica by the second

author.

In section 4, we discuss two algorithmic ideas for solving systems of polynomials

based on the concept of the pseudozero set. The �rst studies the conditioning of

the polynomial zeros by projections in various directions. The second discusses the

change from one Taylor basis to another. This is applied in particular to systems of

linear equations, where the Iterative Re�nement Algorithm is employed. We give

a new interpretation of the well-known theorem on the order of error reduction of

the re�nement (see Theorem 4.1).

1.2. Notation.

� N, Z, Q, R and C denote respectively the natural numbers, the integers,

the �eld of rational numbers, the �eld of real numbers and the �eld of

complex numbers.

� The n coordinate functions on real aÆne n-space Rn are denoted x1; : : : ; xn.

In complex aÆne n-space Cn, we use z1; : : : ; zn to denote the coordinate

functions. Each zj can be written as zj := xj + iyj , where xj and yj are

real-valued functions.

� We often use x to stand for the n-tuple (x1; : : : ; xn). A monomial in the

functions xi is written in the form x� := x�11 � � �x�n
n

, where � 2 Nn. The

degree of x� is j�j := �1 + � � �+ �n. Analogous notation is used with z (a

tuple of complex numbers), a (a tuple of constants), etc.

� Elements of C[x] or R[x] are denoted f , g, etc. We also use f , g, etc. to de-

note systems of polynomials. We use capital letters to denote homogeneous

polynomials, or systems of homogeneous polynomials.

� A point in Rn or Cn is typically referred to by the values of the coordi-

nate functions at that point, which are written as an n-tuple: (a1; : : : ; an).

Projective coordinates on complex projective n-space Pn(C) are denoted

z0; : : : ; zn. A point in Pn(C) is denoted [a0; : : : ; an] (with at least one of

the ai non-zero). As usual, if � 6= 0, then [a0; : : : ; an] = [�a0; : : : ; �an].

� If f 2 C[x], then the complex zero set of f is ZC
n

(f) := f a 2 Cn j f(a) =

0 g: This is also often denoted simply Z(f). If f 2 R[x], then the real zero

set of f is ZR
n

(f) := f a 2 Rn j f(a) = 0 g | or simply ZR(f). The

positivity set of f is P (f) := f a 2 Rn j f(a) > 0 g:
� Let f = ff1; : : : ; fkg 2 C[z1; : : : ; zn] be a collection of polynomials with

complex coeÆcients. We can write each fj(x+ iy) = gj(x; y)+ ihj (x; y), to

get a system of real polynomials

(g; h) = fg1; : : : ; gk; h1; : : : ; hkg � R[x1; : : : ; xn; y1; : : : ; yn]:
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If we identify Cn = R2n, then

Z(f) = ZR(g; h):

Thus, any discussion of complex zeros of systems of polynomials with com-

plex coeÆcients can be reduced to the real zeros of systems of polynomials

with real coeÆcients. (In 2.2 when we consider pseudozero sets from the

point of view of elimination theory, the real language will be more nat-

ural. In solving polynomial systems, and in discussing algebro-geometric

properties, on the other hand, the complex language is more suitable.)

� A semialgebraic set in Rn is a subset of Rn that belongs to the boolean

algebra of subsets generated by fP (f) j f 2 R[x] g. In other words, a semi-

algebraic set is a set that can be constructed from positivity sets using the

operations of union, intersection and complement �nitely many times. By

distributivity, any semialgebraic set is a �nite union of �nite intersections

of positivity sets and their complements.

1.3. AÆne and projective varieties. For a general introduction in the spirit of

this paper, see [6]. Let F = (F1; : : : ; Fk) 2 C[z0; : : : ; zn] be a collection of complex

polynomials, each homogeneous of some degree dj = degFj. The zero set is

Z(F ) = fa 2 Pn(C) : Fj(a) = 0; 8j = 1; : : : ; kg:
Recall that the compact complex manifold Pn(C) is covered by the n + 1 open

subsets

Ui = f[z0; : : : ; zn] 2 Pn(C) : zi 6= 0g
and each of these is isomorphic with Cn via

'i : Ui
��! Cn : [z0; : : : ; zn] 7!

�
z0

zi
; : : : ;

zi�1

zi
;
zi+1

zi
; : : : ;

zn

zi

�
with inverse

 i : Cn ��! Ui : (z1; : : : ; zn) 7! [z1; : : : ; zi�1; 1; zi+1; : : : ; zn]:

The intersection Z(F ) \ Ui �= Z(f), where f = (f1; : : : ; fk) is the set of complex

polynomials obtained by dehomogenizing the polynomials F with respect to the

variable zi, that is

f(z1; : : : ; zn) := F (z1; : : : ; zi�1; 1; zi+1; : : : ; zn):

Note that the polynomials f are no longer necessarily homogeneous. Conversely,

starting with a system of polynomials f , we have their common zero locus Z(f) �
Cn; viewingCn as U0 � Pn, say, we de�ne corresponding homogeneous polynomials

F via

F (z0; : : : ; zn) = z
degf
0 f

�
z1

z0
; : : : ;

zn

z0

�
:

Thus we get a subset Z(F ) � Pn(C). Informally, we think of the locus Z(F )\fz0 =

0g as the part of Z(f) \lying at in�nity." The sets Z(f) (resp. Z(F )) depend only

on the ideal generated by the polynomials f in the polynomial ring C[z] (resp., on

the homogeneous ideal generated by the F in C[z]). In general, subsets Z(f) � Cn

(resp. Z(F ) � Pn(C)) will be called aÆne (resp. projective) varieties.
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2. Pseudozero sets of multivariate polynomials

2.1. De�nition and examples. In this section, we de�ne and discuss pseudozero
sets of systems of multivariate polynomial equations. Let f = (f1; : : : ; fk) 2
(C[z])k, where C[z] := C[z1; : : : ; zn]. To state the main idea as directly as pos-

sible, the pseudozero set of f is the union of the zero sets of all systems bf that

are \acceptable approximations" of f in the sense that they come from f by small

changes in the coeÆcients. What counts as an \acceptable approximation" depends

on context. As we 
esh out this idea in the following paragraphs, it is useful to

think of two steps in specifying the approximations. First, one �xes a \domain of

variation" from which the (coeÆcients of the) bf may be chosen. After this, one

�xes a way of determining, in that space, which bf are \suÆciently close" to f . We

now describe what seems to be the most useful way of making these speci�cations.

Let Vi, i = 1; 2; : : : ; k, be a �nite-dimensional linear subspace of the C-vector

space C[z]. For example, Vi could be all polynomials of degree less than or equal

to some �xed bound di. The Vi do not need to be the same, but in many typical

applications they will be. (See the end of this section for a list of some typical

cases.) Let V := V1� � � �� Vk. Our \domain of variation" will be f f + g : g 2 V g.
We view V as the space of permissible deformations of f .

In order to measure \closeness" we use a norm on V . To specify the norm, pick

a basis Bi = f bi
(z) : 
 2 �i g for each Vi. Sometimes we will use the notation

Bi(z), and view this collection of polynomials as a vector of polynomials, with some

order chosen on the set �i. Then an expression such as jjBi(z)jjp (p - norm of the

vector) becomes meaningful as a function of z.

Let B denote the basis for V built up from the Bi. If g = (g1; : : : ; gk) 2 V , then

gi
 denotes the component of gi at bi
(z) (i.e., the scalar coeÆcient of bi
(z) in the

expression for gi), so gi(z) =
P



gi
bi
(z). Finally, we let k kB be the sup-norm

on V induced by B:

kgkB := supfjgi
j : i = 1; : : : ; k ; 
 2 �i g:
Let " > 0. We de�ne the "-neighborhood of f relative to B to be

N (f;B; ") := f f + g : g 2 V & kgkB � " g;
and we de�ne the "-pseudozero set of f relative to B to be

(2.1)

Z(f;B; ") :=
[
fZ( bf ) : bf 2 N (f;B; ") g =

[
fZ(f + g) : g 2 V & kgkB � " g:

This set is exactly the collection of zeroes of all systems whose B-coeÆcients di�er

from those of f by no more than ", and so it very well suits the purposes described

in the introduction. However, Z(f;B; ") cannot be computed directly because it

is an in�nite union. This is remedied by the following proposition, which on the

one hand generalizes [22, Theorem 1] and [31, Proposition 2.1] and on the other is

implied by results in [26], as explained and generalized in [27]. See our Remark 2.1,

below. For the convenience of the reader, and to illustrate the methods, we have

included a short self-contained proof.

Proposition 2.1. Z(f;B; ") = f z 2 Cn : 8i jfi(z)j � "
P


2�i
jbi
(z)j =

"jjBi(z)jj1 g
Proof. We will show inclusions both ways.

(�) Let a 2 Z(f;B; "). Then there exists g 2 V such that kgkB � " and f(a) +
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g(a) = 0. Then

jfi(a)j = jgi(a)j =

������
X

2�i

gi
bi
(a)

������ �
X

2�i

jgi
j jbi
(a)j � "
X

2�i

jbi
(a)j:

(�) Suppose that a is a point such that jfi(a)j � "
P


2�i
jbi
(a)j for i = 1; : : : ; k.

De�ne

ri(z) :=
X

2�i

ri
bi
(z) where ri
 := e�iarg(bi
(a)):

Then,

ri(a) =
X

2�i

jbi
(a)j:

If ri(a) = 0, then fi(a) = 0, so let gi(z) � 0. If ri(a) 6= 0, de�ne

gi(z) := �fi(a)

ri(a)
ri(z):

By construction, f(a) + g(a) = 0. Moreover,

kgkB = sup
i

f sup

2�i

����fi(a)

ri(a)
ri


����g = sup
i

jfi(a)j
jri(a)j � ";

showing that a 2 Z(f;B; "). �

Observe that Z(f) � Z(f;B; �), but Z(f) is not necessarily in the interior of

Z(f;B; �). The simplest example would be when V1 = f0g. In this case, no variation

in f1 is allowed, and Z(f;B; �) � Z(f1). For a second example, let f = (z1; z2), so

Z(f) is the origin in C2. Let B1 = faz2 : a 2 Cg, and let B2 = fbz1 : b 2 Cg.
Then for small ", Z(f;B; ") = Z(f).

Sometimes we want to incorporate weights into the pseudozero set Z(f;B; ") to

make it compatible with numerical application (as, for example, in the discussion

of componentwise perturbation [8]). This can be accomplished by modifying the

basis. Because we use this later, we provide details. A weight vector will be a

set w = fwi
 : i = 1; : : : ; k ; 
 2 �i g, with wi
 2 R�0. Let �0
i

= f 
 2 �i :

wi
 > 0 g, let V 0 be the subspace of V = V1 � � � � � Vk spanned by the k-tuples

(0; : : :0; bi
(z); 0; : : : ; 0) with 
 2 �0
i
. Finally, let Bw := fw�1

i

bi
(z) : 
 2 �0

i
g.

Then we have a norm on V 0 de�ned by

kgkBw
:= sup

i


jwi
gi
 j:

The de�ning equation (2.1) then becomes

Z(f;Bw ; ") :=
[
fZ(f + g) : g 2 V 0 & kgkBw

� " g:
By Proposition 2.1,

Z(f;Bw ; ") = f z 2 Cn : 8i jfi(z)j � "
X

2�0

i

wi

�1jbi
(z)j = "jjw�1Bi(z)jj1 g:

It is important to realize that, when working with weights w, the allowed deforma-

tions V 0 consists only of those elements of V that correspond to nonzero weights.

Sometimes, we will want to use the same basis and the same weight vectors at

each of the k components, i.e., there is B = f b
(z) : 
 2 � g such that Bi = B for

i = 1; : : : ; k, and there is w = fw
 : 
 2 � g such that wi = w for i = 1; : : : ; k. If V0
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is the space spanned by B, then the permissible deformations are systems g 2 V k
0 .

In this case, we write Z(f;Bw ; ") for the pseudozero set, understanding that Bw is

not itself a basis for the deformation space. An actual basis consists of k \copies"

of Bw. In this notation,

(2.2) Z(f;Bw ; ") = f z 2 Cn : jjf(z)jj1 � "
X

2�0

w

�1jb
(z)j = "jjw�1B(z)jj1 g;

where jjf(z)jj1 = sup
i

jfi(z)j.
While there are numerous interesting bases, (e.g., Taylor, Bernstein, orthogonal),

the simplest and most useful bases are subsets of the standard monomial base.

Often the base used in de�ning a pseudozero set for f will itself depend on f , as

we describe in the table below. Let supp fi denote the set of � 2 Nn such that fi
has a non-zero term of multi-degree �, and let convX denotes the convex hull of

X � Rn. In the examples below, Bi is a set of monomials z�.

Name of base Bi = f z� : � 2 N & :::see below :::g

degree-bounded j�j � maxfdeg f1; : : : ; deg fkg
convex � 2 conv (

S
i
supp fi)

sparse � 2 S
i
supp fi

equation-wise degree-bounded j�j � deg fi
equation-wise convex � 2 conv supp fi
equation-wise sparse � 2 supp fi

When all fi homogeneous:

equation-wise degree-exact j�j = deg fi

Remark 2.1. As we mentioned in the introduction, Proposition 2.1 is proved in

greater generality in [27]. As is pointed out in that work, this result has origins in

an older theorem of Oettli and Prager [26]. The exposition in [27] is elegant and

lucid, but we have retained our own proof, which closely follows Mosier's, because

we need the speci�c form of it for later applications, and our proof is in any case

short.

Remark 2.2. There are interesting variations on the concept of a pseudozero.

For instance, consider a univariate polynomial p(z), and suppose that a is an m-

fold zero of it, for some m � 2. Then this m-fold zero will become a cluster of

m generally distinct zeros in a pseudozero neighborhood of a, that is, a typical

nearby polynomial ~p(z) will have m zeros lying close to a. One can instead ask

only for those ~p(z) near to p(z) which also have an m-fold zero, and one de�nes

the m-fold pseudozero set Z(m)(p;B; ") to be the union of all the b such that b is

an m-fold zero of a polynomial ~p(z) 2 B whose distance from p(z) is less or equal

to ". Actually, this concept can be subsumed under the more general de�nition

of pseudozero set given in next section 2.2. It turns out that there is no simple

criterion such as Proposition 2.1 for multiple pseudozeros. In general, describing

multiple pseudozero domains requires solving a linear programming problem. See

[28, x6] and [29, x5].

2.2. General pseudozero sets. We will now discuss pseudozero sets from a much

more general perspective. If U is any subset of the k-fold product (C[z])k, then we
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put

ZU :=
[
fZ(g) j g 2 U g:

If U � (R[x])k, we de�ne ZR
U

similarly:

ZR
U

:=
[
fZR(g) j g 2 U g:

Any rule for specifying U = U (f; "), given f and a parameter ", will determine

a set ZU(f;"), which we can view as a generalized pseudozero set. (Usually, we

would expect U (f; ") to contain f .) A general goal is to �nd canonical choices for

U for which the set ZU has some meaning or signi�cance in relation to numerical

computing or has other interesting theoretical properties. For this reason, it is

natural to look to semialgebraic sets. Not only does one frequently encounter

such sets in applications, but they are well-understood algorithmically. Thus, it

is reasonable to ask for conditions under which ZU(f;") will be semialgebraic. In

dealing with semialgebraic sets, the elimination of quanti�ers (often referred to as

the Tarski-Seidenberg Theorem) is the most powerful tool.

Theorem 2.2. Let N and n be positive integers and let � : RN �Rn ! Rn be the
projection function:

(�1; : : :�N ; x1 : : :xn) 7! (x1; : : :xn):

If S � RN �Rn is semialgebraic, then so is

�(S) := fx 2 Rn j 9 � 2 RN such that (�; x) 2 S g:
�

For references and a proof, see [2, Theorem 2.2.1, p. 26]. A function � : Rm ! Rn is

called semialgebraic if Graph(�) (the graph of �) is a semialgebraic subset of Rm+n.

Tarski's theorem shows immediately that the image of a semialgebraic set under a

semialgebraic function is semialgebraic. To see this, note that for any semialgebraic

S � Rm, �(S) is the projection onto Rn of the semialgebraic set Graph(�) \ (S �
Rn). A similar argument shows that the inverse image of a semialgebraic set under a

semialgebraic function is semialgebraic. Another interpretation of Tarski's theorem

is that it says that any subset of Rn that can be de�ned explicitly from systems of

polynomial inequalities using existential and universal quanti�ers is semialgebraic.

In applying this theorem, it will be useful to view the coeÆcients of a system f

as variables. In order to do this, we will use the notation from 2.1. As above, let

� =
S
k

i=1 �i be a �nite index set, and let bi
(x), 
 2 �i, be a basis for a domain of

variation R�. For each i = 1; : : : ; k and each 
 2 �i, we have a coordinate function

�i
 : R� ! R. Let �i denote the vector of coordinate functions (�i
 ; 
 2 �i). Let

�i � bi(x) :=
X

2�i

�i
bi
(x):

This is a function from R�i �Rn to R. Similarly,

� � b(x) := (�1 � b1(x); : : : ; �k � bk(x))

is a function from R��Rn to Rk. Choosing a point in R� is tantamount to �xing

a value for each �i
 , and this is the same thing as choosing a speci�c polynomial

system. We can use the notation f(�; x) to denote the system of polynomials

corresponding to this choice of coeÆcients. Or given a system f in the span of the
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bi
 we let fi
 be the coordinates of f in that basis. A subset U � R� may equally

well be considered as a family of polynomial systems in (R[x1; : : : ; xn])k.

Proposition 2.3. If U is a semialgebraic subset of R�, then so is ZR
U
.

Proof. Let �1 : R� � Rn ! R� and �2 : R� � Rn ! Rn be the canonical

projections. Let Y := ZR(� � b(x)), the zero set of � � b(x) in R� � Rn. If U is a

subset of R�, then by de�nition

ZRU = fx 2 Rn j 9 � 2 U such that � � b(x) = 0 g
= �2

�
��11 (U ) \ Y �;

If U is semialgebraic, then so is ��1(U ) \ Y . Hence, by Tarski's theorem, ZR
U

is

semialgebraic. �

In our main example (section 2.1), we had U = f f+g : g 2 V & kgkB � " g, and

the pseudozero set ZR(f;B; ") is, in the notation of the present section, ZR
U

. (Of

course, the real version of Proposition 2.1 shows directly that ZR
U

is semialgebraic,

without invoking Tarski's principle.)

We discuss brie
y some alternatives to the pseudozero set described in section

2.1. First observe that it is not necessary to choose a linear deformation space.

Any semialgebraic domain of variation S can be used to produce semialgebraic

pseudozero sets|in particular, we could choose to restrict variation to any semialge-

braic subset of any �nite-dimensional R�. (We might choose either a \deformation

space" in which case U would be f + V0 for some family V0 of small deformations.

Or, we might choose a \domain of variation," i.e., some set containing f , in which

we want to consider neighborhoods of f . The one approach can be transformed into

the other.) After specifying a domain of variation S, we typically choose a measure

of distance in S. If d is any semialgebraic metric, then U := f t 2 S j d(f; t) � " g
is semialgebraic. In our main example (2.1, above) we used the metric induced by

the sup-norm:

d(f; t) := sup
i�

jti� � fi�j:

The usual Euclidean metric

d(f; t) :=
�X

(ti� � fi�)2
�1=2

is also semialgebraic. Since the zeroes of f(�; x) and of f(��; x) are the same

provided � 6= 0, it is also reasonable to consider a \pseudometric" that is constant

on lines through the origin. For example, if �(f; t) is the angle between t and f ,

then

sin �(f; t) =

�
1� (

P
ti�fi�)2

(
P
t2
i�

)(
P
f2
i�

)

�1=2
is a semialgebraic pseudometric|and a true metric on the projective space PkN�1(R).

We do not know explicit quanti�er-free representations (similar to Proposition 2.1)

for pseudozero sets de�ned by the latter two norms|though of course by Proposi-

tion 2.3 they exist.

The knowledge that a pseudozero set is semialgebraic can be very useful. For

example, it is well-known that a semialgebraic set has only �nitely many connected

components. The same is true, therefore, of a pseudozero set de�ned over a linear

space of deformations by any of the metrics just listed. Another application of this

knowledge is given in section 3.
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While we have focused in this section on real pseudozero sets, we note that

complex pseudozero sets may be treated within the framework we set up, since as

we remarked previously we can always regard the complex zeros as the real zeros

of the system built from the real and imaginary parts of the original system.

2.3. Projective pseudozero sets and projectivizing. Pseudozero sets in sev-

eral variables behave in ways that are signi�cantly di�erent from pseudozero sets

in one variable. For example, if f(z) is a polynomial of exact degree n in the single

variable z, then any small deformation bf of f in the space Pn of polynomials of

degree n will have n roots counted with multiplicity. In fact, Mosier showed (see

[22, Theorem 2]): For all small ", if g 2 N (f;B; "), then both f and g have the

same number of roots in each connected component of Z(f;B; "), and also there

is at least one root of f in each connected component. This is false for systems

f = (f1; : : : ; fk) of polynomials fi : Cn ! C, because f may have \solutions at in-

�nity." In this case, the pseudozero set Z(f;B; ") will contain points in Cn that are

close to any solutions at in�nity, but these points may be very far from any points

of Z(f); see the example in section 2.4. DiÆculties such as this can be avoided by

passing to projective completions, as we describe forthwith.

Let F = (F1; : : : ; Fn) be a system of homogeneous forms in the variables z0; z1; : : : ; zn
of degrees d1; : : : ; dn. Then Z(F ), as subset of Cn+1, is a (generally in�nite) union

of lines through the origin. More commonly, we view Z(F ) as a subset of projec-

tive space Pn(C); see 1.3. We wish to de�ne the projective pseudozero set. Let ~V

be a deformation space as in 2.1, but assume that all non-zero elements of ~V are

systems of homogeneous forms of multidegree (d1; : : : ; dn). (The tilde is to serve as

a reminder that the systems in ~V are homogeneous.) Let ~B be a basis for ~V . Then

Z(F; ~B; "), as a subset of Cn+1, is also a union of lines through the origin, so it,

too, may be|and generally will be|viewed as a subset of Pn(C). Since Pn(C)

is compact and the pseudozero set is closed, Z(F; ~B; ") is also compact. In this

setting, we can prove analogues of the theorems of Mosier referred to above.

Proposition 2.4. Let F = (F1; : : : ; Fn) be a system of homogeneous forms of
degrees d1; : : : ; dn in the variables z0; z1; : : : ; zn, and assume Z(F ) � Pn(C) has
�nitely many points (so, by B�ezout's theorem, it has exactly d1 � � �dn points, counted

with multiplicity). Let ~V be a deformation space contained in the space of all ho-

mogeneous systems of degree (d1; : : : ; dn) and let ~B be a basis for ~V . Then the
following hold:

(1) Let G 2 ~V , and assume kGk ~B = 1. Fix " > 0. If Æ 2 (0; ") is suÆciently
small, Z(F ) and Z(F + ÆG) have the same number of points, counted with

multiplicity, in each connected component of Z(F; ~B; ").

(2) For suÆciently small " > 0, each connected component of Z(F; ~B; ") con-
tains at least one point of Z(F ).

Proof. This is an immediate consequence of [1, p. 199]. We present a second proof

at the end of section 3.2, as an application of our Theorem 3.3. �

We now describe the \projectivization" of an aÆne pseudozero set. Let f =

(f1; : : : ; fk) be a system of polynomial equations of multidegree d = (d1; : : : ; dk)

in variables z1; : : : ; zn. The corresponding system of homogeneous equations F in

(z0; z1; : : : ; zn) was described in section 1.3. Let B be the basis for a deformation

space, as in 2.1, but we require that the systems in B have multidegree bounded by
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d. Let ~B := f~b : b 2 B g, where each ~b is the modi�cation of the homogenization

of b obtained by multiplying each component by whatever power of z0 is required

to raise the multidegree of ~b to d. Then Z(F; ~B; ") � Pn(C), and it is the union of

Z(F; ~B; ") \ U0 (which is isomorphic to Z(f;B; ")) and Z(F; ~B; ") \ fz0 = 0g (the

part \at in�nity").

2.4. Example. Let f = ff1 = z2 + z21 � 1; f2 = z2 � z21 + 1g. Then the zero set

Z(f) is the intersection of these two parabolas, which consists of the two points

(1; 0); (�1; 0). The homogeneous system is F = fF1 = z0z2 + z21 � z20 ; F2 =

z0z2 � z21 + z20g. Its zero set contains in addition to the two points Z(f), namely

[1; 1; 0]; [1;�1; 0], a point at in�nity [0; 0; 1]. This is a tangential intersection of F1
and F2, of intersection multiplicity 2. Thus we have a total intersection multiplicity

of 4 in agreement with B�ezout's theorem: (degF1)(degF2). Now let B be any basis

of the homogeneous polynomials of degree 2 in (z0; z1; z2). A deformation of the

system F within the space of degree 2 homogeneous polynomials will be a pair

of projective plane conics. For small ", Z(F;B; ") � P2(C) will be a compact

neighborhood of the three indicated roots. By dehomogenizing, we can view B

as a basis of the polynomials of degree � 2 in (z1; z2). Then the pseudozero set

Z(f;B; ") � C2 will consist not only of a compact neighborhood of the visible roots

(1; 0); (�1; 0), but it will also have a noncompact component that is a neighborhood

of the invisible root at in�nity.

Now let B0 = fz20; z0z2; z21g. Then the deformations permitted by B0 are all of

the form

az0z2 + bz21 + cz20 ;

and for b 6= 0 these will all have a unique tangential intersection with the line at

in�nity at [0; 0; 1]. Thus, the corresponding aÆne system g deformed in this way

will have two roots in the aÆne plane, which will be distinct for small perturbations

around f . Thus, by restricting to B0 as the permitted space of deformations, we do

not see the \pathology" of the previous example. Z(f;B0; ") will consist of compact

neighborhoods of the visible roots (1; 0); (�1; 0) and nothing else, for small ". The

well-behavedness of this example is that the family of 0-dimensional subvarieties

Z(g) of C2 obtained from f by deformations within B0 is a 
at family of varieties.

Flatness here amounts to the condition that

dimC[z1; z2]=(g1; g2)

is constant (here 2) as g = (g1; g2) ranges over the (small) deformations of f lying

in B0 ( i.e., g 2 N (f;B0; "); see [24, Corollary of Proposition 2, III.10, p. 300 -

301]).

If B again represents the basis of all polynomials of degree � 2 as before, the

0-dimensional subvarieties g = 0 of C2 given by the g 2 N (f;B; ") no longer form

a 
at family, but if we consider the family of subvarieties of the projective plane

de�ned by G = 0 for G 2 N (F;B; ") we do get a 
at family because the dimensions

of the aÆne algebras are constant in this family, equal to 4 by B�ezout's theorem.

However, if we consider a system in which the number of equations is greater than

the number of variables, we will not get a 
at family in the projective space as

B�ezout's theorem not longer applies, and we have no guaranteed constancy of the

dimensions of the aÆne algebras.
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3. Diameters and projections of pseudozero sets

In this section, we are concerned with estimating the \size" of pseudozero sets,

or their projections. We describe two ways of approaching this topic. The �rst is

based entirely on properties of semialgebraic sets, and provides a surprising amount

of information but does not lead immediately to practical algorithms. The second

approach uses classical methods of algebraic geometry. This may potentially suggest

some algorithms, but we leave the further development of this to a future work.

3.1. Semialgebraic theory. Problems concerning the \size" of pseudozero sets

come in many variants. To give some illustrations, let f be a system of polynomial

equations, and assume a0 is a zero of f . Let Ca0(") be the intersection of the

connected component of a0 in Z(f;B; ") with the unit ball about a0. Consider the

following functions of ":

i) the maximum distance between two points in Ca0("),

ii) the diameter of the largest closed ball that is contained entirely within

Ca0("),

iii) the maximum distance from a point of Ca0(") to a true zero in Ca0("),

iv) the diameter of a projection of Ca0(") onto a given one-dimensional sub-

space.

Each of these functions is semialgebraic. One way to see this is to note that each

can be de�ned explicitly from systems of polynomial inequalities using existential

and universal quanti�ers. For example, the value of i) at " is that nonnegative real

number y such that for no smaller y0 are there points in Ca0(") distance y0 from one

another. For �xed f and a0, the description of Ca0(") depends semialgebraically

on "; moreover, distance itself (whether it be the usual Euclidean distance, or the

distance induced by the sup-norm) also semialgebraic. Thus, the remaining parts

of this description can be made explicit in the required way.

The H�ormander- Lojasiewicz inequality shows that the order of vanishing of two

semialgebraic functions can be compared in terms of exponents. The following

theorem contains a statement. For background, see [2].

Theorem 3.1. Let K � Rn be a compact semialgebraic set and let g; h : K ! R

be two continuous semialgebraic functions such that Z(g) � Z(h). Then there exist
positive integers c and m such that

jhjm � cjgj on K:

A similar statement applies to complex functions with semialgebraic real compo-

nents. Recently, estimates for the size ofm have been determined. For example, [17]

present a result that implies the following: Let f = (f1; : : : ; fk), fi 2 C[z1; : : : ; zn],

deg(fi) = di > 2 and k � n. Assume Z(f) is not empty. Then there is an integer

m � d1 � � �dk and a constant c such that

dist(z; Z(f))m � cmaxf jfij g(1 + kzk)d1���dk

for all z 2 Cn.

Here is a sketch of how these ideas could be applied in the present context. Let

us assume that a0 is the only zero of f in Ca0("). Let h(") be any of the four

functions listed above. Then h(0) = 0; thus applying the H�ormander- Lojasiewicz

inequality to h and g(") := ", we see that there is a positive rational exponent �
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and a positive constant c such that

h(") � c "� ; for all " 2 [0; 1]:

What is missing in the above sketch is a proof that the corresponding h is a con-

tinuous function. This seems to be a subtle matter for some of the h's on this

list, and will be addressed in more detail in a future publication. Here we will

provide more details for the case of interest to us: that of projections. Assume

that f = (f1; :::; fk) is a system of equations, say in C[z1; : : : ; zn], and let U be a

semialgebraic subset of the set of these polynomials (of some bounded degree). Let

d be a semialgebraic metric function on the set U and let

U (f; ") = fg 2 U : d(f; g) � "g:
The corresponding pseudozero set ZU(f;") then is a semialgebraic subset of Cn =

R2n. Let jj jj be any semialgebraic norm on the vector space Ck. Finally �x a

compact semialgebraic K � Cn and de�ne

K" = K \ ZU(f;")
which is a family of semialgebraic subsets depending on the parameter ", with

K0 = K \ Z(f), and let

h(") = sup
z2K"

jjf(z)jj:

Lemma 3.2. h(") is a continuous semialgebraic function of " for all " near 0.

Proof. That it is semialgebraic can be seen from Tarski's elimination of quanti�ers

theorem: the conditions de�ning the graph of h are in the �rst order language

involving equalities and inequalities and involving existential and universal quanti-

�ers over the real �eld. By Tarski's theorem this is then a semialgebraic set. As a

semialgebraic function on the reals is in any case piecewise continuous, continuity

of h in a neighborhood of 0 comes down to showing that

lim
"!0+

h(") = h(0) = 0:

First we note:

(3.1)
\
">0

K" = K0 = K \ Z(f):

To see this let z belong to the left - hand side above. By de�nition of pseudozero

sets, we can �nd gn 2 U (f; 1=n) such that gn(z) = 0 for integers n going to in�nity.

Clearly, gn converges to f in the space of polynomials of the appropriate bounded

degrees, and hence f(z) = limn�>1 gn(z) = 0 showing that z 2 K \Z(f). Now let

Æ > 0 be given. Then the set

V := K \ fz : jjf(z)jj < Æg
is an open neighborhood of K \ Z(f). Each of the sets K" is compact, and an

easy argument using compactness and property (3.1) above shows that there is an

"0 > 0 such that K" � V , for all " � "0, and this shows that h(") < Æ for all " in

this range, verifying continuity. �

By the application of the H�ormander- Lojasiewicz inequality outlined above, we

get an estimate of the form h(") � c"� . In the special case of linear deformations

considered in section 2.1, this estimate follows easily, with the exponent � = 1,

from the inequality in equation (2.2) of that section.
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Now suppose that a0 is an isolated zero of the system f , and suppose that

a0 is the only zero of f in K. For any index i the zero-set of the continuous

semialgebraic function jjf(z)jj on K (namely a0) is contained in the zero-set of the

continuous semialgebraic function jzi � zi(a0)j. Hence we get an estimate of the

form jzi(a)� zi(a0)jm � c1jjf(a)jj for all a 2 K. If a 2 K \ZU(f;") then combining

with the estimate for h, we get

jzi(a) � zi(a0)j � c2"
�

for some constants c2 > 0 and rational � > 0. Thus, the projection of this pseu-

dozero set in the ith coordinate direction has order of magnitude O("� ). In the

next section we will give another proof of this fact based on principles from local

analytic geometry. One reason for doing this is that it gives an e�ective method

for actually calculating the exponent �.

3.2. Local theory. We give a more precise analysis of the projections of pseu-

dozero sets in the case of an isolated zero. In fact suppose that Z(F ) is a �nite set

of points. For this to be true, the number of equations, r, must be greater than

or equal to the number n, the dimension of Pn. If r = n then the generalized

form of B�ezout's theorem states that the number of zeros of F , counted with the

appropriate multiplicities, is equal to (degF1):::(degFn). Also, by making a linear

change of variables if necessary, we can assume that all the zeros of F lie in the

aÆne open set U0 = Cn. We will let (z1; : : : ; zn) be a set of aÆne coordinates on

this.

To analyze the situation around any one zero s = (s1; : : : ; sn), three local rings

are useful:

C[z1; : : : ; zn]s � Chhz1 � s1; : : : ; zn � snii � C[[z1 � s1; : : : ; zn � sn]]

The �rst is the set of fractions of polynomials h(z)=g(z) with g(s) 6= 0. The

second is the set of power-series in the indicated variables that converge in some

neighborhood of s. The third is the set of formal power-series in the indicated

variables. The inclusion of the �rst into the second is via the Taylor expansion.

Each of these is a Noetherian regular local ring of Krull dimension n. In each case,

we will let m denote the maximal ideal, which consists of those functions h such

that h(s) = 0, which is generated as an ideal by z1 � s1; : : : ; zn � sn. The third

ring is the completion of the other two with respect to the m-adic topology. By

shifting the origin, we may assume that s = (0; : : : ; 0); we make this simplifying

assumption, which entails no loss of generality.

Therefore, assume that f(z) is a system of polynomials with (0; : : : ; 0) as a

common zero. Then w = f(z) de�nes a polynomial map Cn
z ! Cr

w which carries

the origin 0z in the z-space to the origin 0w in the w-space. This also de�nes a map

of the local ring at 0w to the local ring at 0z. To be de�nite, we will work with the

convergent power-series. We obtain a local homomorphism (i.e., one that carries

the maximal ideal to the maximal ideal):

f� : Chhw1; : : : ; wrii �! Chhz1; : : : ; znii; f�(wi) = fi(z):

In particular, Chhzii becomes a module over the ring Chhwii via f�. Let us denote

by

Chhfii � Chhzii
the image of f�. Then, (0) is an isolated zero of the system f if and only if Chhzii
is a Chhwii - module of �nite type. Equivalently, (0) is an isolated zero of f if and
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only if Chhzii is a module of �nite type over the subring Chhfii. In fact, we have

the following fundamental theorem from local analytic geometry ([10, 1.11, p. 57;

3.2, p. 132-134 ]):

Theorem 3.3. Let ' : X ! Y be a holomorphic map of analytic spaces, x 2 X,
and let y = '(x). We get a canonical local homomorphism of analytic local rings

'� : OY;y �! OX;x:

Then the following conditions are equivalent:

(1) OX;x is a �nite OY;y-module via '�.
(2) dimC OX;x='

�(mY;y)OX;x <1.
(3) x is an isolated point in the �ber over y, '�1(y).

Suppose that any one of these conditions is satis�ed. Then there are arbitrarily
small open neighborhoods U of x 2 X such that:

(1) '(U ) is an analytic subset of Y at y.
(2) dimy '(U ) = dimxX.
(3) 'jU : U ! '(U ) is a �nite morphism, and is open in x.

(A morphism ' : X ! Y of topological spaces is open in x if for every neighborhood
V of x, '(V ) is a neighborhood of '(x).)

In our situation X = Cn, Y = Cr , ' = f , x = 0z, y = 0w, OX;x = Chhzii,
OY;y = Chhwii, and '�(mY;y) is the ideal generated by the polynomials f(z). Now

Chhzii=mfChhzii, being �nite-dimensional over C by Theorem 3.3, is an Artin

local ring. Thus its maximal ideal is nilpotent. In other words, there is an integer

c > 0 such that (z1; : : : ; zn)c � (f1; : : : ; fr)Chhzii. Assuming an isolated zero at

0 as before, we have that the Krull dimension of Chhfii is n by [20, Theorem 20,

p. 81]. When the number of equations r equals the number of variables n, one

can say more: Chhfii is isomorphic with Chhwii, for if there were a kernel in the

epimorphism Chhwii ! Chhfii, the Krull dimension would drop down from n. It

then follows that Chhzii is a free Chhfii-module of �nite rank ([20, Theorem 46, p.

140]).

Condition 1 of the theorem implies that every element of OX;x is integrally depen-
dent on OY;y. In our situation, this means that every element h 2 Chhzii satis�es

a monic equation:

(3.2) hN + �N�1h
N�1 + : : :+ �1h+ �0 = 0;

where �i 2 Chhfii for all i. Note that if h 2 mz, in other words, h(0) = 0, then

�0 = 0, i.e., �0 2 mf . Since it is important for our method, let us elaborate on

this. Let

N = dimCChhzii=(f1(z); : : : ; fr(z))

and let e1; : : : ; eN be a basis of this quotient. Lift these in any way to elements

e1(z); : : : ; eN (z) in Chhzii. Then by Nakayama's lemma, e1(z); : : : ; eN (z) is a set

of Chhwii-module generators of Chhzii. If h 2 Chhzii, there are equations

h(z) � ei(z) =

NX
j=1

ai;j(f)ej (z); j = 1; : : : ; N;

where A = (ai;j(w)) is a matrix of elements of Chhwii. Since h �1�A has a nonzero

element in its kernel, namely the vector of generators (e1(z); : : : ; eN (z)), we have

det(h � 1�A) = hN + �N�1h
N�1 + : : :+ �1h+ �0 = 0;
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which shows in particular that every element of Chhzii satis�es such an equation

of integral dependence of degree N (and possibly less).

Let H(z) =
P

j�j=s c�z
� be a nonzero homogeneous polynomial of degree d. If

jj � jj is any norm on Cn, then there are constants c1; c2 > 0 with the following

property:

(1) jH(z)j < c1jjzjjd for all z 2 Cn.

(2) For any " > 0 there exists z with jjzjj= " such that jH(z)j � c2"
d.

Informally, if z has size ", H(z) will have size "d. Let h 2 m
d
z � md+1

z . Then

h(z) = H(z)u(z) where H(z) is a homogeneous form of degree d, and u 2 Chhzii
is a holomorphic unit, i.e., u(0) 6= 0, or equivalently, 1=u belongs to Chhzii. Since

u de�nes a continuous function on some neighborhood of 0, and is nonvanishing at

0, we have the elementary estimates:

Lemma 3.4. For any h 2 md
z
�md+1

z
there exists a neighborhood U of 0 in Cn and

constants c1; c2 > 0 such that

(1) jh(z)j < c1jjzjjd for all z 2 U .
(2) For any " > 0 suÆciently small there exists z 2 U with jjzjj = " such that

jh(z)j � c2"
d.

Informally, if z has size ", h(z) will have size "d as "! 0.

Proposition 3.5. Let f1; : : : ; fr; h be a collection of nonzero elements of Chhzii
with fi(0) = h(0) = 0 for all i.

(1) Then there is a neighborhood U of 0 in Cn, a rational number � > 0, and
a constant c1 > 0 such that the following holds: For all " > 0 suÆciently
small, there exists z 2 U with jjf(z)jj = ",

jh(z)j � c1"
�:

(2) Suppose in addition that 0 is an isolated zero of the system f = 0. Then
there is a neighborhood U of 0 2 Cn, a rational number � > 0, and a
constant c2 > 0 such that the following holds: For all " > 0 suÆciently
small, and all z 2 U with jjf(z)jj < ",

jh(z)j < c2"
� :

Proof. 1) Let U be a small enough neighborhood of 0 so that h and all the fi
converge in U . Now let � : � ! U be a nonconstant holomorphic map, with

�(0) = 0, where � � C is a small disk neighborhood of 0, and suppose that �(�)

is not contained in the union of the analytic subsets h = 0, fi = 0. Let t be a

coordinate on �, and consider the composite map t 7! w(t) : � ! Cr given by

f Æ �. We can write (up to a change of coordinates)

w(t) = (tb1u1(t); : : : ; t
brur(t))

for integers bi > 0, and holomorphic functions ui(t) with ui(0) 6= 0. Then it is clear

that there is a constant c > 0 and an integer b > 0 such that jjw(t)jj = jjf(�(t))jj =

") jtj � c"1=b for all suÆciently small ". Now h(�(t)) is a nonconstant holomorphic

function of t, equal therefore to tau(t) for a holomorphic function u(t) with u(0) 6= 0

and an integer a > 0. Therefore there is a constant c0 > 0 and an integer a > 0

such that jjh(�(t))jj � c0jtja for all suÆciently small t. Combining with the previous

estimate, we get jjf(�(t))jj = " ) jjh(�(t))jj � cac0"a=b, for all suÆciently small ",

which is what we wanted to prove.
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2) In case 0 is an isolated zero, h will be integrally dependent on the f , as we

have discussed. Write equation 3.2 in the form

hN +
X
i2I

�ih
i = ��0 �

X
j2J

�jh
j = X;

where I; J � f1; : : : ; N � 1g are the indices with i 2 I ) �i(0) 6= 0, j 2 J )
�j(0) = 0. Let a be the smallest index in I. Then we can write the above equation

as Y ha = X, where

Y = hN�a +
X
i2I�a

�ih
i�a + �a:

Since Y (0) = �a(0) 6= 0, Y is an invertible element of the ring Chhzii. Therefore,

we have an equation ha = X=Y in that ring. For j = 0 or j 2 J , we have

�j 2 mbj

f
, for an integer bj > 0. Therefore, there is a constant cj > 0, such that

jjf(z)jj < ") j�j(f)j < cj"
bj for all suÆciently small ". Then h being a continuous

function in a neighborhood of 0 and Y being a continuous function nonvanishing at

0, it is clear that there is a neighborhood U of 0, an integer b > 0 and a constant

c > 0 such that z 2 U and jjf(z)jj < " ) jX=Y j < c"b. We then obtain part 1 of

the lemma from the equation ha = X=Y , with the constant � = b=a. �

Corollary 3.6. Let f be a system of polynomials and suppose that a0 is an isolated
zero of this system. Let K be any compact neighborhood of a0 2 Cn. With the
notation of Proposition 2.1, let a 2 Z(f;Bw ; ") \ K. Then for each i = 1; : : : ; n

there is a constant c > 0 and a rational number � > 0 such that for all suÆciently
small ",

jzi(a)� zi(a0)j < c"� :

In other words, the projection of the " - pseudozero set of a0 onto the i th coordinate
axis is of size O("�).

Proof. There is a constant c1 > 0 so that jjw�1B(a)jj1 < c1 for all a in the compact

set K. Then Proposition 2.1 shows that for a 2 Z(f;Bw ; ") \K, jjf(a)jj1 < c1".

The corollary then follows from part 2 of the proposition, applied to the function

h = zi. �

In the previous proof, we obtained estimates for the size of jhj based on an equation

of integral dependence on the f . Of course, such an equation is not unique. In

any case the ideal in Chhfii[T ] of polynomials annihilating h is �nitely generated

because that ring is Noetherian. It seems to be a nontrivial problem to give optimal

estimates for h by this method. In general, the exponent � that appears in the

above corollary depends on the direction of projection. This is related to tangency

conditions of the de�ning equations with the direction of projection. This will be

seen in some examples to be discussed in section 3.4.

We �nish this section by including the following, which can be used to give an

alternate proof of Proposition 2.4.

Proposition 3.7. Let f1; : : : ; fn 2 Chhz1; : : : ; znii be convergent power - series
such that 0 is an isolated zero of the system f1 = 0; : : : ; fn = 0. Let g1; : : : ; gn 2
Chhz1; : : : ; znii be arbitrary elements. There is a neighborhood U of 0 in Cn such
that for all t suÆciently near 0, the zero - set

Zt = ff1 + tg1 = 0; : : : ; fn + tgn = 0g \ U
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is a �nite set of points, andX
z2Zt

mult (OZt;z) = mult (OZ0;0) = dimCChhz1; : : : ; znii= (f1; : : : ; fn) :

Proof. By assumption that we have an isolated zero at the origin, the dimension

of this algebra is �nite, according to theorem 3.3. Consider a small polydisk neigh-

borhood � of the origin in (t; z1; : : : ; zn) - space in which all of f1; : : : ; gn converge

and such that 0 is the only zero of the system t = 0; f1 = 0; : : : ; fn = 0 in �. Let

�1 be the projection of � onto the t - coordinate. Let Z � � be the analytic space

de�ned by the ideal (f1 + tg1; : : : ; fn + tgn), and let ' : Z ! �1 be the projection

onto the t - coordinate. For �xed t, let Zt � � be the analytic space de�ned by

the ideal (f1 + tg1; : : : ; fn + tgn). By our assumption, 0 2 Z is an isolated point

in the �ber '�1(0). Therefore by theorem 3.3, there is a neighborhood U of 0 in

(t; z1; : : : ; zn) - space such that ' : Z \U ! �1 is a �nite morphism. In particular,

it is a proper morphism, and by Grauert's theorem, '�OZ is a coherent analytic

sheaf in a neighborhood of 0 in �1. We will show that it is a 
at O�1
- module

in a neighborhood of 0, which implies that is locally free. This proves the claim

because the �ber of this vector bundle in t is

('�OZ)
t

 (O�1;t=m�1;t) =

M
z2Zt

OZt;z

which has a constant dimension for all small t, and

dimCOZt;z = mult(OZt;z) :

By coherence, it is suÆcient to verify this 
atness (or local - freeness) at t = 0.

This amounts to showing that

R = Chht; z1; : : : ; znii= (f1 + tg1; : : : ; fn + tgn)

is a 
at A = Chhtii - module. We will use the local criterion for 
atness [20,

Theorem 49, p. 145 - 147]. In Matsumura's notation, M = B = R, the ideal I is

the maximal ideal m of A, generated by t. Note that R is then idealwise separated

for I by example 1 on p. 145 of loc. cit. We need only check that

TorA1 (A=m; R) = 0:

Using the exact sequence 0 �! A
t�! A �! A=m �! 0 as a free resolu-

tion of A=m for the computation of Tor, we see that we must show that mul-

tiplication by t is injective on R. Since R=t has �nite C - dimension, the el-

ements (t; f1 + tg1; : : : ; fn + tgn) form a system of parameters in the local ring

Chht; z1; : : : ; znii. But that ring is regular, hence Cohen - Macaulay, so this system

of parameters is a regular sequence. In particular, t is not a zero - divisor in R, as

claimed. �

3.3. Visualization of projected pseudozeros. The description of Z(f;B; ")

given by Proposition 2.1 enables us to compute, plot and visualize pseudozeros

of multivariate polynomials. The pseudozeros of a multivariate polynomial system

is a set in a high dimensional space Cn, n � 2, which can only been seen from its

\shadows" on low dimensional spaces, for example, from its projections onto the

various coordinate axes. Since a multivariate system is generally solved through

reductions to univariate equations in practice, it is often desirable to visualize one
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dimensional coordinate projections for quantitative information about the numeri-

cal conditioning of the system.

For a given v 2 Cn, let Zj(f;B; "; v) denote the projections of Z(f;B; ") onto

the zj-space around v. It is necessary to rescale " by " := "jjf jj to be compatible

with standard numerical error analysis. Then

(3.3)

Zj(f;B; "jjf jj; v) = fz 2 Cn : zi = vi for i 6= j; and jjf(z)jj1 � "jjf jj�jjw�1B(z)jj1g:
One way of viewing Zj(f;B; "jjf jj; v) is to plot the values of the projection of

(3.4) ps(z) := log10

� jjf(z)jj1
jjf jj � jjw�1B(z)jj1

�
over a set of grid points around v in zj-space. The negative value of ps at a point

z = �̂ illustrates proportionally the number of signi�cant digits that might be lost

in the numerical zero �̂ when a stable zero-�nding algorithm is used for obtaining

�̂.

3.4. Examples. We examine the following systems:

(1) Two unit balls intersect at � = (2; 2):

f (1) =

�
f1 = (z1 � 1)2 + (z2 � 2)2 � 1

f2 = (z1 � 3)2 + (z2 � 2)2 � 1
:

(2) Three unit balls intersect at � = (2; 2; 2):

f (2) =

8<
:

f1 = (z1 � 1)2 + (z2 � 2)2 + (z3 � 2)2 � 1

f2 = (z1 � 3)2 + (z2 � 2)2 + (z3 � 2)2 � 1

f3 = (z1 � 2)2 + (z2 � 1)2 + (z3 � 2)2 � 1

:

(3) The polynomial taken from [21]:

f (3) =

8<
:

f1 = 1:6� 10�3(z21 + z22)� 1

f2 = 5:3� 10�4(z21 + z22 + z23) + 2:7� 10�2z1 � 1

f3 = �1:4� 10�4z1 + 10�4z2 + z3 � 3:4� 10�3
:

Figures 1, 2, and 3 show numerically computed Zj(f;B; "jjf jj; v) for these poly-

nomial systems under the Taylor bases with di�erent shifts s.

We can link these �gures to the theoretical analysis of section 3.2. Consider f (1).

To make the formulas a little nicer, shift the origin from the root � = (2; 2) to (0; 0).

The equations are then

f1 = (z1 + 1)2 + z22 � 1

f2 = (z1 � 1)2 + z22 � 1
:

From Proposition 2.1 if (z1; z2) 2 Z(f (1); B; "), where B is any basis of the poly-

nomials of degree � 2 in (z1; z2), there is a constant c such that jf1j � c",

jf2j � c" for all suÆciently small ". From the above equations it is easy to see

that f1 � f2 = (z1 + 1)2� (z1 � 1)2 = 4z1, so z1 = (f1� f2)=4. From this it follows

that there is a constant c1 so that if (z1; z2) 2 Z(f (1); B; "), then jz1j � c1". We will

symbolize this by z1 = O("). This is the size of the projection of the pseudozero

set of the root (0; 0) in the above system, or � = (2; 2) of the original system, onto

the z1 - axis. Putting the found equation for z1 back into the system f (1), we get

z22 + (f1 � f2)
2=16� (f1 + f2)=2 = 0;
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Figure 1. Projections of pseudozeros for f (1): two unit balls in-

tersect at � = (2; 2). Left column: s = (0; 0); Right column:

s = (1:98; 2:01).

which is an equation of integral dependence as guaranteed by the general theory

above. From this we see z2 = O("1=2). These estimates are in agreement with

what was found by computer experiments shown by Figure 1: during numerical

processing, the projection along z2-axis likely loses twice as many signi�cant digits

as the one along z1-axis (see ps-scale: -5.5 vs. -3.5). In Table 1 we see that the z1
- coordinate of the computed zero of f (1) = 0 coincides with the exact zero (2; 2)

up to machine accuracy " = O(10�16), whereas the z2 - coordinate only agrees up

to an accuracy "1=2 = O(10�8). This di�ering behavior of the two projections is

visible from the picture of the system f (1): two circles meeting tangentially at �

with a tangent line parallel to the z2 - axis. The pseudozero set can be visualized

approximately as the intersection of the tubular neighborhoods of the circles f1 = 0,

f2 = 0. It is clear from this picture that there is a qualitative di�erence between

the projections onto the �rst and second axis.
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Figure 2. Projections of pseudozeros for f (2): three unit balls

intersect at � = (2; 2; 2). Left column: s = (0; 0; 0); Right column:

s = (1:99; 2:01; 2:01).

A similar analysis of the system f (2) = 0 with the zero shifted to (0; 0; 0) gives

equations of integral dependence:

z1 � (f1 � f2)=4 = 0

z2 + (f1 + f2 � 2f3)=4 = 0

z23 � (f1 + f2)=2 + (f1 � f2)
2=16 + (f1 + f2 � 2f3)

2=16 = 0

:
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Figure 3. Projections of pseudozeros for f (3) around the zero

� � (24:7685;�3:39416; 0:00720701). Left column: s = (0; 0; 0);

Right column: s = (25; 0; 0).

This leads to the estimates for the projection of the pseudozero neighborhood of

the root � = (2; 2; 2) onto the coordinate axes: z1 = O("), z2 = O("), z3 = O("1=2),

in agreement with Figure 2 and Table 1.
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For arbitrary polynomial systems, it it impossible to derive optimal estimate

analytically as we did for f (1) and f (2) (proved by Abel in 1824). In this situation,

we can obtain local information on the size of pseudozero sets through numerical

computation and visualization. For example, Figure 3 shows that, for f (3) in the

neighborhood of v = (24:7685;�3:39419;0:00720701), if �̂ is a numerical approxi-

mation to a zero �, the coordinate projections of �̂ along z1, z2 and z3 will pro-

portionally lose 3, 4, and 2 (Left column) or 2, 3, and 1 (Right column) signi�cant

digits respectively.

4. Applications

Both analysis and visualization in the previous section reveal that the numerical

sensitivity of the polynomial zeros depends on

(1) Direction of projection.

(2) Polynomial basis.

Based on these results, we propose in this section algorithmic ideas that would

improve numerical conditioning for zeros of multivariate polynomial systems.

4.1. Direction of projection. In Figures 1 - 3, the projected ps values (see (3.4))

along di�erent zj-axis illustrate that the numerical sensitivity of polynomial zeros

also depends on the direction of projection. To verify this observation, we trans-

formed the multivariate polynomial systems discussed in the previous section into

univariate equations using multivariate resultant, then numerically solved the re-

sulting algebraic eigenvalue problems [19]. Table 1 shows the experimental results.

We use �̂j denote the computed j-th component of �. It is interesting to notice that

the absolute errors j�j � �̂j j listed in Table 1 are 100% consistent with the sizes of

the projected pseudozero sets shown in Figures 1 - 3.

Table 1. Numerical Results

Polynomial System Direction of Proj. j�j � �̂jj j�j � �̂j=j�jj
zj

f (1) = 0 j=1 0.0 0.0

� = (2; 2) j=2 3:2� 10�8 1:6� 10�8

f (2) = 0 j=1 4:4� 10�16 2:2� 10�16

� = (2; 2; 2) j=2 8:9� 10�16 4:4� 10�16

j=3 7:7� 10�8 3:8� 10�8

f (3) = 0 j=1 2:5� 10�14 1:0� 10�15

� = (24:7685;�3:39416; 0:00720701) j=2 3:8� 10�14 1:1� 10�14

j=3 4:3� 10�18 6:0� 10�16

The dependency of numerical sensitivity on the direction of projections suggests

that the numerical conditioning of polynomialzeros could be improved by projecting

the system along the direction that leads to less sensitive univariate polynomial

equations �rst. A numerical experiment was implemented on the polynomial system

f (1) = 0. The system was solved by two di�erent orderings:

(1): project the system onto z1-space and compute �̂1; then compute �̂2, a

numerical zero of f
(1)
1 (�̂1; z2) = 0 (or f

(1)
2 (�̂1; z2) = 0).
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(2): project the system onto z2-space and compute �̂2; then compute �̂1, a

numerical zero of f
(1)
1 (z1; �̂2) = 0 (or f

(1)
2 (z1; �̂2) = 0).

The numerical results are shown in Table 2.

Table 2. Numerical Results

Ordering j�1 � �̂1j j�2 � �̂2j
(1) 0.0 0.0

(2) 4:4� 10�16 3:2� 10�8

4.2. Polynomial basis. For univariate polynomials, their dependency of numer-

ical conditioning on the basis has been investigated using the condition numbers

[9, 12] and polynomial pseudozeros [33]. The analytical and experimental results

from the previous sections suggest that the numerical conditioning of multivariate

polynomials is also basis-dependent. Since numerical zero-�nding procedure for

polynomials represented by the power basis can be adapted to the Taylor basis for-

mula through variable exchange, we will focus on Taylor basis B(s)(z) := f(z�s)�g
in this section.

Let f(z) be represented in the Taylor bases B(s)(z) and f(�) = 0. Figures 1 - 3

show that as the shift s moves closer to �, the size of the connected component of

Z(f;B(s); �) that contains � decreases, indicating that the zero � is becoming less

numerically sensitive to the coeÆcient perturbation. In [33], for univariate poly-

nomial equations, this observation was analyzed, and an algorithm that combines

symbolic formulation and numeric computation was proposed and implemented.

The algorithm iteratively improves the accuracy of numerical zeros through a se-

quence of Taylor bases. Extending the analysis and the computational technique

to general multivariate polynomial systems is currently under our investigation. In

fact, the computational technique that uses change of Taylor basis has been implic-

itly used in practice to a class of special multivariate polynomial systems, linear
system of equations:

(4.1) Az = b;

where A is an n� n nonsingular matrix with complex coeÆcients and b is a vector

in Cn. The solution to (4.1) is the zero for the residual polynomial

(4.2) r(z) := b� Az; z 2 Cn:

When (4.1) is ill-conditioned, e.g., the condition number ofA, cond(A) := jjA�1jjjjAjj,
is large, a computed solution to (4.1), ẑ, is expected to lose at least log10 cond(A)

digits in accuracy [30, p. 120]. In this situation, an established algorithm, called

Iterative Re�nement [14], can be used to improve the computed solution ẑ.

Algorithm: Iterative Refinement

Input:
A := nonsingular matrix in Cn�n

b := vector in Cn

x(1) := an approximation to the solution of Az = b.
Output:
x(k) := a new approximation to the solution of Az = b.



PSEUDOZEROS OF MULTIVARIATE POLYNOMIALS 25

For k=1,2, � � �
(1) Symbolically evaluate or numerically compute with high-precision r(x(k)) =

b� Ax(k);
(2) Numerically solve Ad = r(x(k)) by a stable method;

(3) Update x(k+1) = x(k) + d;

Until jjdjj< tol or k = kmax.

The convergence of the algorithm has been proven through roundo� error anal-

ysis (e.g., [14, 32]). Here, using the concept of pseudozeros for multivariate poly-

nomials developed in previous sections, we give a new proof which provides further

algorithmic insight for the Iterative Re�nement Algorithm: the essence of the al-

gorithm is to symbolically reformulate the residual polynomial (4.2) by new Taylor

basis B(k+1)(z) = [1; z � x(k+1)] iteratively (see Step 1 of the algorithm).

For the proof, we assume that we have an explicit \solver" bA for which we have

an estimate of the form

jjA� bAjj = maxi;jjaij � baijj < �:

For example, we may have bA = LU , as in [32, p. 107�]. We assume that bA is also

invertible, which will be the case for suÆciently small �. Then we de�ne x(1) via

x(1) = bA�1b
and inductively

x(k+1) = x(k) + bA�1r(k);
where r(k) = r(x(k)) for the residual polynomial. In what follows, we assume (as in

[32, p. 121]) that there are no further rounding errors in determining the sequence

x(k). A more precise analysis can be given that includes these roundo� errors.

Theorem 4.1. Under the above hypotheses, if � is small enough, there is a constant
c > 0 such that

jjx� x(k+1)jj1 < c�jjx� x(k)jj1;
where x is the true solution to Ax = b. The constant c and the conditions on � are
explicitly computable from the matrix A.

Proof. Let B(k)(z) be the basis of the polynomials of degree � 1 in the variables

z given by [1; z � x(k)]. We consider a system of weights w = [0; 1; : : :; 1], that is,

assigning 0 to the constant term and 1 to every linear term. Since we are assigning

the weight 0 to the constant term, we are going to consider deformations of the

system

r(z) = b� Az = r(k) �A(z � x(k))

that leave the constant term r(k) unchanged (see the discussion following Proposi-

tion 2.1). De�ne br(k)(z) = r(k) � bA(z � x(k)):

We have jjr�br(k)jjBw
= jjA� bAjj < �. Note that x(k+1) is a solution to br(k)(z) = 0.

Thus,

x(k+1) 2 Z(r; B(k)
w ; �):

From equation (2.2) following Proposition 2.1 we get

jjr(k+1)jj1 � �jjw�1B(k)(x(k+1))jj1 = �jjx(k+1) � x(k)jj1 � n�jjx(k+1)� x(k)jj1:
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We can estimate the left-hand side as follows:

jjr(k+1)jj1 = jjr(x)� r(x(k+1))jj1 = jjA(x� x(k+1))jj1
� 1p

n
jjA(x� x(k+1))jj2

� �infp
n
jjx� x(k+1)jj2

� �infp
n
jjx� x(k+1)jj1;

where �inf is the smallest singular value of the matrix A. We get

�infp
n
jjx� x(k+1)jj1 � n�jjx(k+1) � x(k)jj1

� n�
�
jjx� x(k+1)jj1 + jjx� x(k)jj1

�
;

or �
�infp
n
� n�

�
jjx� x(k+1)jj1 � n�jjx� x(k)jj1:

Assuming that �inf � n3=2� > 0, we obtain the proposition by taking any constant

c � n3=2�

�inf � n3=2�
:

Convergence is guaranteed by this proposition provided that c� < 1. �

In applications, one often has an expression for � in the form f(n)cond(A)�,

where f(n) is some simple explicit function, and � is the unit roundo� (or machine

precision). Thus we get the usual estimates using the pseudozero of multivariate

polynomial.

5. Conclusions

Pseudozero sets o�er a potentially useful tool for considering computational

problems that arise in solving polynomial systems. Results well-known in the

one-dimensional case have non-trivial generalizations to higher dimension. Several

powerful mathematical theories on semialgebraic sets and local algebraic geometry

o�er substantial insight. Numerical experiments demonstrate the practical value

of the concept. Algorithmic ideas for solving multivariate polynomial systems that

are based on the notion of pseudozero are proposed.
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