[image: image1.png]SAMS Teach \\/OMF'SQ_IG" C++ 'n 24 Hours

l200 Hour 13

The Copy Constructor ‘1

In addition to providing a default constructor and destructor, the compiler provides a :
default copy constructor. The copy constructor is called every time a copy of an object is
made. ‘

When you pass an object by value, either into a function or as a function’s return value, a
temporary copy of that object is made. If the object is a user-defined object, the class’s

copy constructor is called. :

All copy constructors take one parameter: a reference to an object of the same class. It is

a good idea to make it a constant reference, because the constructor will not have to alter - 3
the object passed in. For example: "

CAT(const CAT & theCat);

Here the CAT constructor takes a constant reference to an existing CAT object. The goal of
the copy constructor is to make a copy of theCat.

The default copy constructor simply copies each member variable from the object passed-
as a parameter to the member variables of the new object. This is called a member-wise -
(or shallow) copy, and although this is fine for most member variables, it breaks pretty ":;
quickly for member variables that are pointers to objects on the free store.

A shallow or member-wise copy copies the exact values of one object’s member ;;

New Term : : : : . . o
' variables into another object. Pointers in both objects end up pointing to the
same memory. A deep copy, on the other hand, copies the values allocated on the heap to*
e teayspa— +
newly allocated memory. i
If the CAT class includes a member variable, itsAge, that points to an integer on the free g&
store, the default copy constructor will copy the passed-in CAT’s itsAge member variable?
to the new CAT’s itsAge member variable. The two objects will then point to the same

memory, as illustrated in Figure 13.1.

This will lead to a disaster when either CAT goes out of scope. When the object goes out
of scope, the destructor is called, and it will attempt to clean up the allocated memOl’Y-.,&(

In this case, if the original CAT goes out of scope, its destructor will free the allocated
memory. The copy will still be pointing to that memory, however, and if it tries to acC<
that memory it will crash your program. If you’re lucky. Figure 13.2 illustrates this :
problem.

[image: image2.png]Advanced Functions 201 ‘
FiGURE 13.1 Free Store
Using the default 5 ?
copy constructor. old CAT Now AT
iy et [itsAge
FIGURE 13.2 \ /
Creating a stray Free Store
pointer. Jemm X
! New CAT
[isnge \ 5 L itsAge

The solution to this is to define your own copy constructor and to allocate memory as
required in the copy. Once the memory is allocated, the old values can be copied into the
new memory. This is called a deep copy. Listing 13.3 illustrates how to do this.

LsTING 13.3 Copy ConsTRUCTORS

1: // Listing 13.3
2: // Copy.constructors

3:

41 #include <iostream.h>

5:

6: class CAT

7:

8: public: A

9: CAT() ; // default constructor
10: CAT (const CAT &); 11 copy constructor
1: ~CAT(); /1 destructor

12: int GetAge() const { return *itsAge; }

13: int GetWeight() const { return *itsWeight; }
:;= void SetAge(int age) { *itsAge = age; }

18: private:

17: int *itsAge;

18: int *itsWeight;

continues

[image: image3.png]| 202 Hour 13

LISTING 13.3 CONTINUED

19: };
20:
21: CAT::CAT
22: {
23: itsAge = new int;
24: itsWeight = new int;
25: *itsAge = 5;
* 26: *itsWeight = 9;
27: }
28:
29: CAT::CAT(const CAT & rhs)
30: sherion
31: itsAge = new int;
32: itsWeight = new int;
33: *itsAge = *rhs.itsAge;
H *itsWeight = *rhs.itsWeight;
35: }
36:
37: CAT::~CAT(
88 it 2k
39: delete itsAge;
40: itsAge = 0;
41: delete itsWeight;
42: itsWeight = 0;
43: }
: int main()
{
CAT frisky;

cout << "frisky's age: " << frisky.GetAge() << endl;
cout << "Setting frisky to 6...\n";
frisky.SetAge(6);

cout << "Creating boots from frisky\n";

CAT boots(frisky);

cout << "frisky's age: " << frisky.GetAge() << endl;
cout << "boots' age: " << boots.GetAge() << endl;
cout << "setting frisky to 7...\n";
frisky.SetAge(7);

cout << "frisky's age: " << frisky.GetAge() << endl;
cout << "boot's age: " << boots.GetAge() << endl;
return 0;

[image: image4.png]Advanced Functions 203 |

frisky's age: 5

Setting frisky to 6...
Creating boots from frisky
frisky's age: 6
boots' age: 6
setting frisky to 7...
frisky's age: 7
boots' age: 6

On lines 6-19, the CAT class is declared. Note that on line 9 a default constructor

ANALYSIS is declared and on line 10 a copy constructor is declared.

On lines 17 and 18, two member variables are declared, each as a pointer to an integer.
Typically, there’d be little reason for a class to store int member variables as pointers,
but this was done to illustrate how to manage member variables on the free store.

The default constructor, on lines 21-27, allocates room on the free store for two int vari-
ables and then assigns values to them.

The copy constructor begins on line 29. Note that the parameter is rhs. It is common to
refer to the parameter to a copy constructor as rhs, which stands for right-hand side.
When you look at the assignments in lines 33 and 34, you’ll see that the object passed in
as a parameter is on the right-hand side of the equal sign. Here’s how it works:

* On lines 31 and 32, memory is allocated on the free store. Then, on lines 33 and
34, the value at the new memory location is assigned the values from the existing
CAT.

* The parameter rhs is a CAT that is passed into the copy constructor as a constant
reference. The member function rhs.GetAge () returns the value stored in the
memory pointed to by rhs’s member variable itsAge. As a CAT object, rhs has all ‘,
the member variables of any other CAT.

* When the copy constructor is called to create a new CAT, an existing CAT is passed
in as a parameter.

Figure 13.3 diagrams what is happening here. The values pointed to by the existing CAT
are copied to the memory allocated for the new CAT.

On line 47, a CAT is created, called frisky. frisky’s age is printed, and then his age is
Set to 6 on line 50. On line 52, a new CAT is created, boots, using the copy constructor
and passing in frisky. Had frisky been passed as a parameter to a function, this same
call to the copy constructor would have been made by the compiler.

On lines 53 and 54, the ages of both CATs are printed. Sure enough, boots has frisky’s
age, 6, not the default age of 5. On line 56, frisky’s age is set to 7, and then the ages are
printed again. This time frisky’s age is 7 but boots’ age is still 6, demonstrating that

8 they are stored in separate areas of memory.

e b

[image: image5.png]| 204 Hour 13

FIGURE 13.3 Free Store
An illustration of a 5
deep copy.
5
old CAT New CAT
itsAge [itsAge

When the CAT fall out of scope, their destructors are automatically invoked. The imple-
mentation of the CAT destructor is shown on lines 37-43. delete is called on both point-
ers, itsAge and itsWeight, returning the allocated memory to the free store. Also, for
safety, the pointers are reassigned to NULL.

Summary

In this hour you learned how to overload member functions of your classes. You also
learned how to supply default values to functions, how to decide when to use default val- _
ues, and when to overload.

Overloading class constructors enables you to create flexible classes that can be created
from other objects. The initialization of objects happens at the initialization stage of con-
struction, which is more efficient than assigning values in the body of the constructor.

The copy constructor is supplied by the compiler if you don’t create your own, but it
does a member-wise copy of the class. In classes in which member data includes pointe!
to the free store, this method must be overridden so that you allocate memory for the (af;
get object.

Q&A

Q Why would you ever use default values when you can overload a function?

A Itis easier to maintain one function than two, and often easier to understand 8
function with default parameters than to study the bodies of two functions.
Furthermore, updating one of the functions and neglecting to update the second
common source of bugs. 1

