[image: image1.png]n with the pre-
m Mammal,

nt generations? ¥
s Dog inherit

| Hour 1

Polymorphism and
Derived Classes

In the previous hour, you learned about inheritance and how derived classes
can create an inheritance hierarchy. You also saw how methods in the base
class can be overridden in the derived class. In this hour, you will learn how
virtual methods enable Yyou to use your base classes polymorphically. The
following topics are covered: y

* What virtual methods are
* How to use virtual destructors and copy constructors
* The costs and dangers in using virtual methods

Virtual Methods

The previous chapter emphasized the fact that a Dog object is a Mammal

object. So far that has meant only that the Dog object has inherited the attrib-
Utes (data) and ca
rel

{ pabilities (methods) of its base class. In C++, the is-a
ationship runs deeper than that, however.

[image: image2.png]Hour 17

C++ extends its polymorphism to allow pointers to base classes to be assigned to derived
class objects. Therefore, you can write i

Mammal* pMammal = new Dog;

This creates a new Dog object on the heap and retumns a pointer to that object, which it
assigns to a pointer to Mammal. This is fine, because a Dog is a Mammal.

(This is the essence of polymorphism. You could, for example, create many
@ different types of windows—including dialog boxes, scrollable windows, and
Jist boxes—and give them each a virtual draw() method. By creating a
pointer to window and assigning dialog boxes and other derived types to

that pointer, you can call draw() without regard to the actual runtime type
of the object pointed to. The correct draw() function will be called.

You can then use this pointer to invoke anymzﬂmdonmuu.Whatyouwwldlikeis ;
for those methods that are overridden in Dog to call the correct function, Virtual member
functions let you do that. Listing 17.1 illustrates how this works, and what happens Wil!|

non-virtual methods.

LisTING 17.1 UsING VIRTUAL METHODS

1 //Listing 17.1 Using virtual methods

3: #include <iostream.h>

4:

5: class Mammal

6: {

7 public:

8: Mammal():itsAge(1) { cout << *Mammal constructor...\n'

9: ~Mammal() { cout << “Mammal destructor...\n"; }

10: void Move() const { cout << *Mammal mo! p\n"; }
—> 11 virtual void Speak() const { cout << "Mammal speak!\n®; }

12: protected:

13: int itsAge;

18: b
16:
17: class Dog : public Mammal
18: {
19: public:
H Dog() { cout << "Dog constructor...\n"; }
21: -Dog() { cout << "Dog destructor...\n"; }
22: void WagTail()const { cout << *Wagging Tail...\n"; }

23: void Speak()const { cout << *woof!\n"; }

[image: image3.png]Polymorphism and Derived Classes 269|
B
igned to derived 24: void Move()const { cout << “Dog moves 5 steps...\n"; }
25: 35
26:
27: int main()
28:
i ich i 29:;
fect, which it 30: Mammal *pDog = new Dog;
& 31: PpDog->Move() ;
,§ 32: pDog->Speak() ;
——“—‘ " 33:
create many 34: return 0;
2 windows, and 2 i
reating a
ed types to Mammal constructor...
lvrunzme type Dog Constructor...
called. 4 Mammal move one step

ou would like is

Woof !

On line 11, Mammal is provided a virtual method—speak(). The designer of this
class thereby signals that she expects this class to eventually be another class’s
base type. The derived class will probably want to override this function.

On line 30, a pointer to Mammal is created, pDog, but it is assigned the address of a new
Dog object. Because a Dog is a Mammal, this is a legal assignment. The pointer is then used
to call the Move() function. Because the compiler knows pDog only to be a Mammal, it
looks to the Mammal object to find the Move () method.

On line 32, the pointer then calls the Speak() method. Because Speak () is virtual, the
Speak() method overridden in Dog is invoked.

This is almost magical—as far as the calling function knew, it had a Manmal pointer, but
here a method on Dog was called. In fact, if you have an array of pointers to Mammal, each

of which points to a subclass of Mammal, you can call each in turn and the correct func-
tion is called. Listing 17.2 illustrates this idea.

Usting 17.2 MuTipLE VIRTUAL MeMBER FUNCTIONS CALLED IN TURN

//Listing 17.2 Multiple virtual member functions called in turn
#include <iostream.h>

class Mammal
{

Public:
Mammal():itsAge(1) {

eNonson -

continues

[image: image4.png]c:
void s;uk()ccnst { cou

1270 Hour 17 ‘
LISTING 17.2 CONTINUED _ . , ; z
9: ~Mammal() { } ‘
10: virtual void Speak(const { cout << “Mammal speak!\n"; 3
11 protected:
12: int itsAge;
13: 'y
14:
186: class Dog public Mammal
16: {
2 publi =
t << "Woof1\n"; }

h

class Cat : public Mammal

{
public:

void spnk()eonn { cout << *Meow!\n"; }
b

class Horse : public Mammal

swinnie!\n"; }

{
public:

void Spnk()conlt { cout <<
b

class Pig * public Mammal

oinki\n; }

{
public:

void Spuk()conlt { cout <<
b

_~int main()

{
Mammal* theArray[5];
Mammal* ptr;
int choice, i}
for (1= 0; i<5; i+
{
cout << *(1)dog (2)cat (3)horse (4)pig:
cin >> choice;
switch (choice)

{

case 1: ptr = new Dog;

break;
case 2: ptr = new cat;

break; P
case 3: ptr = new Horse;

[image: image5.png]Polymorphism and Derived Classes 271)

default: ptr = new Mammal;

'y}

PR

break;
62: } e o
63: theArray[i] = ptri
64: }
65: for (i=0;i<5;i++)
66: theArray[i] ->Speak();
67: return 0;
68: }

3 (1)dog (2)cat (3)horse (4)pig: 1

‘l (1)dog (2)cat (3)horse (4)pig: 2
e (1)dog (2)cat (3)horse (4)pig: 3

(1)dog (2)cat (3)horse (4)pig: 4

(1)dog (2)cat (3)horse (4)pig: &

Woof |

Meow!

Winnie!

0ink!

Jﬁ Mammal Speak!

ANALYSIS This stripped-down program, which provides only the barest functionality to
‘* each class, illustrates virtual member functions in their purest form. Four classes
are declared, Dog, Cat, Horse, and Pig, all derived from Mammal.

On line 10, Mammal’s Speak () function is declared to be virtual. On lines 18, 25, 32, and
38, the four derived classes override the implementation of Speak ().

The user is prompted to pick which objects to create, and the pointers are added to the
array in lines 46-63.

Note that at compile time it is impossible to know which objects will be cre-
ated, and therefore, which Speak() methods will be invoked. The pointer
ptr Is bound to its object at runtime. This is called dynamic binding, or
runtime binding, as opposed to static binding, or compile-time binding.

&

How Virtual Member Functions Work

When a derived object, such as a Dog object, is created, first the constructor for the base
class is called and then the constructor for the derived class is called. Figure 17.1 shows
}‘tht the Dog object looks like after it is created. Note that the Mammal part of the object
1s contiguous in memory with the Dog part.

[image: image6.png]e

|272

Hour 17

FiGuRe 17.1

The Dog object after Mammal Part Mammal
it is created.

FiGURE 17.2 VPTR
The v-table of a 2 ‘
‘Move

Mammal.

‘When a virtual function is created in an object, the object must keep track of that func-
tion. Many compilers build a virtual function table, called a v-table. One of these is kept
for each type, and each object of that type keeps a virtual table pointer (called a vptr or
v-pointer), which points to that table.

Although implementations vary, all compilers must accomplish the same thing, so you
won’t be too wrong with this description.

Each object’s vptr points to the v-table that, in turn, has a pointer to each of the virtual
member functions. When the Mammal part of the Dog is created, the vptr is initialized to
point to the correct part of the v-table, as shown in Figure 17.2.

Mammal & speak

When the Dog constructor is called and the Dog part of this object is added, the vptr is
adjusted to point to the virtual function overrides (if any) in the Dog object, as illustrated
in Figure 17.3.

When a pointer to a Mammal is used, the vptr continues to point to the correct function,
depending on the real type of the object. Thus, when Speak () is invoked, the correct
function is invoked.

b

A W s

B ow B 8 s

,&i

[image: image7.png]f that func-
these is kept
:d a vptror
ing, so you .
f the virtual

‘nitialized to

L the vptris
, as illustrated

rect function,
the correct

FiGure 17.3 TR
The v-table of a Dog. 2
Mammal & Mammal: Move ()
& Dog: Speak ()
Dog

Polymorphism and Derived Classes

You Can’t Get There from Here

1f the Dog object had a method, WagTail(), that was not in the Mammal, you could not use
the pointer to Mammal to access that method (unless you cast it to be a pointer to Dog).
Because WagTail() is not a virtual function, and because it is not in a Mammal object, you
can’t get there without either a Dog object or a Dog pointer.

Although you can transform the Mammal pointer into a Dog pointer, there are usually far
better and safer ways to call the WagTail() method. C++ frowns on explicit casts
because they are error-prone. This subject is addressed in depth when multiple-
inheritance is covered in Hour 18. “Advanced Polymorphism.” and again when templates
are covered in Hour 24, “Exceptions and Error Handling.”

Slicing
Note that the virtual function magic only operates on pointers and references. Passing an

object by value will not enable the virtual member functions to be invoked. Listing 17.3
illustrates this problem.

LisTING 17.3 DATA SLICING WHEN PASSING BY VALUE

1: //Listing 17.3 Data slicing with passing by value
2:

3: #include <iostream.h:

4:

5: class Mammal

[H {

7 public:

8: Mammal():itsAge(1) { 1}

9: ~Mammal() { }

10: virtual void Speak() const { cout << "Mammal speaki\n";
11 protected:

12: int itsAge;

13: iy

“onting

