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1 Introduction

The proposed project concerns on the transient simulation of an hydraulic network. That
is, the simulation of fluid transients within a closed conduit.

The analysis of hydraulic networks tries to determine maximum pressures and flows along
a network for a given disturbance after some disturbance has occurred. This disturbance
can be the closure of a valve, the change of water/oil demand, the failure of a pump, etc...

Figure 1: Burst pen stock of Hydroelectric power plant,
Japan. 1960. The burst, due to excessive pressure,
caused the death of 3 workers and 0.5 million dollars in
damage.

This problem has had much in-
terest over time and historically
has been given the name of Water
hammer. In a simple reservoir-
pipe-valve system (see Fig. 2)
which is operating in steady state,
if there is a sudden closure of the
valve, a pressure wave will appear
and will propagate along the con-
duit. Figure 2 shows the periodic
nature of the pressure wave.

Depending on the material and
characteristics of the pipes, a sud-
den surge in pressure can lead to
the burst of a pipe or the malop-
eration of a pump, etc... Figure 1
shows the result of a pipe burst due
to water hammer in an hydraulic
power plant.

The physical model of the hy-
draulic network from [1, Chap. 3]
can be described with the following
PDEs for each pipe:

BQ

Bt
` gA

BH

Bx
`RQ |Q| “ 0 (1)

a2BQ

Bx
` gA

BH

Bt
“ 0 (2)

which are the momentum and continuity equations for the flow Qpx, tq and pressure Hpx, tq,
with R “ f{p2DAq.

Then, the whole set of pipes in the network will be related by the continuity of flows at
each node. This set of PDEs related by linear conditions is known as a Differential Algebraic
system.

2



Figure 2: A diagram of the first period of a water hammer.
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2 Numerical Computation of Hydraulic Transients

2.1 Method of characteristics

For this type of problem, we will use the characteristic equations method. This method
consists on using an unknown multiplier λ and computing (1)` λ(2),

ˆ

BQ

Bt
` λa2BQ

Bx

˙

` λgA

ˆ

BH

Bt
`

1

λ

BH

Bx

˙

`RQ |Q| “ 0 (3)

Equation (3) is true for all λ although we will only be interested in some particular values
of it.

Parallel to that, the total derivatives of the solutions are

dQ

dt
“
BQ

Bt
`
BQ

Bx

dx

dt
dH

dt
“
BH

Bt
`
BH

Bx

dx

dt

In order to plug the total derivatives in equation (3), we only need to impose 1
λ
“ dx

dt
“ λa2.

Thus, we need λ “ ˘ 1
a

and we can rewrite (3) as,

dQ

dt
`
gA

a

dH

dt
`RQ |Q| “ 0,

dx

dt
“ a (4)

dQ

dt
´
gA

a

dH

dt
`RQ |Q| “ 0,

dx

dt
“ ´a (5)

For a graphical explanation of these assumptions, we use Figure 3,

Figure 3: Method of characteristics assumptions scheme.
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Slopes AP and BP are paths that a disturbance traverses for ∆t in the x´ t plane. This
is what we will use to integrate over time as follows. If we assume that Q and H are known
at A and B, we can find the value at P integrating equations (4) and (5),

ż P

A

dQ`
gA

a

ż P

A

dH `R

ż P

A

Q |Q| dt “ 0 (6)

ż P

B

dQ´
gA

a

ż P

B

dH `R

ż P

B

Q |Q| dt “ 0 (7)

The first two terms are easy to evaluate. The third term, the friction term, is not
straightforward as we do not know explicitly how Q varies with t. An usual action is to
make a first order approximation of the integral:

R

ż

Q |Q| dt » RQA |QA| ptP ´ tAq “ RQA |QA|∆t (8)

The problem with this approximation is that it may be unstable for higher friction terms -
something characteristic of oil pipelines, for example - and thus a higher order approximation
must be used. A common one is the trapezoidal rule:

R

ż

Q |Q| dt » 0.5RpQA |QA| `QP |QP |q∆t (9)

In this case, since QP is unknown, the resulting equations are a set of nonlinear implicit
equations and an iterative solution will be used to find the solution in

QP ´QA `
gA

a
pHP ´HAq `

1

2
R pQA |QA| `QP |QP |q∆t “ 0 (10)

QP ´QB ´
gA

a
pHP ´HBq `

1

2
R pQB |QB| `QP |QP |q∆t “ 0 (11)

The characteristic equations have a physical meaning: the state of point P in time
t “ t0 ` ∆t is determined by the state on its neighboring points, A and B, at t “ t0.
Furthermore, the the distance at which this points are, is explicitly determined by the
integration time and the speed of a mechanical wave in the water a. In other words, if there
is a disturbance in point A at t “ t0, this disturbance will reach point P in t “ ∆x

a
“ ∆t.

An additional algebraic equation is needed to establish continuity along the network, and
this is the one of flow continuity:

ÿ

pPP in
n

Qin
p ´

ÿ

pPPout
n

Qout
p `

ÿ

iPSn

si ´
ÿ

jPDn

dj “ 0 (12)

with supplies si and demands dj at all nodes p P P . This model leads to a Differential
Algebraic system (DAE).
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2.2 Initial conditions and boundary conditions

The initial condition is supposed to be the steady state of our network, i.e. by assuming the
derivative with respect to time to be null in equations (1) and (2). Our base problem is of
the form shown in Figure 4

Figure 4: A reservoir and a pipe

Then, we impose upstream boundary conditions for the flow and downstream for the
pressure obtaining the initial condition as

Qpx, 0q “ Qout (13)

Hppx, 0q “ H in
´

R

gA
Qout

ˇ

ˇQout
ˇ

ˇx (14)

For the boundary conditions, following with the same upstream and downstream defi-
nitions discussed above, the flow will be modeled as the closure of a valve in time and the
pressure will remain constant in the reservoir.

The factor τ representing the opening of the valve, has the following behavior

τptq “

#

3{2
a

1´ t{2 t ă 2

0 t ě 2

With it, our upstream boundary conditions are

QpL, tq “ 0.5

ˆ

´Cvptq `
b

Cvptq2 ` 4CvptqCp

˙

HpL, tq “
Cp ´QpL, tq

Ca

and under the assumption of negligible entrance losses as well as velocity head, the down-
stream boundary conditions are

Qp0, tq “ Cn ` CaH
in
p

Hp0, tq “ H in
p
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where

• Ca “ gA
a

.

• Cp “ QA `
gA
a
HA ´RQA |QA|∆t, where A is the point at t´∆t in Figure 3.

• Cn “ QB ´
gA
a
HB ´RQB |QB|∆t, where B is the point at t´∆t in Figure 3.

• Cvptq “
pτQ2

P

CaHP
, where P is the point at t in Figure 3.

Other boundary conditions for dead ends, branchings, junctions, pumps and turbines can
be found in [1, Chap. 3.3].

2.3 Convergence of the Finite Differences Method

As shown in [2], to have a convergent multi-step method it is necessary and sufficient to be
stable and consistent. It is clear that the characteristic equations is a consistent method
because the truncation error vanishes, for ∆x and ∆t converging to 0. Nonetheless, the
stability is more delicate and requires from a condition called the Courant-Friedrichs-Lewy
stability condition.

2.3.1 The Courant-Friedrichs-Lewy stability condition and discretization

In order to have a stable computation for the finite-difference scheme, we have to take into
account the Courant-Friedrichs-Lewy condition in our discretization scheme. In this case,
for the unidimensional flow in pipes:

CN “ a
∆t

∆x
ď 1 (15)

where a is related to the speed of sound in our liquid. However, in our particular case we
have ∆x

∆t
“ a. Thus, CN “ 1.

This condition leads to 2 new difficulties.

1. It is hard to make CN “ 1 since nlength is an integer,

CN “ a∆t
nlength

L

However, we can smartly choose ∆t such that CN « 1 for all pipes.

2. Since the time step must be the same for all pipes, the discretization in space needs
to be the same too. Thus, if we have a network with two pipes, one much longer than
the other one, the long one will have too many discretization points.
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2.4 Solution of the nonlinear equations

The characteristic equations derived in section 2.1 result in a set of nonlinear equations that
may be explicit or implicit depending on the approximation of the friction factor.

The solution of these equations is computed using the Newton-Rhapson algorithm im-
plemented in the PETSc library as ’SNES’.

The mathematical characterization of this problem is as follows:

For f : Rn Ñ Rm find x˚ P Rn such that fpx˚q “ 0

This iterative method relies on an initial guess x0 for the value of x˚, and next elements
in the sequence are obtained employing the slope of fpxq. The univariate case can be derived
using the first order Taylor approximation:

• Approximate fpxk`1q

fpxk`1
q « fpxkq ` f 1pxkqpxk`1

´ xkq

• Look for fpxk`1q “ 0
f 1pxkqpxk`1

´ xkq “ ´fpxkq

Analogously, for the multivariate case:

Jpxkqpxk`1
´ xkq “ ´fpxkq (16)

where Jpxkq is the Jacobian at xk. We write ∆xk “ xk`1´xk so that our next element xk`1

will come from the previous equation as:

xk`1
“ ∆xk ` xk “ ´J´1

pxkqfpxkq (17)

Remember that we look for fpx˚q “ 0 but an exact solution is usually not possible to
reach. Because of this we set a convergence tolerance ε and when we find }fpxkq} ď ε we
will say that xk`1 « x˚.

2.5 Software architecture

The previous numerical procedures have been coded in C using the PETSc library. Given that
the purpose of the project was to build a simulator capable of dealing with large networks,
special attention has been given to the software architecture and in particular the data
structures that allow to simulate a complex network with various boundary conditions in a
systematic way.

Althought our systems are networks (consisting in edges and nodes) they are not lumped
networks. In fact, each edge will have a different spatial discretization depending on its a
term. One of the most difficult planning issues has been the one of relating each pipe Q
and H variables - each pipe having a different spatial discretization - to the global X and
F vectors. This issue has been solved by doing some ’bookkeeping’ and storing the global
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position in the pipe data structure. An UML diagram describing the architecture of the data
structures is shown in Fig. 6. Fig. 2.5 shows the sequence diagram of the overall program.

Figure 5: Sequence diagram of program.

Figure 6: UML diagram of program
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3 Results and Analysis

In this section we will run a series of simulations to test:

• The validity of our results.

• The scalability of our program.

3.1 A textbook example

Classical reference [3] is widely used in transient hydraulics literature. The numerical meth-
ods employed and the plethora of details concerning boundary conditions, friction approxi-
mations, etc... make this book very relevant still after more than 30 years of its publications.

To test the validity and accuracy of our project we have implemented one of the test
cases found in this book, which we show in Figure 4. In this test case, a pipe is connected
to a reservoir that offers a constant pressure in A. At the end of the pipe, a valve is fully
open. The valve starts to close following the equation:

τ “

ˆ

1´
t

tc

˙Em

(18)

where t is the current time step and tc is the closure time (i.e when the valve will be fully
closed).
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Figure 7: Pressure wave created by closure of valve
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Figure 8: Profile view of pressure and flow. Each color is a different point along the pipe.

When the valve is closed, the pressure will suddenly surge next to the valve. This is very
easy to picture, if we have a garden hose and we pinch the exit, the water will flow with
higher pressure.

In the water-hammer problem, the closure of the valve will produce a surge in the pressure
at the end of the pipe. A pressure wave - a show wave - will propagate from the point B
(valve) to the point A (reservoir). When the wave reaches the reservoir - which is a boundary
condition that sets the pressure constant at that point - reflect and return to the opposite
end.

This behavior can be understood schematically by looking at Figure 2. The actual
simulation of this phenomena can be seen in Figure 7 where the pressure disturbance is
clearly seen as a wave in the surface plot.

The oscillating nature of the pressure wave can be easily seen in Figure 8. As we discussed
before, the period of the pressure wave is proportional to the pipe length and the speed of
the sound in the fluid.

A quick calculation of the wave period:

T “
4L

a
“

4 ¨ 600 m

1200 m{s
“ 2 s (19)

Which agrees with our simulations.
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3.1.1 Increase of friction

One of the main reasons for using a nonlinear solver in our program is the computation of
the friction term. As discussed previously, the characteristic equations have an explicit form
if the approximation of the friction term is linear.

This a approximation, as discussed before, is unstable for higher friction values and a
trapezoidal approximation is used, which results in the characteristic equations being in an
implicit form.
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Figure 9: Textbook problem with high friction coefficient.

The importance of the friction term can be seen in Figure 9. A higher friction term in
the pipe will lead to more energy dissipation in the transient. We can see how in this case,
the oscillation is more damped than in the previous case.

Higher terms of friction are more common in oil pipelines and thus, accurate computation
is necessary.

3.1.2 Instantaneous valve closure

One of the harshest scenarios that can occur in a pipe transient is the sudden closure of a
valve - a dirac delta - were the output flow at the valve will be set to zero. We can see that
the pressure wave reaches much higher values than our previous experiments (Fig, 10) and
its profile is much more stiff.
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Figure 10: Textbook problem with sudden valve closure.

3.2 Network of contiguous pipes

The necessity of high performance computing arises when the transients are calculated in
large and complex networks. Not only the number of variables increases geometrically with
the number of pipes, but also the existence of comparatively small pipes will force the usage
of small time steps.

Analysis of complex networks is interesting as, by aggregating simple element, the overall
results can be quite complex.

In the following figures, we show an example. First, we have created a network just
by linking contiguous pipes. The overall length will increase. As calculated previously, the
pressure wave period will change depending on the overall length of the transmission network.
We can see this, by comparing the period of Figure 11 and Figure 13.

Moreover, as the wave travels more distance between both ends, the friction losses will
be more acute. This fact can be observed in the referenced plots.
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Figure 11: Network with 5 contiguous pipes.

Figure 12: Network with 15 contiguous pipes.
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Figure 13: Network with 40 contiguous pipes.

3.3 A more complex network

In the previous network, all the pipes had similar friction and diameters as to being able
to observe the resonant phenomena. A modified version of the 5 pipes network where all
the pipes have different diameter and friction, and one of the pipes has a very high friction
coefficient is shown in Figure 14. The conclusion of this, is that complex networks can show
behavior that is difficult to predict without accurate simulations.

Figure 14: Pressure wave in a complex network.
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4 Conclusions and Future Work

In this project we have explored the numerical computation of fluid transients in closed
networks. Our solution methodology has been the Characteristic Equations, which is the
most common adopted methodology in the literature.

Our focus has been the one of solving large scale networks and developing a platform to
be able to handle any-sized and any-configuration network. This, given the particularities
of the problem, has not been trivial, and the planning and developing of the main software
has been the most time consuming task after the initial literature review. However, this
platform will give us the backbone to perform large scale computational experiments.

The nature of the Jacobian matrix of this problem is sparse (if the network is large
enough) and is amenable to iterative Krylov methods, which are the ones we are using.

Future work has two lines:

1 Parallelization This task has already begun. We are using the DMNetwork module
of the PETSc library. In the branch ’parallel’ of the repository the initial work of
creating data structures in processor 0 and distributing them to each processor can be
shown. Some data structures that were suitable for the sequential code are now being
rewritten as they are now not amenable to parallelization.

2 Complex modeling Current models have few complexities. We need to add pumps
and variable aperture valves. We also have to add support to the Characteristic Method
with Interpolation to be able to handle small sized pipes accurately. This will allow
us to run real large scenarios and compare results and performance with commercial
tools.

Being able to accurately model and simulate, with good simulation times and large
scale networks, may provide usefulness to researchers in operation and control of hydraulic
networks and oil pipelines.
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