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Abstract

The increasing importance of multimedia applications in embedded and general-purpose

computing environments has led to the development of multimedia extensions in most

commercial microprocessors. At the core of these extensions is support for single in-

struction multiple data (SIMD) operations on superwords, that is, aggregate data objects

larger than a machine word.

Several compilers have been developed to generate the SIMD instructions for multi-

media extensions automatically. However, most are based on conventional vectorization

technology. More recently, a technique called superword-level parallelization (SLP) was

developed to exploit unique features of multimedia extensions, such as short vectors and

single cycle instruction latency. Instead of finding parallelism from loops, SLP finds

parallelism between instructions making this approach simple and more robust than the

vectorization technique.

We propose a new compiler framework based on SLP where a number of optimiza-

tions are performed in a seamless fashion. First, we describe how to extend the concept

of SLP in the presence of control flow constructs to increase its applicability. A key in-

sight is that we can use techniques related to optimizations for architectures supporting

predicated execution, even for multimedia instruction sets that do not provide hardware

predication. Second, we treat the large superword register file as a compiler-controlled

cache, thus avoiding unnecessary memory accesses by exploiting reuse in superword reg-

isters. This approach also targets a research prototype, the DIVA processor-in-memory

xi



(PIM) device. We describe DIVA-specific optimizations including a technique to exploit

a DRAM memory characteristic automatically.

We implemented the new techniques in a complete compiler that generates SIMD

instructions automatically from sequential programs. We describe the evaluation of our

implementation on a set of 14 benchmarks. The speedups range from 1.05 to 19.22 over

sequential performance.

xii



Chapter 1

INTRODUCTION

The increasing importance of multimedia applications has led to the development of mul-

timedia extensions in most commercial microprocessors. At the core of these extensions

is support for short single instruction multiple data (SIMD) operations on superwords,

that is, aggregate data objects larger than a machine word.

Initially, the conventional wisdom was that the appropriate compiler technology for

multimedia extensions would borrow heavily from automatic vectorization [64, 15, 19].

More recently, Larsen and Amarasinghe at MIT developed a new technique to paral-

lelize codes specifically targeting multimedia extensions [39]. To make the distinction

between the parallelism in multimedia extensions and vector parallelism, they define

superword-level parallelism (SLP) as fine-grained SIMD parallelism in a superword. The

new technique is simple and robust compared to the existing vectorization techniques.

Still, there remain open issues for multimedia extensions: how to exploit parallelism across

basic block boundaries and how to exploit locality in superword registers. This thesis re-

search was initiated as part of the Data IntensiVe Architecture (DIVA) project [31, 21].

DIVA employs processing-in-memory (PIM) technology by combining processing logic

and DRAM in a single chip. To exploit high internal memory bandwidth, the DIVA

PIM devices support SIMD operations on 256-bit superword registers. Since DIVA is

1



a new architecture, there exist new compiler optimization opportunities. In this the-

sis, we describe our approach to address the two open issues and several DIVA-specific

optimizations.

The remainder of this chapter is organized as follows. In the next section, we overview

the SLP compilation technology. In Section 1.2, we compare this technology with the con-

ventional vectorization techniques. To motivate our approaches in this thesis, we present

the remaining opportunities to improve SLP in Section 1.3. Our target applications and

target architectures are described in Section 1.4 and Section 1.5, respectively. In Sec-

tion 1.6, we use simple examples to explain our approaches to the two open issues. The

contributions of this thesis are summarized in the last section.

1.1 SLP Compilation Technology

The MIT SLP compiler finds parallelism from a basic block, a block of sequentially ex-

ecuted instructions. Given a basic block, it first identifies isomorphic statements which

refer to statements with the same corresponding operations. Then, the isomorphic state-

ments are packed into a superword statement, that is, collected and replaced by a su-

perword statement, unless dependences prevent doing so. Packing memory references

should satisfy further restrictions in order to support hardware requirements; data ele-

ments to be referenced are contiguous in memory and the address of the first element is

aligned to superword boundaries, i.e., its runtime addresses are congruent with respect

to superword width. While the steps described so far are enough to exploit parallelism

within a basic block, for loop nests, the innermost loop is unrolled to convert loop level

parallelism into basic block level parallelism. The unroll amount is determined by di-

viding superword width by the smallest data type size so that even the operations with

the smallest operands can exploit SLP fully when packed into a superword. Figure 1.1

illustrates these steps using an example loop in (a). First, the loop is unrolled by 4 as

2



for (i=0; i<16; i++)
a[i] = b[i] + c[i];

(a) Original

for (i=0; i<16; i+=4){
a[i+0] = b[i+0] + c[i+0];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}

(b) Unrolled

for (i=0; i<16; i+=4)
a[i:i+3] = b[i:i+3] + c[i:i+3];

(c) Parallelized

Figure 1.1: Example: Parallelization by the SLP compiler.

shown in (b) assuming four array elements fit in a superword register. Then, the four

isomorphic statements are packed into a superword statement as shown in (c). Here,

a[i:i+3] represents four array elements from a[i] to a[i+3].

1.2 SLP vs. Vectorizing Compilers

To understand the differences between vector and SLP compilers, we first consider the

architectural differences between vector and multimedia extension architectures. While

there are many similarities, multimedia extensions are different from vector architectures

in several aspects as listed in Table 1.1. For multimedia extensions, strided memory

accesses are not supported, vector length is short, instruction latency is roughly one cycle

per instruction and memory accesses are usually required to be aligned to superword

boundaries. From the compiler’s perspective, these differences mean that superword

instructions can mix better with scalar instructions than vector instructions but strided

or unaligned memory accesses are more costly. Consequently, as compared to vector

architectures, parallelization overhead for multimedia extensions is less a function of

vector length and more a function of alignment requirements and cost of packing data

elements.

Vectorizing compilers have been used to generate vector instructions automatically

for vector supercomputers. A set of loop transformations are applied to expose SIMD

parallel operations suitable for vectorization [43]. Because such transformations are not

3



Multimedia extensions Vector architectures

Strided memory access Not supported Supported
Vector length ≤ 32 ≥ 64

Instruction latency ∼ 1 cycle / instruction ∼ 1 cycle / data element
Aligned memory accesses Required Not required

Table 1.1: Differences between multimedia extensions and vector architectures.

always applicable, vectorization technology is fragile. Small changes in application code

greatly affect the compiler’s ability to recognize vector operations. Compared to vector-

ization technology, the transformations used in SLP compilers, as discussed in Section 1.1

are quite simple and always applicable. Instead of complex loop transformations, SLP

compilers apply only unrolling, scalar renaming, and packing of data for isomorphic state-

ments. For SLP, failure to parallelize a single statement may not affect parallelization of

other statements.

1.3 Opportunities to Improve SLP

The SLP compiler developed by Larsen and Amarasinghe only identifies parallelism within

a basic block. As a result, the simple and inherently parallel loop in Figure 1.4(a) would

not be parallelized. Superword-level parallelization in the presence of control flow is still

an open issue. Yet, support for parallelizing control flow is important to multimedia

applications. As one data point, control flow appears in key computations in 6 of the 11

codes in the UCLA MediaBench [41], comprising on average over 40% of their execution

time.

Parallelizing computation using SLP can stress the memory system, since sometimes

compute-bound programs can become memory bound when computation costs are re-

duced [57]. Thus, an additional optimization opportunity involves reducing the cost of

memory accesses. An important feature of all multimedia extension architectures is a reg-

ister file supporting SIMD operations (e.g., each 128 bit wide in an AltiVec), sometimes
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in addition to the scalar register file. A set of 32 such superword registers represents a

not insignificant amount of storage close to the processor. Accessing data from superword

registers, versus a cache or main memory, has two advantages. The most obvious advan-

tage is lower latency of accesses; even a hit in the L1 cache has at least a 1-cycle latency.

Accesses to other caches in the hierarchy or to main memory carry much higher latencies.

Another advantage is the elimination of memory access instructions, thus reducing the

number of instructions to be issued.

While the two optimization opportunities described above can also be exploited in

DIVA, it offers other DIVA-specific compiler optimization opportunities. One such op-

portunity is to exploit the DIVA ISA features such as conditional execution and permu-

tation instruction. Also, DRAM device characteristics can be exploited to further reduce

the memory latency. Since DRAM access time is a large factor in the memory latency of

DIVA, this is an opportunity for significant performance gain.

1.4 Target Applications

As described above, multimedia extension architectures are specially designed for mul-

timedia application characteristics such as abundant data parallelism, short iteration

counts and small data types [20]. Therefore, these are the primary target applications

for our compiler technology. Scientific applications are the main focus of vector archi-

tectures, and for the purpose of comparison, they form another important class of target

applications for our compiler. Since our locality algorithm uses array subscript expres-

sions in computing register requirement, its main target is array-based loops. However,

our extension to exploit SLP in the presence of control flow is effective on some pointer-

based applications as well since the SLP algorithm can find alignment and adjacency of

pointer-based memory accesses. Nevertheless, applications with regular memory accesses
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Figure 1.2: AltiVec register file.

of stride 1 are the best candidates for the SLP algorithm to satisfy the underlying hard-

ware requirements. Our locality algorithm is most effective in data-intensive applications

with a large amount of data reuse.

1.5 Target Architectures

Our approach described in this thesis can be applied to all architectures supporting SLP.

For evaluation purposes, however, our compiler implementation targets two machines:

the PowerPC AltiVec and the DIVA processing-in-memory architecture.

1.5.1 Multimedia Extension: AltiVec

While most commercial microprocessors have multimedia extensions, the majority ex-

ploit SIMD parallelism within a machine word, called subword parallelism [42, 67, 56].

However, there are a few multimedia extension architectures that have a separate SIMD

register file whose width is larger than a machine word, including the Intel SSE and Pow-

erPC AltiVec. Figure 1.2 shows the AltiVec register file. AltiVec has separate 32 128-bit

superword registers in addition to the scalar register file. Each superword register can be

used as either 16 8-bit operands, 8 16-bit operands, or 4 32-bit operands.

In addition to the common features of multimedia extensions listed in Table 1.1,

there are several details of the AltiVec that impact our compiler approach. First, there
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are 162 instructions beyond the standard PowerPC ISA [49]. However, some instructions

are designed to perform very specialized operations, and not all general operations are

supported for all data types. As a result, certain operations cannot be parallelized and

should be executed in scalar functional units. Second, AltiVec requires memory accesses

to be aligned to superword boundaries by ignoring the last four bits of address operands

of memory accesses. Because of this requirement, we need an analysis to find alignments

of memory references and additional operations are generated for unaligned superwords in

memory. Third, AltiVec does not support data movement between the scalar register file

and the superword register file. To move data in a scalar register to a superword register,

a scalar data must be written into the memory address range of a superword which is, in

turn, loaded into a superword register. Because of these architectural features, automatic

generation of the superword instructions by compilers is not easy and sometimes leads to

high overhead.

1.5.2 Processing-In-Memory: DIVA

The increasing gap between processor and memory speeds is a well-known problem in

computer architecture. As one of the solutions to bridge the gap, processing-in-memory

(PIM) is suggested. Because PIM internal processors can be directly connected to the

memory banks, the memory bandwidth is dramatically increased (up to 2 orders of mag-

nitude). Latency to on-chip logic is also reduced, down to as little as one-fourth that

of a conventional memory system, because internal memory accesses avoid the delays

associated with communicating off chip.

The Data-IntensiVe Architecture (DIVA) project is developing a system, from VLSI

design through system architecture, systems software, compilers and applications, to

take advantage of this technology for applications of growing importance to the high-

performance computing community [31, 21]. DIVA combines PIM memory chips with

one or more external host processors and a PIM-to-PIM interconnect (see Figure 1.3). To

7



DRAM Array
(~32 MB)

I-Cache
(4KB)

Wide registers,
32x256b(1KB)

Scalar registers,
32x32b(128B)

Wide
Functional

Unit

Scalar 
functional unit

Off-Chip Communication

Figure 1.3: DIVA node architecture.

exploit the high data bandwidth effectively, DIVA contains 32 256-bit superword registers

in addition to 32 32-bit scalar registers. DIVA contains in-order execution processor

cores. Because of short memory latency, data caches are not included in DIVA. However,

a small instruction cache is added so that instruction streams do not interfere with data

streams [31]. DIVA is a memory coprocessor that requires separate host processors for

running the main operating system. As a result, it can be viewed as a standard DRAM

to host applications. Due to its low memory latency and high data bandwidth, data

intensive applications are the main target applications [14].

In many ways, the DIVA ISA is similar to that of the AltiVec. However, there are

several differences. First, DIVA allows data movement between register files. As a result,

packing and unpacking scalar values to and from superword registers is cheaper than in

the AltiVec. Second, DIVA allows conditional execution for most superword instructions.

The result of an operation on a field of source registers is committed to the corresponding

field of the destination register conditionally depending on the value of the corresponding
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bit of the specified condition register. The research of this thesis focuses on developing a

DIVA parallelizing compiler that exploits various features of the DIVA processor.

1.6 Motivating Examples

As shown in Section 1.1, the MIT SLP compiler unrolls loops to increase the amount of

parallelism within a loop body and packs isomorphic statements. In this section, we use

simple examples to illustrate how we exploit the opportunities described in Section 1.3.

1.6.1 SLP in the Presence of Control Flow

In this thesis, we describe how to extend SLP to parallelize computations across basic

block boundaries. When a loop body has control flow, unrolling may not increase the

basic block size and therefore, may not expose opportunities for SLP parallelization as

described by Larsen and Amarasinghe since the MIT SLP compiler parallelizes statements

within a basic block.

Consider the example loop in Figure 1.4(a). When the loop is unrolled as in (b), the

basic block size does not increase because of the if-statements thus preventing the SLP

compiler from parallelizing the loop. However, such a loop can be parallelized as shown in

(c). Both the comparison and the statement guarded by the if-statement are parallelized.

Then, the old values of b[i:i+3] are combined with the new values in Vtemp according

to the results of the parallel comparison.

In the original scalar code, the statement guarded by the if-statement is bypassed

whenever the conditional expression is false. For the parallel version, the instructions

in all control flow paths are always executed. In some cases such as when the con-

dition usually evaluates to false, this overhead leads to performance degradation over

sequential execution. An optimization that sometimes reduces this overhead is shown in
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for (i=0; i<16; i++)
if (a[i] != 0) b[i]++;

(a) Original with control flow

for (i=0; i<16; i+=4){
if (a[i+0] != 0) b[i+0]++;
if (a[i+1] != 0) b[i+1]++;
if (a[i+2] != 0) b[i+2]++;
if (a[i+3] != 0) b[i+3]++;

}

(b) Unrolled

for (i=0; i<16; i+=4){
Vcond = a[i:i+3] != (0, 0, 0, 0);
Vtemp = b[i:i+3] + (1, 1, 1, 1);
b[i:i+3] = Combine b[i:i+3] and \

Vtemp according to Vcond
}

(c) Parallelized

for (i=0; i<16; i+=4){
Vcond = a[i:i+3] != (0, 0, 0, 0);
branch to L1 if Vcond is all false
Vtemp = b[i:i+3] + (1, 1, 1, 1);
b[i:i+3] = Combine b[i:i+3] and \

Vtemp according to Vcond
L1:

}

(d) Overhead reduced

Figure 1.4: Example: SLP in the presence of control flow.

Figure 1.4(d). We can bypass the parallel code when all fields of the parallel comparison

are false.

1.6.2 Superword-Level Locality

Reducing memory references is even more important when computations are parallelized

as discussed in Section 1.3. In this section, we use a simple example to illustrate our

approach to reduce memory references by storing data in superword registers. In the

sequential code shown in Figure 1.5(a), A[i][j] and A[i-1][j] access the same data in

memory after 32 iterations. Also B[j] accesses the same memory address after 32 itera-

tions. If we can keep a data element in a register until it is used again, the later memory

access can be eliminated. To exploit superword registers, the loop is first parallelized as

shown in (b). Assuming four array elements fit in one superword register, the number of

memory accesses is reduced by 4X when the j-loop is parallelized. This reduction is the

result of accessing four adjacent array elements in one superword memory access. Still,
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for(i=1;i<=32;i++)
for(j=0;j<32;j++)

A[i][j] = A[i-1][j] + B[j];

(a) Original

for(i=1; i<=32;i++)
for(j=0; j<32; j+=4)

A[i][j:j+3] = A[i-1][j:j+3]+B[j:j+3];

(b) SLP exploited

for(i=1; i<=32; i+=2)
for(j=0; j<32; j+=4) {

A[i][j:j+3] = A[i-1][j:j+3]+B[j:j+3];
A[i+1][j:j+3] = A[i][j:j+3]+B[j:j+3];

}

(c) Unroll-and-jam applied

for(i=1;i<=32; i+=2)
for(j=0; j<32; j+=4) {

SV1 = B[j:j+3];
SV2 = A[i-1][j:j+3] + SV1;
A[i+1][j:j+3] = SV2 + SV1;
A[i][j:j+3] = SV2;

}

(d) Memory accesses reduced

Figure 1.5: Motivating example for exploiting superword-level locality.

we can reduce memory accesses further by keeping a superword written by A[i][j:j+3]

in a superword register until read by A[i-1][j:j+3]. Since the two superword memory

accesses are apart by one iteration of the outer loop (i-loop), we apply unroll-and-jam as

shown in (c) so that the two superword memory references access the same data within

the same iteration. Most existing compilers fail to remove the redundant memory accesses

because they do not allocate registers for array references. For this reason, we replace

the redundant superword memory accesses with superword variables. Subsequently, a

backend compiler will allocate superword variables to superword registers. The number

of memory accesses is consequently reduced as shown in (d). The loop body in (c) has

six memory references that are reduced to four in (d) achieving the reduction of memory

accesses by 1.5X in addition to the previous reduction of 4X. Overall, a 6X reduction in

memory accesses is achieved from (a) to (d).

1.7 Contributions

The contribution of this thesis is the new optimizations for the architectures supporting

superword-level parallelism (SLP) as follows.
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An algorithm to exploit SLP in the presence of control flow. SLP exploits par-

allelism within a basic block limiting its applicability. We describe how to extend

the concept of SLP in the presence of control flow constructs. A key insight is

that we can use techniques related to optimizations for architectures supporting

predicated execution, even for multimedia ISAs that do not provide hardware pred-

ication. We derive large basic blocks with predicated instructions to which SLP can

be applied. We describe how to minimize overheads for superword predicates and

re-introduce control flow for scalar operations. We observe speedups on 8 multime-

dia codes ranging from 1.97 to 15.00 as compared to both sequential execution and

SLP alone.

As an optimization on the code parallelized for control flow, we also evaluate the

costs and benefits of exploiting branches on the aggregate condition codes associated

with the fields of a superword such as the branch-on-any instruction of the AltiVec.

Branch-on-superword-condition-codes (BOSCC) instructions allow fast detection of

aggregate conditions, an optimization opportunity often found in multimedia appli-

cations such as image processing and pattern matching. Our experimental results

show speedups of up to 1.40 on 8 multimedia kernels when BOSCC instructions are

used.

Compiler controlled caching in superword registers. Accessing data from super-

word registers, versus a cache or main memory, has two advantages, i.e., removing

memory access instructions and their latencies. We treat the large superword regis-

ter file as a compiler-controlled cache, thus avoiding unnecessary memory accesses

by exploiting reuse in superword registers. This research is distinguished from

previous work on exploiting reuse in scalar registers because it considers not only

temporal but also spatial reuse. As compared to optimizations to exploit reuse in
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cache, the compiler must also manage replacement, and thus, explicitly name regis-

ters in the generated code. In a study on 14 benchmarks, our results show speedups

ranging from 1.40 to 8.69 as compared to using the original SLP compiler, and we

eliminate the majority of memory accesses.

Implementation and evaluation of the proposed techniques. The techniques pre-

sented in this thesis are fully implemented and evaluated on 14 benchmarks. Our

implementation includes additional code generation techniques not supported by the

original SLP compiler. The automatically generated parallel C programs are com-

piled by the backend compiler and run on the PowerPC G4. The overall speedups

achieved by our implementation combining all optimizations range from 1.05 to

19.22.

DIVA-specific optimizations. We developed a compiler algorithm and several opti-

mization techniques to exploit a DRAM memory characteristic(page-mode) auto-

matically. A page-mode memory access exploits a form of spatial locality, where the

data item is in the same row of the memory buffer as the previous access. Thus, ac-

cess time is reduced because the cost of row selection is eliminated. The algorithm

increases frequency of page-mode accesses by reordering data accesses, grouping

together accesses to the same memory row. We implemented this algorithm and

present speedup results for four multimedia kernels ranging from 1.25 to 2.19 over

the SLP algorithm alone for a PIM embedded DRAM device, called DIVA.

The remainder of this thesis is organized as follows. The next chapter provides defini-

tions and background on the existing techniques we build upon in this work. These tech-

niques include the algorithm to exploit SLP and predicate analysis used in our approach

to exploit SLP in the presence of control flow. In Chapter 3, we describe our approach to

exploit SLP in the presence of control flow. Our technique to exploit superword registers

as a compiler-controlled cache is described in Chapter 4. Several optimizations related
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to code generation are presented in Chapter 5. The implementation of the techniques in

the previous chapters and its evaluation are described in Chapter 6. Chapter 7 describes

the DIVA ISA and DIVA-specific optimizations. Related work is described in Chapter 8

followed by our conclusion in Chapter 9.
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Chapter 2

BACKGROUND

The techniques presented in this thesis leverage large body of work on analyses for par-

allelizing compilers. In this chapter, we describe the existing analyses and code transfor-

mations used in our approach. Data dependence information described in Section 2.1 is

crucial in applying code transformations which are not always legal. Both the superword-

level parallelization (SLP) and superword-level locality (SLL) algorithms require data

dependence analysis. In Section 2.2, we describe data reuse which is a core concept in the

SLL algorithm. In Section 2.3, Larsen and Amarasinghe’s SLP compiler [39] is presented.

All our techniques presented in this thesis are based on their SLP compiler. In the last

section of this chapter, we describe a predicate analysis necessary for our extension of

SLP in the presence of control flow.

2.1 Data Dependence

There exists a data dependence between two instructions if the two instructions access

the same data and at least one of them writes to the data. Given two instructions I1 and

I2, I2 cannot be executed before I1 if there is a dependence from I1 to I2. Three kinds of

data dependences can prevent the reordering of the two instructions.

True dependence I1 writes to a data item which is read by I2.

Anti-dependence I1 reads a data item which is written by I2.
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for(i=1;i<=32;i++)
for(j=0;j<32;j++)

A[i][j] = A[i-1][j] + B[j];

(a) Data dependence

for(i=1;i<=32;i+=2)
for(j=0;j<32;j++){

A[i][j] = A[i-1][j] + B[j];
A[i+1][j] = A[i][j] + B[j];

}

(b) Unroll-and-jam on i-loop by 2

Figure 2.1: An example code to show dependence vectors and unroll-and-jam.

Output dependence I1 writes to a data item which is also written by I2.

Input dependence exists between two instructions when the two instructions read the

same datum. However, input dependence does not impose ordering constraints among

instructions. The iteration space of an n-deep loop nest is an n-dimensional polyhedron

where a value on each dimension represents the value of the loop index variable of the

corresponding loop. Each point in the iteration space represents an iteration of the loop

nest whose loop indices are denoted by the position vector of the corresponding point in

the iteration space.

Data dependence between two distinct array references in an n−deep loop nest can be

represented in a form of dependence vector, d = 〈d1, d2, . . . , dn〉 [4]. A dependence vector

captures the vector distance, in terms of the loop iterations, such that the two references

may map to the same memory location. Each vector element di may be either a constant

integer, + (a positive direction where the distance is not fixed), − (a negative direction),

or ∗ (the direction and distance are unknown). We refer to a dependence vector as being

lexicographically positive if the first non-zero di is + or a positive integer. A dependence

vector is said to be consistent if the dependence distance in the iteration space is constant.

Figure 2.1(a) shows an example loop nest which contains three array references. There is

a true dependence from A[i][j] to A[i-1][j] and the dependence vector is 〈1, 0〉. This means

that 1 iteration of i-loop after A[i][j] accesses a data element in memory, A[i-1][j] accesses

the same data.
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A data dependence is loop-independent if the associated pair of instructions access

the same data from the same iteration. Otherwise, the data dependence is loop-carried.

All loop-carried dependence vectors are lexicographically positive. A code transforma-

tion preserves the semantics of a program if the ordering constraints imposed by the

dependence vectors are not violated.

Data dependences for a set of instructions can be represented by a directed graph

called data dependence graph. In this graph, a node represents an instruction and a di-

rected edge from one node to another represents a data dependence between the associated

instructions.

2.2 Data Reuse

A datum in memory is said to be reused if used multiple times. Reuse distance is defined

as the number of iterations between two uses of the same data. Data dependence and

data reuse are similar by nature because both look for the instructions that use the

same datum. However, not all data dependences translate to data reuse and vice versa.

On one hand, anti-dependence prevents code reordering but is not a reuse opportunity.

On the other hand, input dependence does not prevent code reordering but is a reuse

opportunity. In an output dependence between two instructions, the datum itself is not

reused. However, we consider output dependences as reuse opportunities since we can

eliminate the earlier store instruction.

Reuse can be categorized in two different ways. The first concerns whether the same

or distinct parts of a datum are reused. If distinct data elements are used from a su-

perword register, it is called spatial reuse in the superword register. If the same datum

is used repeatedly from a superword register, we call it temporal reuse. The other cat-

egorization concerns whether two accesses to the same datum are originated from the

same or different static instructions. If two dynamic accesses to the same datum are from
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one static instruction, it is called self reuse, or otherwise group reuse. The two orthogo-

nal categorizations of reuse can be combined to generate four more detailed reuse types:

self-spatial, self-temporal, group-spatial, and group-temporal.

Our analysis is for array references whose array subscript expressions are an affine

function of loop index variables. In other words, each array subscript expression is a

linear function of loop index variables f(L1, ..., Ln) = a1L1 + a2L2 + ... + anLn + b where

ai and b are constants and Li are loop index variables. For the array references with

non-affine array subscript expressions (e.g., A[B[i]]), we make conservative estimations.

Two array references with affine array subscript expressions are uniformly generated if

each array subscript expression of one array reference is different from the corresponding

array subscript expression of the other array reference only by a constant term [69]. In

Figure 2.1(a), A[i][j] and A[i-1][j] are uniformly generated.

Related data structures are use-definition (UD) chain and definition-use (DU) chain.

Use-definition (UD) chain is a list of definitions of a variable that reach a particular

use of the variable. Similarly, definition-use (DU) chain is a list of uses of a variable

reached by the same definition. UD-chains and DU-chains are conveniently used in the

SLP algorithm described in the next section.

2.3 The SLP algorithm

The SLP algorithm finds SIMD parallelism within a basic block. In Section 1.1, we

have presented the SLP algorithm using an example. In this section, we describe the

algorithm in detail. In the next section, we present alignment analysis, which is used

by the algorithm to find alignment offsets of memory accesses. In Section 2.3.2, we

describe distance analysis, which is used to find adjacency between memory references.

The information obtained from these two analyses is used in the main algorithm presented

in Section 2.3.3.
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u a = gcd(a1, a2, |b1 − b2|), b = b1 mod a

+ a = gcd(a1, a2), b = (b1 + b2) mod a

− a = gcd(a1, a2), b = (b1 − b2) mod a

× a = gcd(a1a2, a1b2, a2b1,M), b = b1b2 mod a

Table 2.1: Transfer functions for the dataflow analysis to find alignments when a1n + b1

and a2m + b2 are given.

2.3.1 Alignment Analysis

The architectures supporting SLP either require memory accesses to be aligned or allow

unaligned memory accesses but at a higher cost. As a result, finding alignment offsets of

memory references is at least a performance issue and sometimes, a correctness problem.

Alignment analysis described in this section is used to find an alignment offset of each

memory reference. For aligned memory references, the result of this analysis is a constant

alignment offset representing all runtime addresses. Other memory references are either

known to be unaligned or the alignment offset is unknown for the lack of necessary

information. The result of this analysis is used by the SLP compiler to pack only aligned

memory references. Consequently, only aligned memory references are parallelized.

To determine the alignment offsets of memory references, an iterative dataflow analysis

is used [40]. Variables and constants are associated with a linear expression an + b to

represent the set of values they can have. Here, a is a stride, b is an offset, and n is

a set of non-negative integers. Initially, a constant D is associated with Mn + d where

M is the superword width and d = D mod M . Since we have a way to allocate array

objects to superword boundaries, array base addresses are initialized with Mn + 0. All

other variables are initialized with >. To propagate element values, the transfer functions

listed in Table 2.1 are used. The meet operator (u) is used to merge control flow. All

operations not listed in the table result in n + 0 which is equivalent to ⊥.
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u T1 == T2 ? T1 : ⊥

+ b1 == b2 ? b = b1, c = c1 + c2 : ⊥
− b1 == b2 ? b = b1, c = c1 − c2 : ⊥
× T1 is constant N ? b = b1, c = c2 ×N : ⊥

Table 2.2: Transfer functions for distance analysis when two terms T1 = (X, c1, b1) and
T2 = (X, c2, b2) of two linear expressions for the same variable X are given.

2.3.2 Distance Analysis

Two memory references must be adjacent with each other to be packed in a superword

memory reference. However, the adjacency of two memory references cannot be deter-

mined by the alignment analysis. Distance analysis employs an iterative dataflow analysis

to find distances in memory address among memory references. The result of this analysis

is a partitioning of memory references into groups, in each of which memory references

are assigned a constant representing an offset from a reference address. Two memory

references in a group are adjacent to each other if the assigned constants are different by

the type size of the operand.

Each variable used in address computations is represented by a linear expression of all

such variables. Each term in the linear expression is a tuple of three values representing

a variable symbol, a coefficient, and a basis indicating the initialization point of the

variable. Initially, all variables have only one nonzero term which is the variable itself

associated with a coefficient 1 and a basis of zero. In other words, for each variable X, X

is initialized with a tuple (X, 1, 0). As the instructions are processed, the linear expression

of the destination variable is replaced by the linear expression resulting from evaluating

the right hand side of the instruction. Table 2.2 shows transfer functions used in this

analysis. After each instruction is processed based on the transfer function, all variables

associated with bottom (⊥) are reassigned by the variable itself, a coefficient of 1, and

the current instruction number as a new basis.
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At the end of the dataflow analysis, the address operands of memory references are

associated with a linear equation consisting of variables which cannot be replaced further

by other variables. All memory references whose address operands are different by a

constant term are grouped together and assigned a unique group ID. Each instruction

in a group is annotated with a pair of group ID and the constant term in the linear

expression for the address operand. Two memory references in a group are guaranteed

to always keep a constant distance during run time.

2.3.3 Packing

The SLP algorithm starts packing instructions from memory references [39]. Two memory

references are packed together if both are aligned, adjacent, and their alignment offsets

do not cross any superword boundary. Next, UD-chains and DU-chains are followed to

pack the instructions defining the source operands or using the destination operands of

already packed instructions. The instructions packed at this time inherit the alignment

offsets from the instructions packed already. Since there is a limit in number of data

elements that can be packed in a superword register, to represent the maximum amount

of parallelism we define superword size (SWS) as the number of data elements that fit

in a superword. The SLP algorithm packs at most SWS instructions for each superword

instruction.

As a last step, the algorithm schedules instructions sequentially. At this point, instruc-

tions can be either packed into a superword instruction or left as a scalar instruction. In

any case, all instructions on which the current instruction is dependent should be sched-

uled already before the current instruction is scheduled. Sometimes, cyclic dependences

prevent further scheduling of the unscheduled instructions. To break the dependence

cycles, the first unscheduled packed instructions are unpacked into scalar instructions.

Figure 2.2 shows an example code after each step of the algorithm.
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a1 = b1 + x[0];
a2 = b2 + x[1];
a3 = b3 + x[2];
a4 = b4 + x[3];

 (a) Original

    a1 = b1 + x[0];
    a2 = b2 + x[1];
    a3 = b3 + x[2];
    a4 = b4 + x[3];

(b) After packing aligned 
    memory references

   a1 = b1 + x[0];
   a2 = b2 + x[1];
   a3 = b3 + x[2];
   a4 = b4 + x[3];

(c) After following 
UD-chain and DU-chain

   Va = Vb + x[0:3];

(d) After instruction
    scheduling

Figure 2.2: An example showing the packing algorithm.

2.3.4 Summary

The SLP algorithm presented in this section works within a basic block. To generate

SIMD parallel instructions, the SLP algorithm looks for the isomorphic scalar instruc-

tions that can be replaced by a superword instruction. Packing memory references should

satisfy further constraints imposed by the target architecture, i.e., alignment to super-

word boundaries and packed data elements in memory. Alignment analysis and distance

analysis provide the information necessary to facilitate the requirements.

2.4 Predicate Analysis

Predicates are introduced when if-conversion is applied to control flow constructs. The

predicates guard the execution of the instructions that used to be guarded by conditional

statements. However, the analyses based on CFG cannot be used to extract, from a

basic block of predicated instructions, the necessary information such as data dependence

and reaching definition. Instead, we borrow analyses developed for the architectures

supporting predicated execution.
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In this section, we describe predicated execution and if-conversion in Section 2.4.1 and

Section 2.4.2 respectively. After if-conversion is applied, instructions may be guarded by

predicates. For the following passes to extract the necessary information, we use Scott

Mahlke’s predicate analysis based on predicate hierarchy graph (PHG) [44]. Predicate

hierarchy graph is described in Section 2.4.3. Mutually exclusive and predicate covering

are two important relations among predicates described in Section 2.4.4 and Section 2.4.5

respectively. Since our algorithm to restore control flow from a sequence of predicated

instruction is based on Mahlke’s predicate CFG generator, it is described in Section 2.4.6.

2.4.1 Predicated Execution

Recently, several architectures supporting predicated execution are developed [36]. Since

predicated execution is one of the core concepts in our approach, its notation and seman-

tics are described in this subsection. In the architectures supporting predicated execution,

instructions are first executed and then the result is committed if the guarding predicate

is true, or otherwise nullified. In this thesis, an instruction guarded by a predicate pred

is denoted as follows.

dst = operation; <pred>

If pred is true, dst is updated by the operation’s result. If pred is false, however, dst

remains unchanged.

pset is predicate defining instruction and the syntax is shown below.

pT, pF = pset(cond); <pred>

pset takes one source operand and two destination operands. The source operand is the

result of a previous comparison operation and the two destination operands are predicate

variables that can be used to guard the subsequent instructions. A pset itself can also

be guarded by another predicate just like any other instructions. The semantics of pset
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is that pT = cond and pF = !cond when pred is true. If pred is false, both pT and pF

remain unchanged.

2.4.2 If-conversion: RK-Algorithm

If-conversion is a process of removing control flow by introducing predicates to instruc-

tions. For if-conversion, we use Park and Schlansker’s RK-algorithm [55]. Their algorithm

consists of two main functions, R and K. R function associates each node in CFG to a

predicate and K function finds the locations to insert predicate defining operations for

each predicate. The detailed explanation of R function requires the following definition.

Definition 1 Let (X, Y, label) be an edge in a CFG such that Y does not postdominate

X. The nodes control dependent on this edge are those and only those of the unique

path starting (excluding the first) from the immediate postdominator of X to Y in the

postdominator tree.

R function is best described as a partitioning function of basic blocks under a certain

equivalence relation. Two basic blocks x and y are in an equivalence class if they are

control dependent on the same set of basic blocks. R function is obtained as follows.

First, for each basic block b, a set of basic blocks on which b is control dependent are

obtained. Then, the basic blocks that are control dependent on the same set of basic

blocks are grouped into an equivalence class. A unique predicate variable is assigned to

each equivalence class.

A control dependence set for a basic block is a set of edges on which the basic block is

control dependent. For each predicate, K function defines a control dependence set, on the

element edge of which an equivalence class of basic blocks represented by the predicate

are control dependent. Predicate defining operations for the associated predicate are

generated for each edge in the control dependence set.
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Because of the semantics of their predicate defining operations, predicates may not

be defined along all possible paths. To always define predicates before being used, the

predicates that may have undefined paths are initially set to false. This algorithm achieves

optimality in terms of the number of predicates being used and the number of predicate

defining instructions.

2.4.3 Predicate Hierarchy Graph (PHG)

The predicate analysis starts by building a predicate hierarchy graph (PHG) defined as

follows.

Definition 2 A predicate hierarchy graph (PHG) is a directed acyclic graph representing

nesting relations among predicates in a predicated basic block.

A PHG consists of two types of nodes, predicate nodes and condition nodes, and is con-

structed as follows. Starting with a single predicate node representing a constant true,

each instruction is examined in textual order. For each instruction that defines predi-

cates, such as, for example pT, pF = pset(comp) <pParent>;, at most one condition

node is created. For this example, a condition node for comp would be created. An

edge is inserted from the predicate node for the predicate guarding the instruction to

the condition node just created; for the example, an edge from predicate node pParent

to condition node comp is added. Two predicate nodes for pT and pF are also created

if they do not already exist. They may have been introduced into the PHG by a prior

definition, in cases where multiple control flow paths merge. Then, edges are inserted

from the condition node to the two predicate nodes; in the example, there would be two

edges inserted from condition node comp to predicate node pT and pF, representing the

true and false values of a comparison. This process is repeated for each instruction that

defines predicates. The resulting PHG permits analysis to reason about the relationship
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          ...
pT1, pF1 = pset(c1); <TRUE>
          ...
pT2, pF2 = pset(c2); <TRUE>
          ...
pT3, pF3 = pset(c3); <pT1>
          ...

TRUE

C1 C2

pT1 pF1 pT2 pF2

C3

pT3 pF3

T F T

T

F

F

Figure 2.3: An example showing construction of a PHG.

among predicates. Figure 2.3 shows an example of predicated instructions and a PHG

built from the code sequence.

2.4.4 Mutually Exclusive

Mutually exclusive relation between two predicates is defined as follows.

Definition 3 Two predicates p1 and p2 are mutually exclusive if they are never simul-

taneously true, i.e., p1 ∧ p2 = false.

The information on mutually exclusive relation is useful in various situations. For ex-

ample, it can be used to discern dependences more accurately. Consider the following

instructions defining a variable. There is no output dependence between them if the two

guarding predicates, p1 and p2, are mutually exclusive.

a = 5; <p1>

a = 7; <p2>

To find whether two given predicates p1 and p2 are mutually exclusive, the PHG is

traversed backward along all paths from the predicate nodes for p1 and p2. Then, a set of

merge nodes is obtained by picking the nodes where two backward traversals first meet.

p1 and p2 are mutually exclusive if the two backward traversals from p1 and p2 merge
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from complementary edges at all merge nodes. In the example of Figure 2.3, pT3 and pF1

are mutually exclusive because there is only one merge node which is condition node C1

and the backward traversals merge from two complementary edges.

2.4.5 Predicate Covering

Predicate covering is a relation between a predicate and a set of predicates. This informa-

tion is used in both restoring control flow and inserting select instructions. Predicate

covering is defined as follows.

Definition 4 A predicate p is said to be covered by a set of predicates G if p = true⇒

∃p′ ∈ G such that p′ = true.

Predicate covering relation between a set of predicates G and a predicate p is determined

as follows. For each predicate in G, mark the corresponding predicate node in the PHG

as covered. Then, apply the above definition repeatedly to propagate predicate covering

to adjacent nodes until no further changes can be made. If the predicate node for p in

the PHG is marked as covered, p is covered by G.

A related definition, predicate-covering predecessor is used to restore control flow and

defined as follows.

Definition 5 An instruction I guarded by a predicate p is a predicate-covering prede-

cessor of a later instruction I ′ guarded by a predicate p′ iff p and p′ are not mutually

exclusive and neither p nor p′ is covered by a set of predicates associated with the instruc-

tions between I and I ′.

For a given instruction I associated with a predicate p, its predicate-covering predeces-

sor instructions are obtained by scanning backward the given instruction sequence. An

instruction I ′ associated with a predicate p′, in the instruction sequence, is a predicate-

covering predecessor of I if p and p′ are not mutually exclusive and p′ is not already
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marked as covered in the PHG. After placing I ′ into a predicate-covering predecessor set

of I, the node for p′ is marked as covered in the PHG and the newly covered predicate

is propagated in the PHG to mark other covered predicates. This backward scan stops

when the predicate node for p is covered.

Based on mutually exclusive relation among predicates and the definition of predicate

covering, reaching definitions can be found as follows.

Definition 6 A definition d guarded by a predicate p reaches a later use u guarded by a

predicate p′ in the same basic block if p and p′ are not mutually exclusive and neither p

nor p′ is covered by a set of predicates associated with the instructions, defining the same

variable, between d and u.

2.4.6 Predicate CFG Generator

Given a sequence of predicated instructions, predicate CFG generator is used to restore

the embedded control flow. The key idea is to find a set of predicate-covering predecessors

of each predicated instruction successively and make connections in the CFG from each

of the predicate covering predecessors to the current instruction being processed.

While the original Mahlke’s predicate CFG generator scan forward to find predicate-

covering successors, we modify it to scan backward. This modification was necessary for

our improvement described in the next chapter.
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Chapter 3

SUPERWORD-LEVEL PARALLELISM IN THE

PRESENCE OF CONTROL FLOW

Many multimedia applications have control flow in their key computations as discussed in

Chapter 1. However, the SLP algorithm cannot exploit parallelism when the loop body

has control flow because it works only within a basic block. Thus, exploiting SLP in the

presence of control flow is an important issue that still needs to be addressed.

In this chapter, we describe our approach employed to address the issue. A key insight

is that we can borrow heavily from optimizations developed for architectures supporting

wide-issue instruction-level parallelism and predicated execution, such as, for example,

the Itanium family of processors [36], even for architectures such as the AltiVec that do not

support predicated execution. There are two reasons why similar optimization techniques

can be used for these two distinct classes of architectures:

• SLP and ILP optimizations operate within basic blocks. Control flow limits the size

of basic blocks, and thus limits optimization opportunities. We derive large basic

blocks with predicated instructions to which SLP can be applied.

• A commonality in multimedia extension ISAs is what we will call a select operation

for merging the results of different control flow paths. Based on the value of a

boolean superword, individual fields from two different inputs are combined and
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if-conversion

parallelize

remove superword
predicates (SELECT)

remove scalar
predicates (unpredicate)

reduce parallelization
overheads (BOSCC)

Figure 3.1: Overview of the algorithm to exploit SLP in the presence of control flow.

committed to a final result. Thus, select instructions appear similar to predicated

instructions, even though the underlying hardware mechanisms to implement the

two are very different.

We derive a large basic block of predicated instructions by applying if-conversion.

Then, the SLP algorithm is applied to parallelize isomorphic instructions. Following

if-conversion and parallelization, the resulting basic block may contain both scalar and

superword instructions, and in some cases, the instructions are predicated. The compiler’s

job is to remove these predicates. We discuss how superword predicates are removed

by inserting select operations in Section 3.2 and how scalar predicates are removed

through an algorithm we call unpredicate in Section 3.3. In Section 3.4, we describe how

parallelization overhead can be reduced by introducing Branch-On-Superword-Condition-

Code (BOSCC). Prior to these descriptions, we outline our approach in the next section.
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3.1 Overview of the Algorithm

The algorithm to exploit SLP in the presence of control flow consists of five steps which

are applied in sequence as shown in Figure 3.1. Each of the five steps are summarized

below. We use an example of Figure 3.2(a) to show the changes made at different steps.

Step 1: Applying if-conversion. As in the original SLP algorithm, first the inner-

most loop is unrolled by superword size. When there is control flow in the loop body,

however, the basic block size is not increased even after unrolling because of the if-

statements. To apply if-conversion, we look for the largest acyclic control flow structure

of single entry and exit from the innermost loop body. As shown in Figure 3.2(b), the

code is unrolled by a factor of four, based on the assumption that the superword register

width is sixteen bytes and the array type sizes are four bytes. Next, if-conversion using

Park and Schlansker’s algorithm [55] is applied to convert control dependences into data

dependences. Now, associated with each instruction is a predicate, shown in parenthesis

at the end of the instruction, that captures the conditions that must be true for the

instruction to execute. The pset instruction initializes the value of the predicates pT1

and pF1 based on the value of the condition represented by comp1.

Step 2: Parallelization. After if-conversion, the loop body becomes one basic block

of predicated instructions. A modified version of the SLP parallelizer, which packs to-

gether isomorphic instructions with their predicates, derives a mix of predicated scalar

and superword instructions. This modification includes predicate analysis to find depen-

dences among instructions. The resulting code is shown in Figure 3.2(c). While some

instructions are parallelized, several scalar statements remain unparallelized because of

data dependences. Since our target architectures do not support predicated execution,

both superword and scalar predicates should be removed.
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for(i=0; i<1024; i++){
if(fblue[i] != 255){

bblue[i] = fblue[i];
bred[i+1] = bred[i];

}
}

(a) Original

for(i=0; i<1024; i+=4){
comp1 = fblue[i] != 255;
pT1, pF1 = pset(comp1);
bblue[i] = fblue[i]; (pT1)
bred[i+1] = bred[i]; (pT1)
· · ·

}

(b) Unrolled and if-converted

for(i=0; i<1024; i+=4){
vc = fblue[i:i+3] != (255,255,255,255);
v pT, v pF = v pset(vc);
bblue[i:i+3] = fblue[i:i+3]; (v pT)
pT1, pT2, pT3, pT4 = unpack(v pT);
bred[i+1] = bred[i]; (pT1)
bred[i+2] = bred[i+1]; (pT2)
bred[i+3] = bred[i+2]; (pT3)
bred[i+4] = bred[i+3]; (pT4)

}

(c) Parallelized

for(i=0; i<1024; i+=4){
vc = fblue[i:i+3] != (255,255,255,255);
v pT, v pF = v pset(vc);
bblue[i:i+3] = select(bblue[i:i+3], \

fblue[i:i+3], v pT);
pT1, pT2, pT3, pT4 = unpack(v pT);
bred[i+1] = bred[i]; (pT1)
bred[i+2] = bred[i+1]; (pT2)
bred[i+3] = bred[i+2]; (pT3)
bred[i+4] = bred[i+3]; (pT4)

}

(d) Select applied

for(i=0; i<1024; i+=4){
vc = fblue[i:i+3] != (255,255,255,255);
v pT, v pF = v pset(vc);
bblue[i:i+3] = select(bblue[i:i+3], \

fblue[i:i+3], v pT);
pT1, pT2, pT3, pT4 = unpack(v pT);
if(pT1) bred[i+1] = bred[i];
if(pT2) bred[i+2] = bred[i+1];
if(pT3) bred[i+3] = bred[i+2];
if(pT4) bred[i+4] = bred[i+3];

}

(e) Unpredicated

for(i=0; i<1024; i+=4){
vc = fblue[i:i+3] != (255,255,255,255);
v pT, v pF = v pset(vc);
branch to L1 if v pT is all false;
bblue[i:i+3] = select(bblue[i:i+3], \

fblue[i:i+3], v pT);
L1:
pT1, pT2, pT3, pT4 = unpack(v pT);
if(pT1) bred[i+1] = bred[i];
if(pT2) bred[i+2] = bred[i+1];
if(pT3) bred[i+3] = bred[i+2];
if(pT4) bred[i+4] = bred[i+3];

}

(f) Overhead reduced

Figure 3.2: Example illustrating steps of SLP compilation in the presence of control flow.
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 = SELECT(         ,          ,          );1 10 02 22 2 3 33 33 32 2

Figure 3.3: Merging two superwords using a select instruction.

Step 3: Eliminating superword predicates. In Figure 3.2(d), we show how a su-

perword select operation can be used to select individual fields from two superword

definitions according to the value of a superword predicate variable. Concretely, the ef-

fect of the select operation “dst = select(src1, src2, mask)”, is to assign src2 to

dst for the fields where the corresponding mask bit is 1. Otherwise, src1 is assigned

to dst. Figure 3.3 shows this graphically using superwords of 4 scalar elements. Note

that the effect of this transformation is to execute both control flow paths and select the

value from the one that would have executed in the scalar version of the code. Thus, the

parallelization overhead includes the select instructions, and the cost of executing both

paths. In Section 3.2, we describe how to minimize the number of select instructions

to reduce this overhead.

Step 4: Eliminating scalar predicates. Next, we restore the control flow for the

predicated scalar operations, as shown in Figure 3.2(e). While it is straightforward to

insert control flow corresponding to the predicate on the instruction, this strategy could

result in an enormous amount of additional branches as compared to the original scalar

code. Thus, another important optimization is minimizing the branches, with an attempt

to recover as close as possible the control flow of the original scalar code, as described in

Section 3.3.

Step 5: Reducing parallelization overheads. The code in Figure 3.2(e) produced

by applying the previous four steps can be compiled and run successfully to generate

correct results. However, it suffers from the cost of always executing both control flow

paths and the extra select instruction, which may offset the benefits of parallelism. The

code in Figure 3.2(f) takes advantage of a common instruction supported by multimedia
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extensions, branch-on-superword-condition-codes (BOSCC), which checks the aggregate

value of the condition codes associated with each field of a superword predicate. For

example, a branch-on-none instruction can be thought of as an AND of the condition

codes of all fields of a superword, that is, a branch is taken if none of these condition

codes is true. The parallelization overheads may be significantly reduced if the expression

associated with the BOSCC (branch) is false most of the time.

Discussion. The approach described above has been heavily influenced by features of

the ISA of the target architectures, as well as the current organization of the SLP com-

piler, where we treat the SLP pass as a black box and feed it large basic blocks for

parallelization. If the target architecture supported masked superword operations [62]

and predicated scalar execution [55, 35], the code in Figure 3.2(c) would not need any

further transformations for SLP. The DIVA ISA supports masked superword operations,

but not predicated execution, and the PowerPC AltiVec, the other platform for our work,

supports neither. Thus the compiler must eliminate the predicates on scalar instruc-

tions by restoring control flow, and for architectures including the AltiVec, replace the

predicated superword instructions with select instructions that achieve the same effect.

If the architecture combined SLP support and predication, we could adapt recently-

developed algorithms by Chuang et. al. to generate phi-instructions from the CFG

of a scalar code to resolve the multiple-definition problem in architectures that support

predicated execution [16]. Their phi-instruction is a scalar analog to the superword

select instruction. While it is possible to use the phi-predicated code as an input to

SLP, some scalar phi-instructions would remain and scalar control flow may nevertheless

need to be restored in architectures such as the AltiVec.
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(a) scalar

Vp, Vnp = v_pset(Vb<V0)
Va = V1      (Vp)
Va = V0      (Vnp)
... = Va

(b) parallelized
    intermediate form

Vp, Vnp = Vb < V0
Va1 = V1
Va = select(Va, Va1, Vp)
Va2 = V0
Va = select(Va, Va2, Vnp)
... = Va

(c) naive generation of select

if (b<0){
  a = 1;
}else{
  a = 0;
}
.. = a;

Figure 3.4: Merging two superword definitions.

3.2 Eliminating Superword Predicates

In this section, we show how to remove superword predicates while preserving the seman-

tics of the original program through the use of select operations. Figure 3.4(a) shows

an example sequential code. After if-conversion and parallelization, the control flow is

removed and some instructions are guarded by superword predicates shown in parenthe-

ses as in Figure 3.4(b). The first instruction defines a superword predicate Vp and its

complement Vnp. A field of Vp is set to true if the result of the comparison is true, and

the fields of Vnp are set to the complement of the corresponding fields of Vp. To generate

the final code, it is incorrect to simply remove the superword predicates; for example, the

first definition of Va would be killed by the second definition. Instead, we rename the

second definition and use a select instruction to merge their values into one superword

variable as shown in Figure 3.4(c).

Figure 3.5 presents the algorithm that generates the minimum number of select

instructions required to preserve the original program’s behavior. A select instruction

is required for some but not all definitions of superword variables, as will be discussed

below.

Given a parallelized code with instructions guarded by predicates, we first build a

predicate hierarchy graph (PHG) as defined in Section 2.4.3 [44]. At this stage, instruc-

tions guarded by both scalar predicates and superword predicates can be intermixed.
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Algorithm SEL: Given a sequence of predicated instructions IN, remove
superword predicates from all superword instructions by generating select

instructions.

Build a predicate hierarchy graph(PHG)
DU-chain and UD-chain are built based on Definition 6 using IN and PHG
for each definition d : V = s1 op s2 (P )

NeedSelect ← false
for each use u ∈ DU-chain(d)

if ( ∃ definition d1 ∈ UD-chain(u) such that d1 precedes d in basic block )
NeedSelect ← true
remove the predicate of d1

if ( NeedSelect == true )
rename V to r in d so that d : r = s1 op s2

remove the predicate P of d
Insert “dnew: V = select(V , r, P)” after d
Replace d and d1 with dnew in UD-chain and DU-chain.

Figure 3.5: An algorithm to generate select instructions.

For clarity, the reader can assume that the PHG discussed in this section contains only

superword predicates. Our implementation actually has separate PHGs for superword

and scalar predicates, with connections between the two graphs.

The algorithm relies on both the PHG and UD-chains [2], extended in Definition 6 to

consider the effects of predication. Using the PHG and the notion of reaching definition

(Definition 6), we build DU-chains for the superword definitions and UD-chains for the

corresponding uses as shown in Algorithm SEL of Figure 3.5. Although the PHG involves

both scalar and superword predicate variables, only superword variables are included in

the DU-chains and UD-chains. To correctly handle upward exposed uses, all variables are

assumed to be defined on entry of the basic block, and these definitions are included when

appropriate in the DU-chains and UD-chains. In this way, the compiler can generate a

select instruction when there is an upward exposed use.

The main loop of the algorithm SEL examines each instruction in textual order. An

instruction with definition d needs a select instruction if d reaches at least one use u that

is also reached by an earlier definition d1. If a definition d is the only definition reaching
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bred[i] = fred; (p)
bred[i] = 100; (¬p)
bgreen[i] = fgreen; (p)
bgreen[i] = 100; (¬p)
bblue[i] = fblue; (p)
bblue[i] = 100; (¬p)

(a) Predicated scalar code

if(p == 1) bred[i] = fred;
if(p == 0) bred[i] = 100;
if(p == 1) bgreen[i] = fgreen;
if(p == 0) bgreen[i] = 100;
if(p == 1) bblue[i] = fblue;
if(p == 0) bblue[i] = 100;

(b) Naive unpredicate
applied

if(p){
bred[i] = fred;
bgreen[i] = fgreen;
bblue[i] = fblue;

}else{
bred[i] = 100;
bgreen[i] = 100;
bblue[i] = 100;

}

(c) Improved

Figure 3.6: Restoring control flow.

all its reachable uses, it needs not be combined with anything. Figure 3.4(c) illustrates

this point. The first select instruction is not necessary because no earlier definition

reaches any of its uses.

Excluding store instructions, this algorithm generates the minimal number of select

instructions. Given n definitions to be combined, this algorithm generates n − 1 select

instructions. The minimality can be proven by reducing the definitions to leaf nodes of a

full binary tree.

3.3 Unpredicate

After superword predicates are removed and replaced with select instructions, the code

may still contain predicated scalar operations. The simplest way of removing scalar

predicates is to convert each predicated instruction into an if-statement containing one

statement, as in the example code in Figure 3.6(b). While correct, the code contains

numerous redundant conditional branches, six in this case.

Figure 3.7 presents our algorithm that generates the control flow graph(CFG) repre-

senting the improved code as shown in Figure 3.6(c), given input instruction sequence IN.

The main algorithm, called UNP, is shown in Figure 3.7(a). In addition to deriving the
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Algorithm UNP: Given a sequence of predicated instructions IN, introduce
control flow into the instruction sequence after removing predicates.

PHG ← Build a predicate hierarchy graph
DG ← Build a data dependence graph
CFG ← new basic block(P0) // root node
for each instruction I ∈ IN in textual order

B ← {basic block b | ∀ basic block b′ ∈ CFG
(b′ is reachable from b in CFG) ⇒
(6 ∃ an instruction I ′ ∈ b′ such that I is dependent on I ′)}

if (B == ∅)
B ← NBB(CFG, PHG, I, IN)

else
Move I in IN to next to the last instruction of the

earliest basic block in B
Insert I to end of the earliest basic block b ∈ B

return CFG

(a) UNPredicate main

Algorithm NBB: Given an instructions I, predicate hierarchy graph PHG,
the current control flow graph CFG, and predicated input code IN, generate
a new basic block in CFG.

P ← predicate of I
b ← new basic block(P)
B ← PCB(P, PHG, CFG, IN, I)
for each b′ ∈ B

generate an edge from b′ to b
return b

(b) Create a new basic block

Figure 3.7: Unpredicate algorithm.

38



Algorithm PCB: Given a predicate P, predicate hierarchy graph PHG, the
current control flow graph CFG, predicated input code IN, and an instruction
I, return a set of basic blocks that are predecessors of I.

RET ← ∅
PHG’ ← PHG
I’ ← I.previous
while I’ 6= NULL

P’ ← I’.predicate
if (does cover(P’, P, PHG’) == TRUE)

RET ← RET ∪ I’.block
PHG’ ← mark(PHG’, P’)

if (is covered(PHG’, P) == TRUE)
return RET

I’ ← I’.previous

RET ← RET ∪ {ROOT}
return RET

(c) Predicate covering basic blocks

Figure 3.7: Unpredicate algorithm (Continued).

final control flow graph, UNP derives as an intermediate result a reordered instruction

sequence IN.

UNP starts by building a predicate hierarchy graph, PHG. The superword predicates

have been eliminated and replaced with select operations. However, both superword and

scalar predicates have be considered to account for the scalar predicates unpacked from

the superword predicates. UNP also constructs a data dependence graph for instruction

sequence IN, capturing the ordering constraints on the instruction sequence.

Subsequently, UNP initializes the CFG with a root node associated with a constant

true predicate P0. The main loop iterates through the input instruction sequence IN.

First, we find a set of existing basic blocks where it is safe to insert the given instruction.

An instruction I guarded by predicate P can be inserted in basic block B associated with

predicate P ′ if P = P ′ and there is no data dependence preventing insertion of I into
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B. If the set is not empty, the instruction I is inserted at the end of the earliest such

basic block B. Also, in the input instruction sequence IN , I is moved next to instruction

I ′ that is the immediate prior instruction in B. Although we have already processed I,

moving it in the instruction sequence will facilitate finding predicate covering basic blocks

in Algorithm PCB for subsequent instructions in the stream. If the instruction cannot

be inserted into any existing basic block, we create a new basic block B′ and I is placed

into B′.

When a new basic block B′ is created by Algorithm NBB, the predicate covering basic

block algorithm (PCB) is used to find a set of predecessors of B′. Whereas Mahlke’s

predicate CFG generator scans forward to find a set of successors, we scan the input

instruction sequence backward to find predecessor instructions whose predicates cover

the predicate of the given instruction. Since the instructions in the input instruction

sequence are processed sequentially, all predecessor instructions chosen must have been

inserted already. By keeping a pointer from the inserted instructions to the basic blocks,

the predecessor basic blocks for the new basic block are identified. We create a copy

PHG′ of predicate hierarchy graph PHG so that we may mark covering predicates during

the search for the appropriate basic blocks to connect to the new basic block in the

intermediate CFG. The function does cover(P’, P, PHG’) checks if P ′ covers P in

PHG′. If P ′ is not marked yet in PHG′ and P ′ is not mutually exclusive with P, the

function returns true. The function mark(PHG’, P’) places a mark on a predicate node

P ′ in PHG′ as covered and checks if the predecessor nodes and the successor nodes of

P ′ are also covered as a result of marking. If a node is newly marked, this process is

recursively applied to the neighbors of the node. The function is covered(PHG’, P)

examines PHG′ and returns true if P is marked as covered.
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3.4 Branch-On-Superword-Condition-Code (BOSCC)

Inserting BOSCC instructions is not always profitable. The benefits of BOSCC instruc-

tions depend on properties such as the density of true or false branches, the number of

instructions within a branching construct and the data set size. In the remainder of this

section, we describe the tradeoff space in selecting between the two approaches for SLP

in the presence of control flow; in one approach, BOSCCs are not used whereas they are

used in the other.

The next subsection shows results of a synthetic benchmark to illustrate this tradeoff

space, followed by the compiler analysis and code generation techniques used to exploit

BOSCC. We assume that parallelization has been performed and select instructions

are inserted where control flow paths merge, and focus on using BOSCC to reduce the

overheads introduced by parallelization of multiple control flow paths. The main compo-

nents of the algorithm are: a profitability model for BOSCC instructions (Section 3.4.2);

a profiling phase for collecting data for the BOSCC model (Section 3.4.3); identifying

regions of code and predicates associated with a BOSCC instruction (Section 3.4.4); and

code generation for inserting BOSCC instructions (Section 3.4.5).

3.4.1 The Characteristics of BOSCC

To gain insight into the factors influencing the profitability of BOSCC instructions, we

performed a series of experiments using the following synthetic benchmark.

for(i=0; i<datasize; i++){

temp = A[i];

if (temp == B[i])

C[i] = temp + D[i];

}

In this code, whenever the condition (temp == B[i]) evaluates to false, the code

following the conditional is bypassed. Thus, a BOSCC branch is most profitable when
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Figure 3.8: Run time of synthetic kernels.

the condition evaluates to false. Profitability therefore depends on the true density of

the predicate, the frequency of true values for the branch test. We expect that low true

densities should correspond to more benefit from BOSCC instructions.

We present the results of a set of experiments in the three graphs from Figure 3.8.

In each graph, the horizontal axis corresponds to the true density of the input data set.

We used a random number generator to create data sets with true densities from 0% to

100%.

Each graph shows the execution time of four versions of the code, as a function

of true density. The scalar curve represents the execution time of the original scalar

code. The other three versions were hand-coded in C extended with the Motorola-AltiVec

programming model. The select version corresponds to what would be generated by

the default approach in our compiler, as shown in Figure 3.2(e) and described in [60].

The BON version was derived by adding a branch-on-none(BON ) instruction to the

assembly code of the select version to bypass the code guarded by the conditional when

the test on all fields evaluates to false, similar to the example in Figure 3.2(f). Finally, the

BON+BOA version was derived by adding a branch-on-all(BOA) to the BON version.

The branch-on-all permits an additional optimization which avoids the select operation;

if all fields are known to evaluate to true, then the value of all fields of the corresponding

superword of C are the result of the operation guarded by the conditional.
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In Figure 3.8(a) and (b), the superword size (SWS) is four, that is, each superword

can hold four integer array elements. Therefore the amount of available parallelism in a

superword operation is four. Figures 3.8(a) and (b) show the run times of the benchmark

for two data sizes: in (a) the data size fits in the L1 cache and in (b) the data size is

larger than the L2 cache.

First, we consider the results of Figure 3.8(a). The scalar curve is consistently slower

than the various parallel versions. It performs best when the true density is either very

low or very high. This is because the G4’s branch prediction is most effective when the

branching behavior is consistent. In the select version, the branch is eliminated and

replaced with a merge of fields across the different control flow paths. For this reason,

the execution time is the same regardless of the true density. It has the best performance

among the four versions for true densities at or above 20%. The performance of the

BON version is best for true densities near 0% and is the same as the select version

for true densities above 40%. Interestingly, we see that the slowest performance is at a

true density of 16%, also related to branch prediction accuracy. It is lower than 50%

because the branch-on-none is taken only when the conditions for all four consecutive

scalar comparisons are false. For a superword size of four and true density of D, the

probability for all four conditions to be false is (1−D)4. When two BOSCC instructions

are used for the BON+BOA version, the overhead of an additional branch overcomes any

benefit.

The results of Figure 3.8(b) show how the tradeoff space is affected when the data

footprint exceeds the L2 cache size. As the computation becomes memory bound, the

benefits of parallelization become less significant. Thus, the performance gap between the

scalar and parallel versions is reduced. For true densities below 40%, the scalar version

is actually the fastest. The BON version behaves similarly to the scalar version for low

true densities, while it behaves similarly to the select version for higher true densities.

The BON+BOA version has the best performance for very high true densities.

43



To evaluate the effects of increasing the amount of available parallelism, Figure 3.8(c)

shows the impact of modifying the data type to char, thus increasing the superword

size to 16. This change increases the performance gap between the scalar version and

the other parallel versions for all values of true densities. The various parallel versions

exhibit very similar behavior.

From the experiments shown in Figure 3.8, we can summarize the following con-

clusions. The BOSCC versions incur an overhead due to the addition of branches as

compared to the select version, and sometimes this overhead makes them unprofitable.

For this reason, we have decided in our compiler to use just one BOSCC instruction, com-

parable to the BON version. We have also determined that low true density can be used

as one predictor of profitability. In addition, the profitability of the BON version over

the select version increases as the cost of the instructions in the branch body increases.

Also, as parallelism increases, the profitable true density range of the BON version ac-

tually decreases. While not shown in these experiments, a related profitability criteria

is how many instructions appear in the code bypassed by the branch; more instructions

lead to greater benefit. Finally, the cost of memory access instructions can dwarf the

benefits of parallelizing the computation, but the BON version performs comparably to

the best version for all true densities. In general, while not always the best performing

version, the BON version has behavior that is comparable to the best version for all of

the experiments, whereas both the scalar and select versions sometimes are much slower

than the others. Based on the insights presented in this section, we build a model which

can be used to guide the generation of BOSCC instructions only when profitable.

3.4.2 BOSCC Model

The BOSCC model determines the profitability of using a BOSCC instruction to bypass

code, allowing the compiler to decide whether or not to generate a BOSCC instruction.

The model uses two key properties of the code to determine profitability. The first, PAFS
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(percentage of all false superwords), is the percentage of superword predicates where all

fields are false, and indicates how frequently a BOSCC branch is taken. Determining the

PAFS value associated with a particular superword predicate must be done dynamically,

and is computed in a separate profiling phase as discussed in Section 3.4.3. The second,

NBI (number of bypassed instructions), is the number of instructions bypassed when a

BOSCC branch is taken, which represents the number of instructions for a single execution

of the parallelized code. The NBI can be computed statically by the compiler.

The number of instructions of the select and BOSCC versions are computed by

Equation 3.1 and 3.2 respectively, and a BOSCC instruction is profitable whenever

NI(select) > NI(BOSCC).

NI(select) = NBI (3.1)

NI(BOSCC) = NBI + 1− PAFS ×NBI (3.2)

In Equation 3.2, we add an additional instruction for the BOSCC branch, and subtract

the number of instructions skipped by the BOSCC branch (PAFS × NBI). In reality,

the cost of executing a BOSCC instruction may be higher or lower than that of other

instructions depending on how the branch predictor performs. The additional weight of

executing BOSCC instructions can be varied to improve the precision of the model, but

since it is machine-specific, we omit it here.

Note that this model takes into account the effects discussed in the previous section

of the data type size and associated parallelism, as well as the amount of computation

bypassed by the BOSCC instruction. However, it ignores locality effects, which must be

addressed separately.

To provide intuition as to why parallelization using BOSCC is more profitable than

scalar execution of the equivalent code, let us assume that a scalar instruction is mapped

to a single equivalent superword instruction and that the run time is computed as the
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Algorithm INSTRUMENT: Given a basic block B

P ← find superword predicates(B)
if (P == ∅) return
Insert a basic block counter to B
for each superword predicate pred ∈ P

Insert a counter for pred

(a) Algorithm

vec = vec ld(i 0, ptr);
*( basicblock + 0) = *( basicblock + 0) + 1;
vec118 = vec ld(i 0, ptr133);
vec119 = vec ld(i 0, ptr134);
vec121 = vec cmpeq(vec, vec120);
vec123 = vec cmpeq(vec118, vec120);
vec125 = vec cmpeq(vec119, vec124);
vec126 = vec and(vec121, vec123);
vec127 = vec and(vec126, vec125);
vec129 = vec cmpeq((vector unsigned char)vec127, vec120);
vec130 = vec129;
sel = vec ld(i 0, ptr135);
vec138 = (vector bool char)vec splat u8(0);
instrument = vec all eq(vec130, vec138);
if (instrument == 1)
{
*( superword predicates + 0) = *( superword predicates + 0) + 1;
}
sel = vec sel(sel, vec, vec130);

(b) Example

Figure 3.9: Automatic instrumentation to compute PAFS in profiling phase.
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number of executed instructions. In this specific situation, we can have a parallelized

code using a BOSCC where each instruction is the superword counterpart of the scalar

instruction in the original. The BOSCC can be thought of as the counterpart of the

original scalar branch. If the branch body is executed in the scalar version more than

once out of SWS iterations, the branch body in the BOSCC version will be executed

exactly once for SWS scalar iterations. In this case, the version using BOSCC will run

faster than the scalar version because of less loop overhead. If the branch body is not

executed in the scalar version for SWS iterations, the branch body in the BOSCC version

also will not be executed and will run faster because of less loop overhead.

3.4.3 Profiling Support to Compute PAFS

The PAFS value in the previous model is determined using automatic instrumentation

in a separate profiling phase 1. Figure 3.9(a) shows the simple algorithm for inserting

instrumentation code. First, for each basic block, all superword predicates are identified.

Next, for each basic block that contains superword select instructions, we measure

the total number of times the block is executed and, for each predicate, the number of

BOSCC’s taken. To increment the counter only when the superword predicate contains

false values in all the fields, we also use a BOSCC instruction. Use of BOSCC expedites

the profile run as compared to checking the individual fields in a sequential loop. An

example of instrumented code is shown in Figure 3.9(b). The instructions in bold font

are added for profiling.

1While profiling has limitations in deriving dynamic information, particularly when a different input

data set is used than was used in the profiling stage, we forgo more elaborate approaches for deriving

dynamic information on-the-fly, since issues of deriving dynamic information are orthogonal to the focus

of this work. Other approaches could also be used to derive the value of PAFS.
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Algorithm ISP(B): Given a basic block B

// Initially, all instructions are associated with constant true predicates
for each select instruction I:“dst = select(src1, src2, pred)” ∈ B where dst == src1
// src1 is associated with ’true’ value of pred
// src2 is associated with ’false’ value of pred

predicate(I) ← pred;
IdentifyBranchBody(src2, I, pred);
IdentifyMemoryAccesses(src1, dst, pred);

(a) Identifying superword predicates

Algorithm IdentifyBranchBody(src, I, pred): Given an operand src, an
instruction I and a predicate pred

rd ← reaching definitions of src;
if (rd is not a single reaching definition ∨ I is not the only use of rd)

return;
predicate(rd) ← pred;
for each source operand src of rd

IdentifyBranchBody(src, rd, pred);

(b) Identifying branch body

Algorithm IdentifyMemoryAccesses(src, dst, pred):

rd ← reaching definitions of src
u ← uses of dst
if (rd is single reaching definition ∧ rd is a load ∧

u is the only use ∧ u is a store ∧ rd and u access the same address)
predicate(rd) ← pred
predicate(u) ← pred

(c) Identifying unnecessary memory accesses

Figure 3.10: Algorithm to identify a predicate for instructions.
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3.4.4 Identifying BOSCC Predicates

Prior to code generation, the compiler locates predicates associated with select instruc-

tions and identifies the set of instructions guarded by each predicate. The third operand

of each superword select instruction, as shown in Figure 3.3, represents a predicate.

The algorithm to extend these predicates to other instructions is shown in Figure 3.10.

Initially, a constant true predicate is associated with all instructions. The algorithm in

Figure 3.10(a) scans the code to locate select instructions. For each select instruction

whose first source operand and the destination operand are the same, it associates the

predicate found in the third source operand with the select instruction, and then follows

UD and DU-chains to locate other instructions to which this predicate can be associated.

Two sets of instructions are considered, as shown in Figures 3.10(b) and (c).

The goal of the algorithm in Figure 3.10(b) is to identify the set of instructions that

are executed only when the predicate evaluates to true. The result of a superword select

instruction is the first operand (src1) when the predicate pred contains all false values.

We can therefore bypass any instructions that define the value of the second operand

src2 if all the fields of pred are false. This set of instructions can be thought of as the

branch body from the original program, although it could include an even larger set of

instructions. The algorithm IdentifyBranchBody then recursively follows the definitions

of the variables contributing to the value of src2. Those that have a single definition

reaching a single use can be guarded by the predicate pred, and can be bypassed by

the BOSCC instruction. The goal of the algorithm in Figure 3.10(c) is to eliminate

unnecessary memory accesses occurring when all fields of pred evaluate to false. If a load

to src1 and a store of dst occur in the code, the value is not modified between the load

and store, and no other instructions depend on this load and store, both memory accesses

can be predicated with pred. The algorithm in Figure 3.10 guarantees that at most one

predicate is associated with each superword instruction.
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Algorithm FBR(B): Given a basic block B
n ← 0
Region[0] ← new region(NULL)
current ← prev ← NULL
for each instruction I ∈ B

pred ← predicate(I)
if (current 6= pred)

Region[n].end ← prev
n++
Region[n] ← new region(pred)
Region[n].moved ← false
Region[n].begin ← I
current ← pred

prev ← I
Region[n++].end ← I

for (i=1; i<n; i++)
for (j=i+1; j<n; j++)

if (Region[i].predicate 6= NULL ∧ Region[i].moved == false ∧
Region[i].predicate == Region[j].predicate)
if (Region[j] can be moved after Region[i].end)

move instructions in Region[j] after Region[i].end
Region[j].moved ← true

else if (Region[i] can be moved before Region[j].begin)
move instructions in Region[i] before Region[j].begin
Region[i].moved ← true

return Region, n

(a) Form BOSCC regions

Algorithm Insert-BOSCC(B): Given a basic block B
B′ ← ISP(B)
R, n ← FBR(B′)
for (i=1; i<n; i++)

if (R[i].moved == false ∧ R[i].predicate 6= NULL)
NI select ← # instructions(R[i])
NI boscc ← NI select + 1 - PAFS(R[i]) × NI select
if (NI boscc < NI select)

Insert boscc(R[i])

(b) BOSCC insertion algorithm main

Figure 3.11: BOSCC insertion algorithm.
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3.4.5 Inserting BOSCC Instructions

Figure 3.11(b) shows the main algorithm to insert BOSCC instructions. After the predi-

cate for each instruction is identified, instructions with the same predicate are combined

into a BOSCC region if there are no intervening dependences. In the algorithm shown in

Figure 3.11(a), the initial BOSCC regions are formed by finding consecutive instructions

guarded by the same predicate. Then the BOSCC regions associated with the same non-

constant predicate are merged if no data dependences with the intervening instructions

prevent the code motion. The algorithm first checks if the later region can be moved to

the end of the earlier region. If this is not possible because of the data dependences with

the intervening instructions, the algorithm checks if the earlier region can be moved be-

fore the first instruction of the later region. The goal is to form the largest possible region

guarded by a single BOSCC predicate. The number of adjacent instructions guarded by

the same predicate provides the value of NBI for the BOSCC model, while the value

of PAFS is derived from profiling. If profitable, a BOSCC instruction is inserted just

prior to the instructions that form a BOSCC region, and it branches to the instruction

immediately following the last instruction of the BOSCC region.
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Chapter 4

SUPERWORD-LEVEL LOCALITY

While the most important optimization opportunity for the architectures supporting SLP

is to exploit parallelism in the SIMD functional unit, another as important optimization

is to exploit memory hierarchy to reduce memory access time. Since parallelization is

not as effective when bottleneck is memory accesses, the optimizations targeting memory

hierarchy are even more important for the architectures supporting SLP.

A key idea is to notice that a superword register file offers a much larger space than a

scalar register file to store frequently used data items. We treat the superword register file

as a small compiler-controlled cache. Our approach is distinguished from previous work

on increasing reuse in cache [17, 23, 26, 28, 29, 38, 66, 69], in that the compiler must also

manage replacement, and thus, explicitly name the registers in the code. As compared

to previous work on exploiting reuse in scalar registers [69, 10, 45], the compiler consid-

ers not just temporal reuse, but also spatial reuse, for both individual statements and

groups of references. Exploiting spatial and group reuse in superword registers requires

more complex analysis as compared to exploiting temporal reuse in scalar registers, to

determine which accesses map into the same superword.

We develop an algorithm and a set of optimizations to exploit reuse of data in super-

word registers to eliminate unnecessary memory accesses, which we call superword-level

locality (SLL). In conjunction with exploiting SLP, the algorithm performs what we call
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superword replacement, to replace accesses to contiguous array data with superword tem-

poraries and exploit reuse by replacing accesses to the same superword with the same

temporary. Following this code transformation, a separate compilation pass will be able

to allocate superword registers corresponding to the superword temporaries. To enhance

the effectiveness of superword replacement, it is combined with a loop transformation

called unroll-and-jam, whereby outer loops in a loop nest are unrolled, and the resulting

duplicate inner loop bodies are fused together. Unroll-and-jam reduces the distance be-

tween the reuse of the same superword, when reuse is carried by an outer loop, and brings

opportunities for superword replacement into the innermost loop body of the transformed

loop nest. The optimization algorithm derives appropriate unroll factors for each loop

in the nest that attempt to maximize reuse while not exceeding the number of available

registers.

The remainder of this chapter is organized into 5 sections. Section 4.1 motivates the

problem and introduces terminology used in the remainder of the chapter. Section 4.2

presents an overview of the superword-level locality algorithm. Section 4.3 describes how

the algorithm computes the total number of registers required for exploiting reuse and

the resulting number of memory accesses. Section 4.4 describes aspects of how the search

space is navigated. Section 4.5 presents optimizations to actually achieve this reuse of

data in superword registers.

4.1 Background and Motivation

In many cases superword-level parallelism and superword-level locality are complementary

optimization goals, since achieving SLP requires each operand to be a set of words packed

into a superword, which happens, with no extra cost, when an array reference with

spatial reuse is loaded from memory into a superword register. Therefore, in many cases

the loop that carries the most superword-level parallelism also carries the most spatial
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reuse, and benefits from SLL optimizations. In this chapter, we achieve SLL and SLP

somewhat independently, by integrating a set of SLL optimizations into an existing SLP

compiler [39]. The remainder of this section motivates the SLL optimizations.

Achieving locality in superword registers differs from locality optimization for scalar

registers. To exploit temporal reuse of data in scalar registers, compilers use scalar

replacement to replace array references by accesses to temporary scalar variables, so that

a separate backend register allocator will exploit reuse in registers [10]. In addition,

unroll-and-jam is used to shorten the distances between reuse of the same array location

by unrolling outer loops that carry reuse and fusing the resulting inner loops together [10].

In contrast, a compiler can optimize for superword-level locality in superword registers

through a combination of unroll-and-jam and superword replacement. These techniques

not only exploit temporal reuse of data, but also spatial reuse of nearby elements in the

same superword. In fact, even partial reuse of superwords can be exploited by merg-

ing the contents of two registers containing superwords that are consecutive in memory

(see Section 4.5.4). Thus, as is common in multimedia applications [57], streaming com-

putations with little or no temporal reuse can still benefit from spatial locality at the

superword-register level, in addition to the cache level.

While cache optimizations are beyond the scope of this thesis, we observe that the SLL

optimizations presented here can be applied to code that has been optimized for caches

using well-known optimizations such as unimodular transformations, loop tiling and data

prefetching. When combining loop tiling for caches, superword-level parallelism and

superword-level locality optimizations, the tile sizes should be large enough for superword-

level parallelism, and for unroll-and-jam and superword replacement to be profitable.

These points are illustrated by way of a code example, with the original code shown

in Figure 4.1(a). This example shows three optimization paths. Figure 4.1(d) optimizes

the code to achieve superword level parallelism. In Figures 4.1(b) and (c), we show how

the original program can instead be optimized to exploit reuse in scalar registers, using

54



for(i=0; i<n; i++)
for (j=0; j<n; j++)

a[i][j] = a[i-1][j] * b[i] + b[i+1];

(a) Original loop nest.

for(i=0; i<n; i++)
for (j=0; j<n; j+=SWS)

a[i][j:j+SWS-1] = a[i-1][j:j+SWS-1] \
* b[i] + b[i+1];

(d) Superword-level parallelization (j-loop).

for(i=0; i<n; i+=2)
for (j=0; j<n; j++) {

a[i][j] = a[i-1][j] \
* b[i] + b[i+1];

a[i+1][j] = a[i][j] \
* b[i+1] + b[i+2];

}

(b) Unroll-and-jam on (a)
(i-loop).

for(i=0; i<n; i+=2)
for (j=0; j<n; j+= SWS) {

a[i][j:j+SWS-1] = a[i-1][j:j+SWS-1] \
* b[i] + b[i+1];

a[i+1][j:j+SWS-1] = a[i][j:j+SWS-1] \
* b[i+1] + b[i+2];

}

(e) Unroll-and-jam on (d) (i-loop).

tmp1 = b[0];
for(i=0; i<n; i+=2) {

tmp2 = b[i+1];
tmp3 = b[i+2];
for (j=0; j<n; j++) {

tmp4 = a[i-1][j] \
* tmp1 + tmp2;

a[i+1][j] = tmp4 \
* tmp2 + tmp3;

a[i][j] = tmp4;
}
tmp1 = tmp3;

}

(c) Scalar replacement on (b).

tmp1[0:SWS-1] = b[0:SWS-1];
stmp1 = tmp1[0];
stmp2 = tmp1[1];
field = 2;
for(i=0; i<n; i+=2) {

// ’field’ denotes an index into ’tmp1’
// for stmp3
if(field == 0)

tmp1[0:SWS-1] = b[i+2:i+SWS+1];
stmp3 = tmp1[field];
for (j=0; j<n; j+= SWS) {

tmp2[0:SWS-1] = a[i-1][j:j+SWS-1] \
* stmp1 + stmp2;

a[i+1][j:j+SWS-1] = tmp2[0:SWS-1] \
* stmp2 + stmp3;

a[i][j:j+SWS-1] = tmp2[0:SWS-1];
}
stmp1 = stmp3;
stmp2 = tmp1[field+1];
field = (field+2)%SWS;

}

(f) Superword replacement on (e)

Figure 4.1: Example code for SLL.

55



Original Scalar register reuse SLP only SLP and SLL
Figure 4.1(a) Figure 4.1(c) Figure 4.1(d) Figure 4.1(f)

Reads 3n2 n2/2 + n 2n2 + n2/SWS (n2/2 + n)/SWS
Writes n2 n2 n2/SWS n2/SWS

Table 4.1: Number of array accesses under different optimization paths.

unroll-and-jam and scalar replacement, respectively. In Figures 4.1(e) and (f), we combine

these ideas, using unroll-and-jam and superword replacement, respectively, to transform

the code in (d) for both superword-level parallelism and superword-level locality.

Table 4.1 shows how the three different optimization paths affect the number of array

accesses to memory in the final code. The original code has n2 reads and writes to

array a and 2n2 reads to array b. Exploiting superword-level parallelism in loop j, as in

Figure 4.1(d) reduces the number of reads and writes to array a by a factor of SWS since

each load or store operates on SWS contiguous data items; for array b, there is no change

since the array is indexed by i rather than j. If instead the code was optimized for scalar

register reuse, as in Figure 4.1(c), we can reduce the number of array reads of a down

by a factor of 2, and reads of b by a factor of n, with the number of writes remaining

the same. By combining superword-level parallelism and superword-level locality as in

Figure 4.1(f), we see that the number of reads and writes is further reduced by a factor of

SWS. Figure 4.1(f) illustrates some of the challenges in exploiting reuse in superwords.

Analysis must identify not just temporal, but also spatial reuse, and for both individual

statements and groups of references. The compiler also must generate the appropriate

code to exploit this reuse; for example, we select scalar fields of b from the superword,

since we are not parallelizing the i loop. The remainder of this chapter describes how the

compiler automatically generates code such as is shown in Figure 4.1(f).
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4.2 Overview of Superword-Level Locality Algorithm

The superword-level locality algorithm has three main steps, as summarized below. Each

step will be described in more detail in the three subsequent sections.

Step 1: Identifying Reuse. The first step of the algorithm is to identify both array

references and loops carrying reuse. The array references carrying reuse are the ones for

which superword replacement may be applicable. The loops carrying reuse are the ones

to which the algorithm will consider applying unroll-and-jam.

Section 2.2 gives a detailed description of data reuse. For the purposes of this al-

gorithm, the relevant dependences carrying reuse are a subset, and are characterized as

follows:

1. We consider only true dependences, input dependences, and output dependences.

2. We consider only lexicographically positive dependences.

3. A dependence vector must be consistent, or it must be invariant with respect to

one of the loops in the nest.

Applying unroll-and-jam to a loop i with a consistent dependence varying with respect

to loop i can create loop-independent dependences in the innermost loop of the unrolled

loop body. In the example in Figure 4.1(a), there is a true dependence between references

A[i][j] and A[i−1][j] with distance vector 〈1, 0〉. After unroll-and-jam, a loop-independent

dependence is created between A[i][j] in the first statement and A[i][j] in the second

statement of the loop body, creating a reuse opportunity.

In addition to reuse between copies of a reference created by unrolling, there can be

reuse across loop iterations. References with consistent dependences carried by a loop

have group reuse which can be exploited by using extra registers to hold the data across

iterations. As in previous work [10], our algorithm exploits reuse across iterations of the
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for(i=0; i<N; i+=4){
vec1[0:3] = A[i:i+3];
vec2[0:3] = A[i+8:i+11];

...
}

(a) Original

tmp[0:3] = A[i:i+3];
vec2[0:3] = A[i+4:i+7];
for(i=0; i<N; i+=4){

vec1[0:3] = tmp[0:3];
tmp[0:3] = vec2[0:3];
vec2[0:3] = A[i+8:i+11];

...
}

(b) After exploiting reuse

Figure 4.2: Reuse across iterations.

innermost loop only, because exploiting reuse carried by an outer loop could potentially

require too many registers to hold the data between uses. Figure 4.2 shows how reuse

can be exploited across iterations of the innermost loop by using one register to keep the

data that is reused on every two iterations.

For loop-invariant references, unroll-and-jam generates loop-independent dependences

between the copies of the reference in the unrolled loop body, since the same location is

being referenced by each copy.

Step 2: Determining unroll factors for candidate loops. The algorithm next

determines the unroll factors for each candidate loop that carries reuse, as previously

described, and for which unroll-and-jam is legal. The optimization goal is as follows.

Optimization Goal: Find unroll factors 〈X1,X2, ...Xn〉 for loops 1 to n in

an n-deep loop nest such that the number of memory accesses is minimized,

subject to the constraint that the number of superword registers required does

not exceed what is available.

The algorithm determines the unroll factors 〈X1,X2, ...Xn〉 by searching for the com-

bination of unroll factors that satisfies the above optimization goal. To guide the search,

the algorithm calculates the total number of registers required for exploiting reuse, which
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is the sum of the number of superwords accessed by the references in the loop body after

unroll-and-jam is applied, plus the number of registers needed for holding data across iter-

ations of the innermost loop. Section 4.3 describes how the algorithm computes the total

number of registers required for exploiting reuse and the resulting number of memory

accesses. Section 4.4 describes aspects of how the search space is navigated.

Step 3: Code Transformations - Unroll-and-Jam, Superword Replacement,

and Related Optimizations. Once the unroll factors are decided, unroll-and-jam

is applied to the loop nest. Array references are replaced with accesses to superword

temporaries. As part of code generation, our compiler performs related optimizations to

reduce the number of additional memory accesses and register requirements introduced

by the SLP passes. These code transformations are the topic of Section 4.5.

4.3 Modeling Register Requirements & Number of Memory

Accesses

This section presents the computation of the number of registers required for exploiting

data reuse in superword registers and the resulting number of memory accesses, which

are the parameters used to guide the search for the combination of unroll amounts to be

applied to the loop nest. The next subsection describes how the algorithm computes the

superword footprint, which represents the number of superwords accessed by the unrolled

iterations of the loop nest as a function of the unroll factors. Subsection 4.3.2 presents

the computation of the extra registers needed for reusing data across loop iterations. The

total number of registers and the corresponding number of memory accesses are computed

in subsection 4.3.3.
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4.3.1 Computing the Superword Footprint

This section presents the computation of the superword footprint of the references V

in a loop nest, FL(V ), after unroll-and-jam is applied to the nest with unroll factors

〈X1,X2, ...,Xn〉.

The algorithm for computing the superword footprint for a loop nest first partitions

the references in the loop into groups of uniformly generated references [69](See Sec-

tion 2.2) 1. Then, for each group of references, it computes the number of superwords

accessed in the unrolled loop body. Finally, the total number of superwords is computed

as the sum of those of each group of uniformly generated references.

We first discuss how to compute the superword footprint of a single reference as a

function of the unroll factors of each unrolled loop. Then we discuss how to compute

the superword footprint of a group of uniformly generated references. The superword

footprint of a group may be smaller than the sum of the individual footprints, since the

same superword may be accessed by two or more copies of the original references when

the loops are unrolled.

Our method determines the number of superword registers required to hold the data

accessed by the references in the unrolled loop body. However, extra registers may be

needed to, for example, align a superword operand which is already kept in superword

registers. That is, the computation may require more registers than those needed for

storing the data. Therefore, we reserve some scratch registers for manipulating data and

compute the number of registers needed just for storing the data accessed in the unrolled

loops.

To simplify the presentation, we assume a loop nest of depth n where all array ref-

erences have array subscripts that are affine functions of a single index variable (SIV

1We assume that two or more references that access the same array, but are not uniformly generated,

access distinct data in memory, which results in a conservative estimate of the number of superwords

accessed by the group and of the number of registers required.
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subscripts) 2. We also assume that each p-dimensional array referenced by the loop is

defined as A[sp][sp−1] . . . [s1], where sh is the size of dimension h, 1 ≤ h ≤ p. Dimen-

sion 1 is the lowest dimension of the array, i.e., the dimension in which consecutive

elements are in consecutive memory locations. A reference v to array A is then of the

form A[ap∗lp+bp][ap−1∗lp−1+bp−1] . . . [a1∗l1+b1]. Thus, a reference with SIV subscripts

has each array dimension h associated with just a single loop index variable in the nest,

and the loop index variable associated with h is represented as lh. We also assume that

the arrays are aligned to a superword in memory and that the loops are normalized.

4.3.1.1 Superword Footprint of a Single Reference

For each reference v with array subscripts ah ∗ lh + b, where h is the array dimension and

lh is the loop index variable appearing in subscript h, the number of superwords accessed

by all copies of v when lh is unrolled by Xlh is given by the superword footprint of v in

lh, or Flh(v).

When dimension h is the lowest array dimension (h = 1), the superword footprint is

given by Equation (4.1). Equation (4.1a) corresponds to the footprint of a loop-invariant

reference. Equation (4.1b) corresponds to the footprint of a reference with self-spatial

reuse within a superword, as illustrated in Figure 4.3(a), and (4.1c) holds when the

reference has no spatial reuse.

Flh(v) =























1 (a) if ah = 0
⌈

Xlh
∗ah

SWS

⌉

(b) if ah < SWS

Xlh (c) if ah ≥ SWS

(4.1)

When h is one of the higher dimensions, 1 < h ≤ p, and loop lh is unrolled, the offset

between the footprints of each copy of v is ah ∗
∏h−1

i=1
si, where si is the size of the ith

2Our current implementation can handle affine SIV subscripts and certain affine MIV subscripts.
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a*1 + b
a*2 + b
a*3 + b
a*4 + b

a*(Xlh-1) + b
a*Xlh + b

superword

superword footprint of size = a*Xlh

sws

superword footprint:

l
 
=
 
1
,
.
.
.
,
X
l
h

Superwords
in memory

(a) h = 1 and ah < SWS

... ... ...

Π
h-1

i=1
si

Superwords
in memory

(ah*1+b)*Π
h-1

i=1
si

(ah*2+b)*Π
h-1

i=1
si

(ah*Xlh+b)*Π
h-1

i=1
si

...

a*Π
h-1

i=1
sioffset =

sh*Π
h-1

i=1
si

(b) h 6= 1

Figure 4.3: Superword footprint of a single reference.

array dimension, as shown in Figure 4.3(b). Assuming that the size of the lowest array

dimension (s1) is larger than SWS, which is usually the case in practice for realistic array

dimensions, each copy of v in the unrolled loop body corresponds to a separate footprint,

as shown in Figure 4.3(b). Therefore the size of the footprint of v in lh is the sum of

the Xlh disjoint footprints, and is recursively defined by Equation (4.2), where Fl1(v) is

computed as in Equation (4.1).
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Flh(v) = Xlh ∗ Flh−1
(v)

= (

h
∏

i=2

Xli) ∗ Fl1(v) (4.2)

For a single reference, the number of superword registers required to keep the super-

word footprint given by Equation (4.1) and the number of scalar registers that would be

required if the same unroll factors were used differ only when ah < SWS, that is, when

spatial reuse can be exploited in superword registers. For a group of uniformly generated

references the analysis must also consider group reuse, as discussed next.

4.3.1.2 Superword Footprint of a Group of References

The number of superwords accessed by a group of uniformly generated references V =

{v1, v2, ..., vm} when loop lh is unrolled by Xlh is the superword footprint of the group,

Flh(V ). The superword footprint of a group consists of the union of the footprints of the

individual references, as some of the reference footprints may overlap, depending on the

distance between the constant terms in the array subscripts.

The footprints of two uniformly generated references may overlap in dimension h

only if they overlap in all dimensions higher than h. For example, the footprints of

references A[2i][j + 2] and [2i + 1][j] do not overlap in the highest (row) dimension, since

the first reference accesses the even-numbered rows of the array and the second accesses

the odd-numbered rows. Therefore the footprints cannot overlap in the lowest (column)

dimension. On the other hand, the footprints of A[2i][j + 2] and A[2i + 4][j] overlap in

the row dimension for iterations i1, i2, 1 ≤ i1, i2 ≤ Xi, such that 2i1 = 2i2 + 4. For the

iterations of i in which the footprints overlap in the row dimension, the footprints may

overlap in the column dimension if there exist iterations j1, j2, 1 ≤ j1, j2 ≤ Xj, such that

j1 + 2 = j2.
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Flh(v1, v2) =















Xlh + (b2 − b1)/ah (a) if ah ≥ SWS and (b2 − b1) < ah ∗Xlh

and (b2 − b1) mod ah = 0
d(ah ∗Xlh + b2 − b1)/SWSe (b) if ah < SWS and (b2 − b1) < ah ∗Xlh

Flh(v1) + Flh(v2) (c) otherwise
(4.3)

superword footprint:
superword
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,
.
.
.
,
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l
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Superwords
in memory

...

a*1 + b1

a*2 + b1

a*Xlh + b1

...

a*1 + b2

a*2 + b2

a*Xlh + b2

...

...

(a) ah ≥ sws and (b2-b1) < ah*Xlh

        and (b2-b1) mod ah=0           

superword

l
 
=
 
1
,
.
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,
X
l
h

Superwords
in memory

...

a*1 + b1

a*2 + b1

a*Xlh + b1

...

a*1 + b2

a*2 + b2

a*Xlh + b2

...

(b) ah < sws and (b2-b1) < ah*Xlh

...

Figure 4.4: Superword footprint of a group of references.
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(d) ah < sws and (b2-b1) ≥ ah*Xlh

...

Figure 4.4: Superword footprint of a group of references (Continued).
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The superword footprint FL(V ) of a group V , following unroll-and-jam, is computed

as follows. First, the array dimensions with array subscripts that are a function of any of

the unrolled loops are identified. Then, for each such dimension h, from highest to lowest

dimension, the footprint is computed assuming that the footprints of the references in

the group overlap in the higher dimensions. For each dimension h > 1, the algorithm

partitions references into subsets such that each subset corresponds to a disjoint footprint

in dimension h. Then, for each subset, the algorithm recursively computes the footprint

in dimension h− 1, as we now describe.

Dimension h is the lowest dimension (h = 1). We first compute the group footprint

of two array references, and then we extend it for m references. The footprint of group

V = {v1, v2}, where references v1 and v2 have lowest dimension subscripts ah ∗ lh + b1 and

ah ∗ lh + b2 such that b1 ≤ b2, when loop lh is unrolled by Xlh is given by Equation (4.3)

in Figure 4.4. Equations (4.3a) and (4.3b) apply when the two footprints overlap, that

is, when (b2− b1) < ah ∗Xlh , as shown in Figures 4.4(a) and (b). When the footprints do

not overlap, the group footprint is the sum of the individual footprints, as in Equation

(4.3c), with examples in Figures 4.4(c) and (d).

In Figure 4.4(a), the references have no self-spatial reuse, that is, ah ≥ SWS, and

each individual footprint is a set of Xlh superwords. The footprints overlap if (b2 − b1)

is evenly divided by ah and there exists an integer value k, 1 ≤ k ≤ Xlh , such that

k = 1+(b2−b1)/ah. This case corresponds to Equation (4.3a), which computes the group

footprint precisely when the two references have group-temporal reuse. In Figure 4.4(b),

both references have self-spatial reuse within a superword, that is, ah < SWS. The

corresponding footprint size is given by Equation (4.3b). In Figure 4.4(c), v1 has no self-

spatial reuse and each copy of v1 in the unrolled loop body accesses a distinct superword,

and the same is true for v2. In Figure 4.4(d) both v1 and v2 have self-spatial reuse.
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The footprint of a group V = {v1, v2, ..., vm}, with array subscripts a1 ∗ l1 + bi such

that 1 ≤ i ≤ m and b1 ≤ b2 ≤ ... ≤ bm, is computed by first partitioning V into

subgroups with disjoint footprints in the lowest dimension, as follows. A subgroup Vi =

{vimin
, vimin+1

, ..., vimax
} is defined by lowest dimension subscripts a1 ∗ l1 + bj , where

∀j, imin < j ≤ imax,

(bj−1 ≤ bj) ∧

(bj − bj−1 < a1 ∗Xl1) ∧

(bimin
= b1 ∨ bimin

− bimin−1 ≥ a1 ∗Xl1) ∧

(bimax
= bm ∨ bimax+1 − bimax

≥ a1 ∗Xl1) (4.4)

Then the group footprint V is computed as the sum of the disjoint footprints of sets

Vi, as in (4.5).

Flh(V ) =
∑

i

Flh(Vi) (4.5)

The footprint of each subgroup Vi is computed by extending Equation (4.3) to m > 2 refer-

ences. For example, when the references in V have self-spatial reuse, as in Equation (4.3b)

(a1 < SWS), each subgroup Vi has a footprint consisting of contiguous superwords, since

bj − bj−1 < a1 ∗Xl1 for all j such that imin < j ≤ imax. The footprint of Vi consists of

the union of the individual footprints, with size given by Equation (4.6).

Flh(Vi) = Flh({vimin
, ..., vimax

})

=

⌈

a1 ∗Xl1 + bimax
− bimin

SWS

⌉

(4.6)

For example, if SWS = 4 and X = 4, group V = {A[i], A[i + 2], A[i + 5], A[i +

12], A[i + 14]} can be partitioned into two subgroups V1 = {A[i], A[i + 2], A[i + 5]} and

V2 = {A[i + 12], A[i + 14]} with disjoint superword footprints. Since the references have
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self-spatial reuse, each individual footprint and the footprint of each subgroup is a set of

contiguous superwords. The total number of superwords accessed by the references in V

is the sum of the disjoint footprints of sets V1 and V2, as in (4.7).

Fl1(V ) = Fl1(V1) + Fl1(V2)

=

⌈

1 ∗ 4 + 5− 0

4

⌉

+

⌈

1 ∗ 4 + 14− 12

4

⌉

= 5 (4.7)

Dimension h is not the lowest dimension (h 6= 1). When h is one of the higher

dimensions, the superword footprint of V = {v1, v2, ..., vm} in loop lh is again the union

of the individual footprints.

From Section 4.3.1.1, the footprint of each reference vi in the unrolled loop body

consists of a set of Xlh disjoint footprints (each footprint corresponding to a copy of

vi created by unrolling), and the offset between each pair of consecutive footprints is

ah ∗
∏h−1

i=1
si, where si is the size of dimension i.

Therefore the footprints of different references in the group may overlap, depending on

the values of ah, bj and the unroll factor Xlh . The footprints of two uniformly generated

references v1 and v2 overlap in dimension h if there exists an integer value k, 1 ≤ k ≤ Xlh

that satisfies Condition (4.8):

ah ∗ k + b1 = ah + b2. (4.8)

that is, if (b2 − b1)%ah = 0 and (b2 − b1)/ah + 1 ≤ Xlh . Furthermore, if there exists k

satisfying the above condition, the footprints of the last Xlh − k + 1 copies of v1 in the

unrolled loop body overlap with those of the first Xlh − k + 1 copies of v2. The footprint

of {v1, v2} is then given by Equation (4.9).
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Flh(v1, v2) = (k − 1) ∗ Flh−1
(v1)

+ (Xlh − k + 1) ∗ Flh−1
(v1, v2)

+ (k − 1) ∗ Flh−1
(v2) (4.9)

To compute the size of the entire footprint of V in lh, our algorithm partitions V into

subsets Vi = {vimin
, ..., vimax

} such that, for any j, imin < j ≤ imax, the pair {vj−1, vj}

satisfies Condition (4.8). The footprint of Vi is the union of the footprints of its reference

set and is computed by extending Equation (4.9) to more than two references.

4.3.2 Registers for Reuse Across Iterations

In addition to superword registers for exploiting reuse in the body of the transformed

loop nest, extra superword registers may be required for exploiting reuse across iterations

of the innermost loop for references with group-temporal reuse carried by the innermost

loop n of the transformed loop nest.

To compute the number of registers needed to exploit group-temporal reuse across

iterations of loop n, the algorithm examines groups of references that have consistent

dependences carried by n 3. Assume that unroll-and-jam has been applied to outer loops

in a nest. After subsequently unrolling the innermost loop, extra registers are required if

the reuse distance between references prior to unrolling loop n is larger than the unroll

amount, i.e., if dn > Xn, as in Figure 4.2, where dn = 8 and Xn = 4.

Let C = {v1, v2, ...vm} be a set of references that is a subset of a uniformly generated

set, and, prior to unrolling the innermost loop resulting from unroll-and-jam by Xn, each

pair 〈vi, vi+1〉 in C has a consistent dependence di = 〈0, 0, ..., di
n〉, di

n > 0. Also, assume

that the array subscript of the lowest dimension of each reference vi in C is of the form

3Note that such references, if their lowest dimension varies with n, may also have group-spatial reuse

across loop iterations. However, our algorithm focuses on exploiting group-temporal reuse across itera-

tions, since most of the group-spatial reuse is achieved within the body of the unrolled loop.
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ai ∗ n + bi, and that b1 ≤ b2 ≤ ... ≤ bm. Unrolling loop n generates Xn copies of each

original reference vi in the body of the transformed loop nest.

When di
n is a multiple of the unroll factor Xn, each pair of copies of references 〈vi,

vi+1〉 will reuse data after di
n

Xn
iterations. When di

n is not a multiple of Xn, some copies

of a reference will reuse data after
⌈

di
n

Xn

⌉

− 1 iterations of n, while others will have a

reuse distance of
⌈

di
n

Xn

⌉

requiring one more register per copy. Thus, each pair of copies of

references 〈vi, vi+1〉 requires at most
⌈

di
n

Xn

⌉

− 1 additional superword registers to keep the

data across iterations of the innermost loop.

The number of registers required to exploit reuse across iterations of n by all pairs

of copies is the number of registers required for each pair times the number of registers

required to keep the superword footprint of reference vi in the transformed loop nest:

RA(vi, vi+1) = (

⌈

di
n

Xn

⌉

− 1)× FL(vi) (4.10)

Equation (4.10) may overestimate the number of registers if the footprint component

(FL(vi)) overestimates registers, or for certain copies of references if di
n is not a multiple

of Xn.

The total number of registers required for exploiting reuse across iterations for set C

with leading reference v1 is given by:

RA(C) =
∑

1≤i<m

(

(

⌈

di
n

Xn

⌉

− 1)× FL(v1)

)

(4.11)

4.3.3 Putting It All Together

Subsections 4.3.1 and 4.3.2 describe the computation of the number of registers required

to exploit reuse in the body of the innermost loop (superword footprint) and across

iterations of the innermost loop, assuming that unroll-and-jam has been applied the loop

nest. This section presents the computation of the total number of registers required and
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the total number of memory accesses in the innermost loop of the transformed loop nest,

which are the metrics used to prune and guide the search for unroll factors described in

Section 4.2.

The total number of registers required to exploit reuse is the sum of the superword

footprint of the references in the innermost loop of the transformed loop nest and the

number of registers needed for exploiting reuse across iterations of the same innermost

loop.

The superword footprint of the references, FL(V ), is computed as in subsection 4.3.1.

The total number of extra registers required for exploiting reuse across iterations of the

innermost loop is computed as in subsection 4.3.2, for each set C of loop-variant references

with consistent dependences carried by the innermost loop.

The total number of superword registers required is then:

R(V ) = FL(V ) +
∑

C

RA(C) (4.12)

The total number of memory accesses in the innermost loop of the transformed loop

nest is the sum of the memory accesses of each group C of references that are variant

with the innermost loop n and have consistent dependences carried by n. For each group

C, the number of memory accesses is given by the superword footprint of the leading

reference of the group, vc
1:

M(C) = FL(vc
1) (4.13)

The total number of memory accesses is then:

M(V ) =
∑

c

FL(vc
1) (4.14)
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4.4 Determining Unroll Factors

As previously stated, the goal of the search algorithm is to identify the unroll factors

for the loops in the loop nest such that the number of memory accesses is minimized,

without exceeding available registers. Thus, we must consider an n−dimensional search

space, where each dimension has the number of elements corresponding to the iteration

count of the loop. A full global search of this search space is prohibitively expensive,

especially for deep loop nests or large loop bounds. Thus, we use a number of strategies

for pruning the search space.

First, we eliminate from the search loops that do not carry reuse or for which unroll-

and-jam is not safe. Further, we rely on the observation that the number of registers

required monotonically increases with the unroll factor of a loop, assuming that all other

unroll factors are fixed. Thus, we need not search beyond the unroll factors that exceed

available registers. This latter point significantly prunes the search space in that the

number of registers is usually fairly small (e.g., 32 superword registers on the AltiVec),

so that the search is concentrated on fairly small unroll factors. These pruning strategies

are used in our current implementation, and at least for the programs in this study, are

quite effective at making the search practical.

Further pruning is possible by making the additional observation that for each unrolled

loop l, the amount of reuse of an array reference with reuse carried by l increases with the

unroll factor Xl. Therefore reuse, like the register requirement calculation, is a monotonic,

non-decreasing function of the unroll factor for each loop, given that the unroll factor of all

other loops is fixed. Thus, within each dimension, holding all other unroll factors constant,

binary search can be used rather than searching all points. We can also increase unroll

factors by amounts corresponding to the superword size without much loss of precision,

rather than considering each possible unroll factor, since the register requirements increase

stepwise as a function of superword size. Additional pruning techniques that take into
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account the hardware’s capability to take advantage of the results of optimization have

been used in prior work [10, 63].

Our implementation navigates the search space from innermost loop to outermost

loop, for the applicable loops in the nest, varying the unroll factor of one loop while

keeping the unroll factors of all other loops fixed. Within a dimension of the search

space, the lowest number of memory accesses will be derived at the largest unroll factor

that meets the register constraint. However, lower unroll factors may also have the

same estimate of memory accesses (because reuse is monotonically non-decreasing), so

we identify the lowest unroll factor with the equivalent estimate of memory accesses.

Then, the implementation considers the next applicable outer loop and the applicable

inner loops nested inside it, and in a particular dimension, each time it reaches the

largest unroll factor that meets the register constraint, it compares the estimated number

of memory accesses to the lowest estimate so far to determine if a better solution has been

found. The final result of the algorithm is the unroll factors corresponding to the best

solution. As a subtle point, when unroll-and-jam is applied from outermost to innermost

loop, unrolling the inner loop does not affect data access patterns or reuse distance. For

this reason, inner loop unrolling is not performed in earlier work [10]. In our context,

however, because of the relationship between superword-level parallelism and superword

replacement, inner loop unrolling exposes opportunities for superword loads and stores

and thus can impact the analysis of register requirements. Nevertheless, when reuse is

exploited across iterations of the innermost loop body as described in Section 4.3.2, it

is not necessary to unroll the innermost loop beyond the superword size to achieve the

goal of considering register requirements in conjunction with superword-level parallelism.

Note, however, that smaller unroll factors for the innermost loop may be selected, if an

unroll-and-jam of an outer loop carries more parallelism and reuse.

Although this search should theoretically find the optimal solution, according to our

optimization criteria, in fact the solution is not guaranteed to result in the fewest number
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of memory accesses, for a number of reasons. First, in a few cases as noted, the register

requirement analysis defined in the previous section must conservatively approximate.

Second, it is difficult to estimate the register requirements used to hold temporaries,

so we conservatively approximate this as well. Third, there is a tradeoff between using

extra registers to hold values across iterations, as discussed in Section 4.3.2, versus using

them to actually exploit reuse within the transformed innermost loop body. In fact, in

general the algorithm does not take into consideration the amount of reuse resulting from

performing superword replacement on specific references; replacing some references has

more impact on decreasing memory accesses than others.

4.5 Code Transformations

The previous two sections have described how the compiler analyzes the code to identify

reuse, register requirements and the unroll factors leading towards the lowest number of

memory accesses. In this section, we describe how these analyses are used in transforming

the code to achieve the desired result.

In the previous section, we showed how consideration of superwords instead of scalar

variables greatly increases the complexity of determining the number of registers and

memory accesses associated with exploiting reuse under different unroll amounts. In this

section, we further discuss the increased complexity of code generation when performing

superword replacement instead of scalar replacement. The chief source of code generation

complexity is the need for superword objects to be properly aligned, as in the following

examples.

When performing memory operations, the architecture may actually require that an

access be aligned at superword boundaries. For example, the AltiVec ignores the last four

bits of an address when performing a superword load or store. In such an architecture,

when an access is not aligned at a superword boundary, the compiler or programmer
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must read/write two adjacent superwords. A series of additional instructions packs the

two superwords for reads or unpacks a superword into its corresponding two superwords

for writes. Even on architectures that support memory accesses not aligned at superword

boundaries, such as Intel’s SSE, there is a performance penalty on unaligned accesses

because the hardware must perform this realignment.

To perform an arithmetic or logical operation on two superword registers, the fields

of the two operands must also be aligned. For example, to add the third and fourth fields

of one superword register to the first and second fields of another, one of the registers

must be shifted by two fields. Consider also the following example:

for i = 1, n

c[i] = a[2i] + b[i]

The access to a has a stride of 2, while the access to b has a unit stride. Thus, the

compiler or programmer must first pack the even elements of a into a superword register

before adding them to the elements of b. A third example occurs when exploiting partial

reuse of a superword where data in a register must be aligned to accommodate the next

operation.

In the SLP compiler, the default solution to alignment involves packing data through

memory. The SLP compiler allocates superword variables by declaring them using a

special vector type designation, which is interpreted by the backend compiler to align

the beginning of the variable to a superword boundary in memory. The start of each

dimension of an array of such objects should also be aligned, by padding if necessary.

Under these assumptions, the SLP compiler can detect when operations are unaligned.

Unaligned data is packed into an aligned superword in memory before being loaded into

a superword register, and is unpacked before storing back to memory 4.

4For architectures that support copying between scalar and superword register files, such as Intel’s

SSE and DIVA, this packing can be performed more efficiently through register copies.
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In summary, alignment is a key consideration in code generation, and the overhead

of performing alignment operations can be quite high. Further, alignment operations

may require a number of additional superword registers, and in some cases, may result in

additional accesses to memory not accounted for by the model in the previous section. In

this section, we show how to achieve the number of registers derived by our model through

a set of code transformations, presented in the order in which they are performed by our

compiler. In addition to superword replacement, described in Section 4.5.2, we also

describe how index set splitting is used to align accesses to the beginning of an iteration

in Section 4.5.1, and how our compiler eliminates additional memory accesses resulting

from packing through memory for alignment in Section 4.5.3. We illustrate how these

transformations collaborate with each other by way of an example in Figure 4.5, which

is a simplified FIR filter.

4.5.1 Index Set Splitting

A simple way to reduce the need for alignment operations, when applicable, is to perform

index set splitting on loops. For example, in Figure 4.5(b), the initial access to out[1]

refers to the second field of a superword, assuming out[0] is aligned at a superword

boundary. Through index set splitting, the portion of the loop from line 4-6 will always

perform aligned accesses. This transformation is always safe, and is profitable whenever

it increases the number of aligned memory accesses.

We assume index set splitting is performed prior to the SLP compiler. The loop is

transformed so that accesses corresponding to a particular reference in the main loop body

are aligned to superword boundaries. If there are multiple references and different choices

for index set splitting are needed to align specific references, we select a representative

reference that, if aligned through index set splitting, will also maximize alignment for

other references. The reference selected must have unit stride within the innermost loop.
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1) for (i = 1; i < 64; i++)
2) out[i] = 0.0;
3)
4) for (i = 256; i < 320; i++)
5) for (j = 0; j < 256; j++)
6) out[i-256] = out[i-256] + in[i-j] * coe[j];

(a) Original

1) for (i = 1; i < 4; i++)
2) out[i] = 0.0;
3)
4) for (i = 4; i < 64; i++)
5) out[i] = 0.0;
6)
7) for (i = 256; i < 320; i++)
8) for (j = 0; j < 256; j++)
9) out[i - 256] = out[i - 256] + in[i - j] * coe[j];

(b) After index set splitting

1) for (i = 1; i < 4; i++)
2) out[i] = 0.0;
3)
4) for (i = 4; i < 64; i += 4){
5) out[i + 0] = 0.0;
6) out[i + 1] = 0.0;
7) out[i + 2] = 0.0;
8) out[i + 3] = 0.0;
9) }
10) for (i = 256; i < 320; i += 8)
11) for (j = 0; j < 256; j += 8){
12) out[i + 0 - 256] = out[i + 0 - 256] + in[i + 0 - (j + 0)] * coe[j + 0];
13) out[i + 0 - 256] = out[i + 0 - 256] + in[i + 0 - (j + 1)] * coe[j + 1];

14)
...

15) out[i + 7 - 256] = out[i + 7 - 256] + in[i + 7 - (j + 7)] * coe[j + 7];
16) }

(c) After unroll-and-jam

Figure 4.5: Code generation example.
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...
1) flat1 = *((float *)&vec0 + 3);
2) flat2 = *((float *)&vec1 + 0);
3) flat3 = *((float *)&vec1 + 1);
4) flat4 = *((float *)&vec1 + 2);
5) *((float *)&vec2 + 0) = flat1;
6) *((float *)&vec2 + 1) = flat2;
7) *((float *)&vec2 + 2) = flat3;
8) *((float *)&vec2 + 3) = flat4;
9) vec4 = vec add(vec3, vec2);
10) vec st(vec4, i * 4 + 0, (float *)&out[-63]);
11) vec5 = vec ld(i * 4, (float *)&out[-63]);
12) flat5 = *((float *)&vec6 + 2);
13) flat6 = *((float *)&vec7 + 2);
14) *((float *)&vec8 + 0) = flat5;
15) *((float *)&vec8 + 1) = flat6;

...

(d) After SLP compilation

...
1) flat1 = *((float *)&vec0 + 3);
2) flat2 = *((float *)&vec1 + 0);
3) flat3 = *((float *)&vec1 + 1);
4) flat4 = *((float *)&vec1 + 2);
5) *((float *)&vec2 + 0) = flat1;
6) *((float *)&vec2 + 1) = flat2;
7) *((float *)&vec2 + 2) = flat3;
8) *((float *)&vec2 + 3) = flat4;
9) vec4 = vec add(vec3, vec2);
10) flat5 = *((float *)&vec6 + 2);
11) flat6 = *((float *)&vec7 + 2);
12) *((float *)&vec8 + 0) = flat5;
13) *((float *)&vec8 + 1) = flat6;

...

(e) After superword replacement

...
1) temp1 = replicate(vec0, 3);
2) temp2 = replicate(vec1, 0);
3) temp3 = replicate(vec1, 1);
4) temp4 = replicate(vec1, 2);
5) vec2 = shift and load(temp1, temp1, 4);
6) vec2 = shift and load(vec2, temp2, 4);
7) vec2 = shift and load(vec2, temp3, 4);
8) vec2 = shift and load(vec2, temp4, 4);
9) vec4 = vec add(vec3, vec2);
10) temp1 = replicate(vec6, 2);
12) temp2 = replicate(vec7, 2);
11) vec8 = shift and load(temp1, temp1, 4);
13) vec8 = shift and load(vec8, temp2, 12);

...

(f) After packing in registers

Figure 4.5: Code generation example (Continued).
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Let i be the loop index variable for the innermost loop, and lb and ub are the lower

and upper bounds for i. To derive the loop bounds for the copies of the innermost

loop resulting from index set splitting, we begin with the starting address, addr, of the

reference when i = lb, where addr = base + offset. Here, base refers to the beginning of

the lowest dimension of the selected array, and offset is the offset within that dimension

(Recall that the beginning of each dimension is aligned at superword boundaries.).

The lower bound (split) of the main loop body is computed by the following equation.

split =











lb if offset mod SWS = 0

lb + SWS− (offset mod SWS) if offset mod SWS 6= 0
(4.15)

If lb is constant, split can be computed at compile time. Otherwise, it is computed at run

time. In the example in Figure 4.5, offset for out[1] is 1, so if SWS = 4, then split = 4.

4.5.2 Superword Replacement

Superword replacement removes redundant loads and stores of superword variables, using

superword temporaries instead. We assume that this code transformation will be followed

by register allocation that places these variables in registers. For example, in Figure 4.5(d)

and (e), the store and load at statements 10 and 11 can both be eliminated, and vec4

can be used in place of vec5 in subsequent statements. Superword replacement is also

affected by alignment, in that we detect redundant loads and stores by identifying distinct

memory operations that refer to the same aligned superword, even if the addresses are

not identical.

The compiler recognizes opportunities for superword replacement by determining that

addresses and offsets for different memory accesses fit within the same superword, and

verifies that there are no intervening kills to the memory locations. The current imple-

mentation uses value numbering [52] to detect such opportunities. Value numbering is a
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well-known compiler technique for detecting redundant computation, but it is sensitive

to operand and operator ordering. To increase the success of value numbering, we first

preprocess the code so that memory access operations are rewritten into a canonical form,

constant folding has been applied to simplify addresses, and alignment is taken into ac-

count. As earlier stated, all memory accesses are aligned at superword boundaries, so if an

unaligned address appears in a memory access, the resulting access will be aligned to the

preceding superword boundary. The preprocessing performs this alignment in software

so that redundant accesses will be identified by value numbering.

The current implementation of superword replacement is more restrictive than what

was presented in Section 4.2. Value numbering operates on a basic block at a time so

we cannot exploit reuse across iterations of the unrolled loop body. This is because

we are performing this transformation after the SLP compiler has flattened the loop

structure to gotos and labels. The dependence information used to perform the register

requirement analysis cannot easily be reconstructed from such low-level code. In an

implementation where SLP and SLL are more tightly integrated, it should be possible to

perform superword replacement as a byproduct of the analysis in Section 4.2.

4.5.3 Packing in Superword Registers

As previously described, packing in memory is performed to align superword objects.

Memory packing moves data elements from a set of locations in memory (sources) to a

superword location (destination) so that the destination superword contains contiguous

data, aligned to a superword boundary or to another operand. For example, in Fig-

ure 4.5(e), superword variables vec0 and vec1 are the sources and superword variable

vec2 is the destination for memory packing in lines 1-8.

Our implementation performs a transformation we call register packing to optimize

memory packing operations. A series of memory loads and stores for scalar variables are

replaced by superword operations on registers, as shown in Figure 4.5(f). We identify a
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destination as a superword data type that is the target of a series of scalar store instruc-

tions into its fields, such as vec2 in the example. The corresponding sources are identified

by finding preceding loads of these scalar variables. If the inputs to these loads are fields

of superword data types, then these superwords are the sources. In the example, flat1

is stored into a field of vec2, and there is a preceding load of flat1 that copies a field

of source vec0. Once we find such a pattern, we verify the safety of this transformation

by guaranteeing that there are no intervening modifications or uses of either the scalar

variables or destination superwords between loading the scalar variables and completion

of storing into the destination. We also verify that the destination statements ultimately

produce contiguous data in the superword. We define source and destination indices as

the fields in the source and destination superword variables, respectively. For example,

the source index of vec0 is 3 in line 1 of the example.

Once the compiler identifies sources and destinations, it transforms the code to replace

memory accesses with operations on superword registers. The register packing transfor-

mation takes advantage of two instructions that are common in multimedia extension

architectures. Replicate replicates one element of a source register to all elements of a

temporary output register (Figure 4.6(a)). Shift-and-load takes two input registers. The

first input register is a temporary, and is shifted left by the number of bytes specified

by the third argument. The same number of fields is taken from the second input regis-

ter, which is a temporary derived from a source superword, to fill the output temporary

register (Figure 4.6(b)). Simply stated, we are shifting each source element into the

destination superword, in order, so that the final result is a destination superword that

corresponds to contiguous aligned data.

The steps of the register packing transformation are as follows.

1. We sort the destination statements in increasing order of their destination indices.

We then sort the source statements to correspond to the ordering of the destination
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a[0] a[1] a[2] a[3]

a[0] a[0] a[0] a[0]

(a) temp1 = replicate(a, 0)

a[0] a[0] a[0] a[0]

a[0]

(b) p = shift_and_load(p, temp1, 4)

temp1pa

temp1 p

Figure 4.6: Operations used for packing in registers.

statements, so that, for example, the scalar variable associated with the first source

statement is the same as the scalar variable associated with the first destination

statement.

2. For each source statement, in sorted order, we generate a replicate statement whose

two inputs are the source superword and the source index, and the output is a

superword temporary. For example, as in Figure 4.5(f), we have replaced line 1 of

Figure 4.5(e) with temp1 = replicate(vec0, 3).

3. We replace each destination statement, in sorted order, with a shift and load

operation. The first input is the destination superword. The second input is the

temporary generated by the replicate of the corresponding source statement. The

third argument, the shift amount, usually involves shifting by a single superword

field. For the last destination field, the shift amount is the difference, in bytes,

between the SWS and the last destination field. For completely filled destination

superwords, it will also be just a single field. For example, in lines 1-8 of Fig-

ure 4.5(e), the destination superword is completely filled, so the shift amount is

always a single 4-byte field. In lines 10-13, however, only the first two fields are

filled, so the shift amount of the last destination statement is a total of 12 bytes.

4. Source statements are deleted if the scalar variables are not live beyond the corre-

sponding destination statements.
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Figure 4.7: Shifting.

4.5.4 An Example: Shifting for Partial Reuse

In addition to the three optimization opportunities described in this section, we discovered

a new optimization opportunity, called shifting, for reducing memory accesses. In shifting,

data in superword registers are partially reused. Partial spatial reuse of superwords occurs

when distinct loop iterations access data in consecutive superwords in memory, partially

reusing the data in one or both superwords, as shown by the example in Figure 4.5(a), and

illustrated graphically in Figure 4.7. In this example, as before assuming that SWS = 4,

array reference in[i−j] has partial spatial reuse in loop i. For a fixed value of i and j, the

data accessed in iteration 〈i, j〉 consists of the last three words of the superword accessed

in iteration 〈i − 1, j〉, plus the first word of the next superword in memory. This type

of reuse can be exploited by shifting the first word out of the superword, and shifting in

the next word, as in Figure 4.7. As partially shown in Figure 4.5(c) and (f), only four

superwords need to be loaded for the data accessed in the 64 copies of in[i−j] in the loop

body, after shifting is applied. Before shifting, in[i − j] had to be loaded from memory

(and possibly aligned) for each of the four copies of in[i− j] in the loop body.

This shifting opportunity arises frequently in both signal and image processing appli-

cations, where one object is compared to a subcomponent of another object, such as the

example in Figure 4.5(a). We detect these opportunities through the analysis described
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in Section 4.2. The optimization shown in Figure 4.7 falls out from the combination of

unroll-and-jam, alignment operations generated by the SLP compiler, superword replace-

ment and register packing.
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Chapter 5

CODE GENERATION

In addition to the optimizations described in Chapters 3 and 4, this chapter describes sev-

eral optimizations and their associated code generation requirements to exploit SLP for

full multimedia applications. They are the techniques to parallelize type size conversion,

reduction and unaligned memory references and a new packing algorithm called prepack-

ing. Type size conversion is a common feature of multimedia applications, particularly

to promote small data types before or after arithmetic operations. A reduction operation

is a computation of a sum, product, maximum, or other commutative and associative

operation over a set of data elements. A memory reference is unaligned if at least one

pair of its run time addresses are not congruent with each other modulo superword width.

Finally, when a memory reference can be packed with multiple other memory references,

the first packing opportunity encountered by the SLP algorithm may not be the best

choice. For each of these four cases, we describe our extension in the next four sections.

In the last section, we summarize this chapter.

5.1 Type Size Conversion

Type size conversion is a common feature of multimedia applications, particularly to

promote small data types before or after arithmetic operations. Type size conversion is
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int in[1024];
short sh[1024];

for (i=0; i<1024; i++)
in[i] = (int)sh[i];

(a) Original

int in[1024];
short sh[1024];

for (i=0; i<1024; i+=8)
in[i:i+3], in[i+4:i+7] = typesize up(sh[i:i+7]);

(b) Our approach

Figure 5.1: Parallelization of type size conversions

more difficult on superwords than scalar data types, due to alignment issues, instruction

set limitations and the impact on parallelization.

We extend the SLP compiler to perform type conversions in parallel. On AltiVec,

the available instructions supporting type size conversion convert to fields that are half

or double the size of the source operand. Type size conversions of a factor larger than

two must be broken into multiple conversions. The alignment offset of the destination

variable is adjusted from that of the source variables. Predicate variables also require type

conversions so that they match the size of the destination variable of the instruction being

guarded. To represent parallel type size conversion operations, we define the following

parallel macros.

dst1, dst2 = typesize up(src)

dst = typesize down(src1, src2)

The macro typesize up doubles the type size of the data fields in src by assigning the

higher half to dst1 and the lower half to dst2. The macro typesize down concatenates

two superword operands src1 and src2, reduces the data field size by half and assigns the

result to dst. These high-level parallel macros are replaced by a few AltiVec instructions

during code generation. For signed operands, different AltiVec instructions are generated

for the macro typesize up from unsigned operands.

Figure 5.1(c) shows the code generated by our approach for type size conversion. After

eight short integers are loaded into a superword register, type size conversion is performed

in parallel using a few AltiVec instructions, represented by typesize up. Finally, the two
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for (i=0; i<16; i++)
sum = sum + a[i];

(a) Original

for (i=0; i<16; i+=4){
sum = sum + a[i];
sum = sum + a[i+1];
sum = sum + a[i+2];
sum = sum + a[i+3];

}

(b) Unrolled

sumV = pack(0, 0, 0, 0);
for (i=0; i<16; i+=4)

sumV = sumV + a[i:i+3];
sum1, sum2, sum3, sum4 = unpack(sumV);
sum = sum + sum1;
sum = sum + sum2;
sum = sum + sum3;
sum = sum + sum4;

(c) Reduction optimization

Figure 5.2: Parallelization of reduction sum.

superwords are stored in memory. Among the 14 benchmarks used in the next chapter,

two (MPEG2-dist1 and EPIC-unquantize) have type size conversions.

5.2 Reduction

A reduction operation is a computation of a sum, product, maximum, or other com-

mutative and associative operation over a set of data elements. From the compiler’s

perspective, a reduction occurs when a location is updated on each iteration of a loop,

where a commutative and associative operation is applied to that location’s previous con-

tents and some data value. In this case, it is safe to reorder the operations. However,

reduction variables have dependences, so the compiler must transform the code to obtain

parallel code from a sequential code. Figure 5.2(a) shows a loop containing a reduction

sum operation. When this loop is unrolled as shown in (b), scalar data dependences

prevent packing the isomorphic statements.

We extend the SLP algorithm to support reductions in a way similar to the standard

code generation for reductions in multiprocessors. We create as many private copies of

the reduction variable as will fit in a superword. The private copies are packed into one
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for (i=0; i<1024; i++)
for (j=0; j<256; j++)

t = inp[i+j];

(a) Original

for (i=0; i<1024; i++)
for (j=0; j<256; j+=4)

tV = inp[i+j:i+j+3];

(b) Parallelized

for (i=0; i<1024; i++)
for (j=0; j<256; j+=4){

tV1 = load(&inp[i+j]);
tV2 = load(&inp[i+j+4]);
permV = perm vec(&inp[i+j:i+j+3]);
tV = permute(tV1, tV2, permV);

}

(c) Code generation

Figure 5.3: Parallelization of unaligned memory references

superword and reduction operations are performed in parallel when the loop is paral-

lelized.

Figure 5.2(c) shows the code after the reduction optimization is applied to the loop

in (a). Assuming superword size is 4, the four private copies are created and initialized

by zero in above the parallelized loop, below which a sequential add operation for each

private copy accumulates into the global variable. Note that pack and unpack instructions

are moved outside the loop.

Private copies of a reduction variable are initialized with the identity of the associated

operation. For reduction sum in the above example, the private copies are initialized with

zero. For reduction max / min, private copies are initialized by the reduction variable

itself. Of the 14 benchmarks used in the experiments, four (TM, MAX, MPEG2-dist1 and

GSM-Calculation) have reduction operations.

5.3 Alignment Optimization

In Chapter 2, we described alignment analysis that finds constant offsets with respect to

superword width for the run time addresses of each memory reference. A memory refer-

ence is unaligned if at least one pair of its run time addresses are not congruent with each

other modulo superword width. In this section, we describe our approach to parallelize
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for (y=2; y<768; y++)
for (x=0; x<1024; x++)

e[y][x] = u[y][x] - u[y-2][x]
+ u[y][x+1] - u[y-2][x+1]
+ u[y][x+2] - u[y-2][x+2];

(a) Original

for (y=2; y<768; y++)
for (x=0; x<1024; x+=4){

e[y][x+0] = sum(u[y][x+0:x+2]) -
sum(u[y-2][x+0:x+2]);

e[y][x+1] = sum(u[y][x+1:x+3]) -
sum(u[y-2][x+1:x+3]);

e[y][x+2] = sum(u[y][x+2:x+4]) -
sum(u[y-2][x+2:x+4]);

e[y][x+3] = sum(u[y][x+3:x+5]) -
sum(u[y-2][x+3:x+5]);

}

(c) Parallelized by the MIT SLP
compiler

for (y=2; y<768; y++)
for (x=0; x<1024; x+=4){

e[y][x+0] = u[y][x+0] - u[y-2][x+0]
+ u[y][x+1] - u[y-2][x+1]
+ u[y][x+2] - u[y-2][x+2];

e[y][x+1] = u[y][x+1] - u[y-2][x+1]
+ u[y][x+2] - u[y-2][x+2]
+ u[y][x+3] - u[y-2][x+3];

...
e[y][x+3] = u[y][x+3] - u[y-2][x+3]

+ u[y][x+4] - u[y-2][x+4]
+ u[y][x+5] - u[y-2][x+5];

}

(b) Unrolled

for (y=2; y<768; y++)
for (x=0; x<1024; x+=4)

e[y][x+0:x+3] =
u[y][x+0:x+3] - u[y-2][x+0:x+3]

+ u[y][x+1:x+4] - u[y-2][x+1:x+4]
+ u[y][x+2:x+5] - u[y-2][x+2:x+5];

(d) Parallelized by prepacking

Figure 5.4: Parallelization by prepacking

unaligned memory references. In the SLP algorithm, two memory references are packed

if they are adjacent to each other, access a constant offset with respect to superword

width, and they are not separated by any superword boundary. Thus, unaligned memory

references are not parallelized.

We loosen the requirements for packing memory references so that two memory ref-

erences can be packed only if they are adjacent. Figure 5.3(a) shows an array reference

inp[i+j] whose alignment offset varies with respect to superword width. With our ex-

tension, the array reference can be parallelized as shown in (b). While parallelized, the

memory offset of inp[i+j:i+j+3] in (c) varies during run time with respect to super-

word width. For such unaligned superword memory references, we generate code such
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that a desired superword is obtained dynamically from two aligned superword memory

accesses. Figure 5.3(c) shows the code generated from (b). After two adjacent superwords

are loaded by aligned memory accesses and a permutation vector is generated from the

address, the desired superword is obtained from the two superwords using a permute in-

struction. In general, the address of a superword memory reference can be one of aligned

to zero offset, aligned to non-zero offset or unaligned. Depending on the kind of align-

ment, our implementation generates a simple aligned load, a static alignment with two

loads, or a dynamic alignment for an unknown alignment.

5.4 Prepacking to Optimize Parallelization Overhead

The SLP algorithm packs isomorphic scalar instructions into superword instructions.

The way in which an SLP compiler packs instructions governs the parallelism that can be

exploited and the amount of parallelization overhead. The packing policy in the original

SLP algorithm is very simple; two memory references are packed in the first chance where

they satisfy the three conditions, that is, they are adjacent to each other, access a constant

offset with respect to superword width, and they are not separated by any superword

boundary. This packing policy is quite effective in many common cases. However, when a

memory reference can be packed with multiple other memory references, the first packing

opportunity encountered by the SLP algorithm may not be the best choice. Figure 5.4(a)

shows an example loop nest used to illustrate this point. The original loop nest contains

adjacent memory references even before unrolling is applied. When the original SLP

algorithm is applied to the unrolled loop body shown in (b), it packs the adjacent memory

references in the same statement instead of packing them with their unrolled copies,

resulting in the code shown in (c). In the first statement of Figure 5.4(b), three array

references u[y][x+0], u[y][x+1] and u[y][x+2] are packed into a parallel memory

reference u[y][x+0:x+2] in (c). Since the three array elements should be added into a
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u[y][x+0] u[y-2][x+0]

- u[y][x+1]

+ u[y-2][x+1]

- u[y][x+2]

+ u[y-2][x+2]

-

e[y][x+0]

u[y][x+1] u[y-2][x+1]

- u[y][x+2]

+ u[y-2][x+2]

- u[y][x+3]

+ u[y-2][x+3]

-

e[y][x+1]

u[y][x+3] u[y-2][x+3]

- u[y][x+4]

+ u[y-2][x+4]

- u[y][x+5]

+ u[y-2][x+5]

-

e[y][x+3]

...

Figure 5.5: Data dependence graphs for the loop body of Figure 5.4(b)

scalar datum, a high level operation sum consists of unpacking the three array elements

and adding them in scalar mode. The code in (c) is inefficient not only because it involves

scalar additions but also because it contains additional memory accesses necessary for

unpacking data elements from a superword register to scalar registers. To make a good

choice when there are multiple statements with which a given statement can be packed,

we need a basic block-level view that can be used to compare the costs of different packing

possibilities.

We developed an algorithm that packs isomorphic data dependence graphs instead of

isomorphic statements. By this algorithm, we prefer parallelizing isomorphic statements

from independent data dependence graphs to the ones from the same data dependence

graph. From the unrolled loop body, we first build data dependence graphs. The data

dependence graphs for the code in Figure 5.4(b) are shown in Figure 5.5. Next, the

isomorphic scalar data dependence graphs are packed into a parallel data dependence

graph, where the nodes represent parallel operations and operands. For two independent

data dependence graphs to be packed together, they must be isomorphic [18] and in

addition, each pair of corresponding nodes should have the same operation. For memory

reference nodes, there is an additional requirement; the two memory references should

be adjacent. Figure 5.4(d) shows the parallel code generated by our approach, where all

operations are performed in parallel mode. In our current implementation, this packing
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for (i=0; i<1024; i++)
for (j=0; j<256; j++)

temp[j] = inp[i+j]*fil[j];

(a) Original

for (i=0; i<1024; i+=4)
for (j=0; j<256; j+=4){

temp[j+0] = inp[i+j+0]*fil[j+0];
temp[j+1] = inp[i+j+1]*fil[j+1];
temp[j+2] = inp[i+j+2]*fil[j+2];
temp[j+3] = inp[i+j+3]*fil[j+3];
temp[j+0] = inp[i+j+1]*fil[j+0];
temp[j+1] = inp[i+j+2]*fil[j+1];
temp[j+2] = inp[i+j+3]*fil[j+2];
temp[j+3] = inp[i+j+4]*fil[j+3];
temp[j+0] = inp[i+j+2]*fil[j+0];
temp[j+1] = inp[i+j+3]*fil[j+1];
temp[j+2] = inp[i+j+4]*fil[j+2];
temp[j+3] = inp[i+j+5]*fil[j+3];
temp[j+0] = inp[i+j+3]*fil[j+0];
temp[j+1] = inp[i+j+4]*fil[j+1];
temp[j+2] = inp[i+j+5]*fil[j+2];
temp[j+3] = inp[i+j+6]*fil[j+3];

}

(b) Unrolled

Figure 5.6: Multiple packing choices generated by unrolling multiple loops

algorithm is applied conservatively only when this algorithm is surely profitable over the

default strategy. Thus, our new packing algorithm is applied before we apply the original

packing algorithm so that we can apply the original packing algorithm to the remaining

scalar instructions. Because of this order of application, the new packing algorithm is

called prepacking.

While prepacking is effective when the original loop body contains adjacent mem-

ory references as shown in Figure 5.4(a), similar situations are often generated by our

superword-level locality (SLL) algorithm when multiple loops are unrolled. For exam-

ple, when both loops in Figure 5.6(a) are unrolled as shown in (b), array references to

inp have multiple packing choices. This type of partial temporal reuse opportunities are

common in multimedia applications.
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5.5 Summary

SLP is a new technique that provides new optimization opportunities. In addition to

the two techniques described in the previous two chapters, we also developed other op-

timizations that can be used to enhance the performance further. While common in

many multimedia applications, type size conversion, reduction and unaligned memory

references are not parallelized by the original SLP algorithm. Also, the simple packing

policy of the original SLP algorithm is powerful in many common cases, but suffers when

there are multiple choices for combining an object with others into a superword. In this

chapter, we presented algorithms that can be used to generate efficient parallel code in

such cases. All of these extensions working together are essential to obtain the results in

the next chapter.
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Chapter 6

EXPERIMENTS

Chapters 3, 4, and 5 introduced techniques to exploit superword-level parallelism in the

presence of control flow, locality in superword registers, and code generation techniques

to support these optimizations. These techniques are applicable to both multimedia

extension architectures and a processing-in-memory architecture, DIVA. We have imple-

mented the techniques in the SUIF compiler [32] and evaluated the implementation on

14 benchmarks. In this chapter, we describe the implementation and the experimental

evaluation.

This chapter is organized as follows. The next section describes the benchmarks and

their input data sets. Implementation and experimental methodology are described in

Sections 6.2 and 6.3, respectively. Section 6.4 presents an experimental evaluation of the

performance of the benchmarks when all of our techniques are applied. Since this perfor-

mance is the result of multiple techniques, we also perform separate experiments to iden-

tify the benefits of each individual technique. The benefits of packing data dependence

graphs, exploiting SLP in the presence of control flow, and exploiting superword-level

locality are discussed in Sections 6.5, 6.6, and 6.7 respectively.
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Name Description Data Width # lines

VMM Vector-matrix multiply 32-bit float 60

FIR Finite impulse response filter 32-bit float 66

YUV RGB to YUV conversion 16-bit integer 110

MMM Matrix-matrix multiply 32-bit float 76

Chroma Chroma keying of two images 8-bit character 106

Sobel Sobel edge detection 16-bit integer 128

TM Template matching 32-bit integer 85

Max Max value search 32-bit float 90

TR Shortest path search 32-bit integer 94

swim Shallow water model 32-bit float 429

tomcatv Mesh generation 32-bit float 197

MPEG2-dist1 MPEG2 encoder 8-bit character 157
(dist1 function) 32-bit integer

EPIC-unquantize EPIC(Efficient Pyramid Image Coder) 16-bit integer 85
(unquantize image of unepic) 32-bit integer

GSM-Calculation GSM encoder 16-bit integer 204
(Calculation of the LTP parameters) 32-bit integer

Table 6.1: Benchmark programs.

6.1 Benchmarks

We use the set of 14 benchmarks shown in Table 6.1 to evaluate our compiler imple-

mentation, representing multimedia and scientific applications. The first nine are kernels

consisting of a few loop nests. VMM and MMM are important kernels in scientific applica-

tions, FIR is frequently used in digital signal processing, and YUV performs conversion

between different color encoding systems. Chroma, also known as blue screening, merges

two images so that an object in a foreground image appears with the other image as a

background. Sobel detects edges from a gray scale image by performing convolutions

with two 3 by 3 pixel areas. TM is a representative kernel of an application performing

image convolution between two images: a template and an input data image. Max is a

kernel that looks for the maximum value. Since it is extracted from tomcatv, its input

data is also collected by running the same application. TR is a core computation of the

Floyd-Warshall’s shortest path algorithm [18]. The last five are benchmark programs.
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Benchmark Runtime(%)

MPEG2-dist1 55

EPIC-unquantize 25

GSM-Calculation 49

Table 6.2: Runtime percentage of three functions from UCLA MediaBench.

Swim and tomcatv are SpecFP applications written in Fortran. Swim is a weather predic-

tion program based on the shallow water model [59], and tomcatv is a mesh generation

program. MPEG2-dist1, EPIC-unquantize and GSM-Calculation are complete functions

from the three applications in the UCLA MediaBench [41]. Table 6.2 shows the percent-

age of each application’s execution time of the baseline code spent in these functions,

measured on the platform described in Section 6.3. Each function takes up the largest

fraction of the overall runtime in the application. MPEG2-dist1 computes total absolute

difference between two blocks of video frames to convert uncompressed video frames into

MPEG-1 and MPEG-2 video coded bitstream sequences. EPIC (Efficient Pyramid Image

Coder) is an image data compression utility designed to allow extremely fast decoding

at the expense of slower encoding. In EPIC, EPIC-unquantize restores the quantized

values to decompress the compressed images. GSM is a European standard for mobile

communications. In GSM encoder, GSM-Calculation computes the long term predictor

gain and the long term predictor lag for the long term analysis filter.

Table 6.3 shows the input data sizes for the benchmarks. For the last 8 benchmarks,

two different input sizes are used. Large sizes represent the standard inputs provided with

the applications whose data footprints are much larger than the L1 cache size. Smaller

input sizes that fit in the L1 data cache are also evaluated to help isolate the potential

gains of increased parallelism from the effects of the memory behavior of the benchmarks.
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Name Input Size

VMM 512 elements

FIR 256 filter, 1M signal

YUV 32K elements

MMM 512 elements

swim Specfp95 reference input

tomcatv Specfp95 reference input

Chroma Large: 400 × 431 color image(1 MB)
Small: 48 × 48 color image(12 KB)

Sobel Large: 1024 × 768 gray scale image(3 MB)
Small: 1024 × 4 gray scale image(16 KB)

TM Large: 64 × 64 image, 72 32 × 32 templates(1.4 MB)
Small: 16 × 64 image, 1 16 × 32 templates(10 KB)

Max Large: 2 100 × 256 × 256(52 MB)
Small: 2 8 × 256 (16 KB)

TR Large: 2 1024 × 1024 (8 MB)
Small: 2 16 × 16 (2 KB)

MPEG2-dist1 Large: data blocks for the first 1000 calls (11 MB)
Small: data blocks for the first 2 calls(22 KB)

EPIC-unquantize Large: reference input (393 KB)
Small: first 4 calls (6 KB)

GSM-Calculation Large: reference input (1.1 MB)
Small: first 50 calls (16 KB)

Table 6.3: Input data size.
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original C code

output C code

Superword-Level Locality1.

unroll2.

alignment / distance analysis3.

if-conversion4.

parallelize (SLP)5.

remove superword predicates (select)6.

remove scalar predicates (unpredicate)7.

superword replacement8.

BOSCC9.

Figure 6.1: Implementation.

6.2 Implementation

Figure 6.1 illustrates the compiler implementation. The input to the system is a C pro-

gram, which is then optimized by the SUIF passes in Figure 6.1. Superword-Level Locality

(SLL) determines unroll factors based on the algorithm described in Chapter 4. Unroll

performs loop unrolling. The unroll factors are either provided by the previous SLL pass

or computed by dividing superword width by the smallest data type size. As in [40],

Alignment / distance analysis determines whether memory references are aligned to su-

perword boundaries and are adjacent to each other in memory. If-conversion is applied

right before parallelization and results in code for which instructions are predicated. The

next three passes can recognize predicates and use the predicate analysis described in

Section 2.4. We extend parallelize (SLP) so that predicate operands are packed in the

same way as the other operands. As described in Chapter 3, predicates are removed by

remove superword predicates (select) and remove scalar predicates (unpredicate). Then,
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redundant superword memory references are eliminated by superword replacement. Fi-

nally, BOSCC instructions are generated wherever profitable according to the model

described in Section 3.4. Among the nine passes, unroll, alignment / distance analysis,

and parallelize (SLP) are taken from the original SLP compiler developed by Larsen and

Amarasinghe [39] and modified to support our extensions.

This ordering of passes was selected primarily for implementation convenience, since

we were building on the existing SLP compiler implementation. The SLP passes operate

on the code at a low level, where it is difficult to reconstruct the loop structure and array

access expressions. Thus, superword-level locality analysis is applied prior to SLP, rather

than afterward, as suggested by the examples in Figure 1.5. Superword replacement must

follow SLP, which is the reason the components of the SLL algorithm are performed on

either side of SLP. Note that both the SLP and SLL passes employ loop unrolling, but for

different reasons. The unroll pass unrolls the innermost loop of a loop nest to convert loop-

level parallelism into basic block-level parallelism. The SLL pass performs unroll-and-jam

to expose locality in basic blocks. However, the loop that carries the most spatial locality

at the superword-level is often the loop that carries the most superword-level parallelism.

Therefore, it is a reasonable choice to use the SLL pass to expose both parallelism and

locality in the loop body while suppressing the unrolling originally performed by SLP.

The code generation techniques described in Chapter 5 are implemented by extending

parallelize (SLP) except for the reduction transformation, which is incorporated into the

unroll pass to rename the unrolled copies of the reduction variable.

6.3 Experimental Methodology

Figure 6.2 illustrates the experimental flow. We evaluate six different versions of the codes:

Baseline, MIT-SLP, SLP+SLL0, SLP-CF-S, SLP-CF-S+B, and SLP-CF+SLL1. Baseline is

the original C or Fortran program that is the input to the compiler. MIT-SLP is compiled
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Figure 6.2: Experimental flow.

by the original MIT SLP compiler [39] represented by the three passes 2, 3 and 5 in

Figure 6.1. SLP+SLL0 incorporates superword replacement (pass 8 in Figure 6.1) and

packing in superword registers described in Chapter 4 as well as the code generation

techniques described in Chapter 5, which are incorporated into passes 2 and 8. SLP-CF-S

exploits SLP in the presence of control flow, represented by passes 4, 6 and 7 in Figure 6.1,

in addition to all the optimizations exploited by SLP+SLL0. Similarly, SLP-CF-S+B exploits

BOSCC (pass 9) in addition to all optimizations exploited by SLP-CF-S. SLP-CF+SLL1

exploits the unroll factors determined by SLL (pass 1) in addition to all the optimizations

applied to SLP-CF-S+B.

Each output version is an optimized C program, augmented with special superword

data types and operations [50]. The resulting code is compiled by a GCC (version 2.95.2)

backend which has been modified to support superword data types and operations for the

PowerPC Altivec [61]. The optimized programs are executed on a 533 MHz Macintosh

PowerPC G4, which has a superword register file with 32 128-bit registers, a 32 KByte
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L1 cache and a 1 MByte L2 cache. All programs are compiled by the extended GCC

backend with optimization flag -O3.

6.4 Overall Performance

Figure 6.3 shows the speedups of the five versions with respect to Baseline. Each bar

represents the corresponding version with the same name in Figure 6.2. For 8 of the 14

programs, MIT-SLP performs worse than Baseline because of some overhead introduced

by the SUIF compiler passes leading up to SLP, particularly its code transformations

related to decomposing program constructs. This overhead is not inherent to the SLP

approach, and we believe it could be eliminated with tuning of the SUIF passes. Nev-

ertheless, since it is not identifying parallelism across basic block boundaries, the best

results we could hope for from the SLP compiler is no change from the sequential per-

formance unless there is parallelism within the basic block. While the reduction sum

operation in GSM can be parallelized, it appeared as a data dependence to the original

SLP compiler remaining unparallelized. The speedups range from 0.61 to 5.15. When our

code generation techniques and two SLL optimizations 1 are applied, SLP+SLL0 speeds

up dramatically for the first four kernels. However, the other 10 benchmarks are not

improved much. Other than GSM, we observe that the SLP+SLL0 results, for the eight

benchmarks with control flow, do not speed up at all over sequential execution, and for

Max show a significant degradation. The main reason for this is that SLP+SLL0 is unable to

exploit any parallelism in the presence of control flow. The analyses and transformations

in SLP-CF-S are crucial to exploiting superword-level parallelism in these codes.

SLP-CF-S, exploiting SLP across basic block boundaries, yields a speedup compared

to SLP+SLL0 for the eight benchmarks with control flow while there are almost no changes

for the first six benchmarks. When BOSCC instructions are exploited in addition,

1Superword replacement and packing in superword registers

101



V
M

M

F
IR

Y
U

V

M
M

M

s
w

im

to
m

c
a

tv

C
h

ro
m

a

S
o

b
e

l

T
M

M
a

x

T
R

M
P

E
G

2

E
P

IC

G
S

M

0.0

5.0

10.0

15.0

20.0

S
p

e
e

d
u

p

Baseline

MIT−SLP

SLP+SLL0

SLP−CF−S

SLP−CF−S+B

SLP−CF+SLL1

Figure 6.3: Overall speedup breakdown (large data).

SLP-CF-S+B achieves further speedups for Chroma and TM. The last bar, representing

SLP-CF+SLL1, shows additional improvements in Figure 6.3 for seven of the 14 bench-

marks depending on the amount of data reuse. Overall, when all techniques are combined,

Figure 6.3 shows the speedups ranging from 1.05 to 11.36.

Cache effects can limit the performance benefits of parallelization for memory-bound

computations. To demonstrate the potential of parallelization, Figure 6.4 shows the same

graph for the eight benchmarks with control flow using small data set sizes. The speedups

for seven of eight benchmarks improve, in the case of Chroma from 5.95 to 19.22. The

overall speedups range from 2.18 to 19.22. From these results, we can see that cache opti-

mizations are even more valuable when codes are parallelized. Since cache optimizations

are usually applicable for multimedia codes, optimizations such as prefetching and tiling

should be used in conjunction with parallelization. In the next three sections, we present
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Figure 6.4: Overall speedup breakdown (small data).

the isolated benefits of exploiting prepacking, SLP in the presence of control flow, and

superword-level locality respectively.

6.5 Packing for Low Parallelization Overhead

Section 5.4 describes a technique called prepacking that leads to better packing decisions

in terms of overall parallelization overhead. For prepacking, isomorphic data dependence

graphs are packed instead of isomorphic instructions. To evaluate the effects of prepack-

ing, Figure 6.5 compares the performance of three versions. Baseline and SLP-CF+SLL1

are the same as in Figure 6.3. NO-PREPACK represents the version compiled without

prepacking. When prepacking is not in use, the original packing algorithm is used [39].

For nine out of 14 benchmarks, the two packing algorithms result in roughly the same

performance. For the other five benchmarks, however, prepacking achieves improvements.

For both NO-PREPACK and SLP-CF+SLL1, the main loop body of FIR is almost completely
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Figure 6.5: Effect of prepacking.

parallelized. However, the number of C statements in the parallelized main loop body

has decreased from 308 in NO-PREPACK to 182 in SLP-CF+SLL1 because the instructions

necessary to shuffle data elements are reduced. Similarly, the number of superword in-

structions has shrunk in Sobel and GSM. For TM, the main loop of NO-PREPACK has 28

independent BOSCC regions, each of which containing two to four superword instructions

to by pass. For SLP-CF+SLL1, it has only four BOSCC regions containing from 16 to 21

superword instructions. By packing data dependence graphs rather than individual in-

structions, large number of instructions are packed at once resulting in more instructions

guarded by each superword predicate. In this case, better packing decisions contribute

to not only low parallelization overhead but also bigger BOSCC regions for each super-

word predicate making the BOSCCs more beneficial. MPEG2 is of special interest because

it is parallelized only when prepacking is used. This is because all memory references
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are unaligned in MPEG2. Since the original SLP algorithm packs only aligned memory

references, prepacking is essential in parallelizing MPEG2.

6.6 SLP in the Presence of Control Flow

To evaluate the benefits of supporting SLP in the presence of control flow, this section

focuses on the eight benchmarks containing at least one conditional statement in a loop

body parallelized by the compiler in Figure 6.3 and Figure 6.4. For each of the bench-

marks, we compare the speedups of two versions, SLP+SLL0 and SLP-CF-S, using two

different data set sizes.

For the large data set sizes of Figure 6.3, the speedups achieved by SLP-CF-S range

from 1.25 to 2.59 for the eight benchmarks over Baseline, with an average of 1.78. Most

benchmarks show significantly increased speedups for the smaller input sizes, ranging

from 1.97 to 15, with an average of 5.18. These results suggest that exploiting cache

optimizations and SLP in the presence of control flow together may result in much better

performance for large data sets.

The SLP-CF-S versions of Chroma, Sobel, and EPIC-unquantize effectively exploit

the parallelism available in these benchmarks, yielding speedups of more than 6.21. In

particular, the 15 speedup on Chroma is because the data type size of the operands is 8

bits, which results in 16 operations on 8-bit objects per superword operation. TM, Max, TR,

MPEG2-dist1 and GSM-Calculation show more modest speedups. MPEG2-dist1, TM and

GSM-Calculation have a reduction. In MPEG2-dist1, the initialization and finalization of

the reduction remain inside the loop body since the reduction variable is used as the test

for loop exit. Sobel and TM show a performance loss due to unaligned memory accesses.

We also observe that for the provided input data set size, TM has a very low number

of true values for the branch parallelized by SLP-CF-S. While in sequential execution

the code would branch around the core computation, in SLP-CF-S it must perform the
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computation on every iteration and merge with prior results using a select operation. This

additional computation over sequential execution reduces the benefits of parallelization.

The computation in GSM-Calculation is not fully parallelized due to a scalar dependence,

but a set of statements between the control flow constructs, representing a loop that was

manually unrolled, is parallelized by both SLP+SLL0 and SLP-CF-S. Even though the

code within the control flow construct is not parallelized, the use of predication allowed

our compiler to exploit parallelism across what would have been multiple basic blocks,

resulting in a slightly higher speedup for SLP-CF-S.

The SLP-CF-S approach presented in this section has demonstrated fairly significant

speedups on eight multimedia benchmarks for which the SLP compiler was unable to

exploit parallelism. The performance gain for superword-level parallelization in the pres-

ence of control flow depends on a number of factors, related to both the underlying

architecture and the input data set. The AltiVec ISA does not support a full set of

general operations for all possible types. As examples, 32-bit integer multiplication, un-

packing unsigned integers and division are not directly supported in the ISA, requiring

additional instructions. For 16-bit multiplies, vec mule and vec mulo multiply even or

odd numbered elements respectively in superword registers, producing two superwords to

promote the results to 32 bits. These even and odd multiplications shuffle the data ele-

ments breaking the spatial adjacency of data elements, requiring additional instructions

to reorganize the results. Bitwise selection causes another problem in conjunction with

the inconsistency of scalar boolean values and superword boolean values. In some cases,

the SLP compiler may pack scalar boolean variables into a superword. Since the result

of a scalar comparison is either 0 or 1 instead of a vector of all 0s or all 1s, the superword

select can be incorrect if scalar boolean variables are packed into a superword and used

in selects.
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Figure 6.6: An SLP-based compiler that supports BOSCC.

As discussed in [62], different instruction set features supporting conditionals impact

performance. In the AltiVec, the general mechanism of select operations requires execut-

ing instructions along all control flow paths and merging the results. When compared

to sequential execution, where branches around code constructs may reduce the opera-

tion count, there is a tradeoff between parallelism and code with fewer branches versus

less overall computation. In examples such as TM where the number of branches taken

is large, this can limit performance improvement. To reduce parallelization overhead in

such cases, we can bypass parallel codes using a special instruction, described in the next

subsection.

6.6.1 Branch-On-Superword-Condition-Code (BOSCC)

We use BOSCC instructions to reduce parallelization overhead in the presence of control

flow as described in Section 3.4. In this subsection, we isolate the benefits of using BOSCC

instructions and investigate its characteristics. Figure 6.6 shows our implementation

inside the thick dashed box, which is based on SLP-CF incorporating the SLP compiler

and our control flow extension. Since our profitability model of BOSCC instructions

relies on profile information, the implementation runs in two phases. In the first run, it

generates instrumented code which is then compiled by an AltiVec-extended GCC and

linked to a library that supports the generation of a PAFS 2 file. In the second run, the

2See Section 3.4.2.

107



boscc = vec any ne(v4, vzero);
if (boscc == 1)
{

v5 = vec sub(v6, v7);
v8 = vec cts(v5, 0);
v1 = vec sel(v1, v8, v4);

}
boscc1 = vec any ne(v9, vzero);
if (boscc1 == 1)
{

v10 = vec cmplt(v11, v12);
v2 = vec nor(v10, v3);
v13 = vec sel(v13, v10, v9);
v3 = vec sel(v3, v2, v9);

}

(a) BOSCC-N

boscc = vec any ne(v4, vzero);
if (boscc == 1)
{

v5 = vec sub(v6, v7);
v8 = vec cts(v5, 0);
v1 = vec sel(v1, v8, v4);

}
v10 = vec cmplt(v11, v12);
v2 = vec nor(v10, v3);
v13 = vec sel(v13, v10, v9);
v3 = vec sel(v3, v2, v9);

(b) BOSCC-M

Figure 6.7: Example: BOSCCs generated in EPIC.

predicates in the source code are annotated with PAFS values produced in the profiling

run. Based on the PAFS values, our BOSCC model determines the profitability of each

BOSCC instruction.

Figure 6.8 shows speedup curves for the eight benchmarks with control flow in Ta-

ble 6.1. Each graph shows the speedups of three parallel versions of a benchmark, SELECT,

BOSCC-N and BOSCC-M, with respect to the sequential version of the benchmark. SELECT

is the same as SLP-CF-S in Figure 6.2 and the BOSCC-N (Naive BOSCC ) version is de-

rived by inserting a BOSCC instruction in all possible BOSCC regions. In the BOSCC-M

(Model-based BOSCC ) version, the model described in Section 3.4.2 is used to evaluate

the profitability of inserting BOSCC instructions. Figure 6.7 shows an example code

taken from the parallelized EPIC code. The code segment contains two BOSCC regions

of consecutive instructions shown in bold; three instructions in the first region and four

instructions in the second. One BOSCC is generated for each of the two superword

predicate v4 and v9 in BOSCC-N shown in Figure 6.7(a) whereas in BOSCC-M shown in Fig-

ure 6.7(b), the second BOSCC is not generated. While BOSCC-N has generated BOSCC
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instructions without considering PAFS values, BOSCC-M has generated a BOSCC instruc-

tion only for v4 in this example because the PAFS values for v4 and v9 are 82 % and 0

% respectively.

Figure 6.8(a) shows the speedups of TM for each of the 72 templates of the kernel’s

input data set, for versions SELECT, BOSCC-N and BOSCC-M. The speedup of BOSCC-N

varies with the input data sets, since the true density varies from template to template.

The BOSCC-M version also has a BOSCC instruction for all templates, and therefore the

speedups are the same as those of BOSCC-N. Figure 6.9 shows that the speedup curve of

the BOSCC versions closely matches the percentage of taken BOSCC branches of each

template. Although not shown in the figure, the speedups of SELECT follow the inverse of

the percentage of taken BOSCC branches, because the run time of the sequential baseline

is affected by the PAFS while that of SELECT is not.

The speedups of the parallel versions of Chroma are shown in Figure 6.8(b). The

horizontal axis corresponds to the ratio between the sizes of the foreground object and

the background image in the input data set (both the size and shape of the foreground

object affect the true density of the input data). Since in Chroma a BOSCC branch is

taken when all pixels in a superword are outside the foreground object, the speedups

corresponding to smaller foreground objects are larger, as expected. In SELECT, the

runtime does not vary with the true densities, but there is a small speedup due to the

fact that in the sequential version the body of the conditional is executed more often

as the true density increases. BOSCC-M follows the better of the SELECT and BOSCC-N

speedups for most input data sets. The few exceptions are caused by a simplification

in our model, where we assume that the cost of executing a BOSCC instruction is the

same as any other instruction. In general, branch instructions cost more than arithmetic

and logical instructions as the percentage of the taken BOSCCs approaches 50 %. The

BOSCC model makes the right decisions around 0 % and 100 % but it tends to make
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Figure 6.8: Speedups over scalar version for real data.

110



0 16 32 48 64

Template

2.5

3.0

3.5

S
p
e
e
d
u
p

speedups

50

60

70

80

90

100

T
a

k
e

n
 B

O
S

C
C

s
 (%

)

% taken boscc’s

Figure 6.9: TM: % taken BOSCCs.

wrong decisions in between the two ends when the performance margin between the two

versions with and without BOSCC is small.

The speedups of Max are 1.26 for SELECT and 1.22 for BOSCC-N, as shown in Fig-

ure 6.8(c). In BOSCC-N, each BOSCC body contains a single instruction.

max = select(max, new value, compare);

We expected GCC to generate a BOSCC instruction for the region associated with the

select instruction. However, the GCC version we use generates code such that the

select instruction is always executed and a new copy instruction is added after the

BOSCC, possibly because the destination variable (max) is live across the iterations of

the innermost loop. Thus BOSCC-N has two extra instructions, a BOSCC instruction

and an extra copy instruction, resulting in a slow down with respect to SELECT. When

this problem is corrected manually at the assembly level by removing the copy instruction

and moving the BOSCC ahead of the select instruction, the new BOSCC-N performs better

than SELECT.

For the BOSCC-N version of Sobel, a BOSCC instruction is generated for four BOSCC

regions containing 2, 2, 1, and 1 instructions, respectively, yielding the same performance

as the SELECT version. The PAFS for each BOSCC region are 17 %, 4 %, 2 % and 82
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% respectively. Since the PAFS values are either high (82 %) or low (17 %, 4 % and

2 %), the cost of BOSCC instructions is reduced. Also, large memory latencies play a

role in this result by overlapping with the BOSCC latency. If we reduce the memory

latencies by using small data set, BOSCC-N slows down by 10 % with respect to SELECT.

No BOSCC instructions are generated for the BOSCC-M version. The speedups of the

parallel versions with respect to the sequential baseline are 2.59 for all three versions, as

shown in Figure 6.8(d).

For TR, BOSCC-N performs slightly worse than SELECT, as shown Figure 6.8(e), again

because the only BOSCC region in the kernel contains a single instruction. In addition,

since the BOSCC instruction is never taken, the hardware branch predictor performs well.

The BOSCC-N version of MPEG2-dist1, shown in Figure 6.8(f), has 16 BOSCC in-

structions, generated for 4 basic blocks. Each BOSCC region consists of two instructions,

and the PAFS ranges from 30 to 40% for all BOSCCs increasing their costs. Thus the

BOSCC-M version does not have BOSCC instructions.

EPIC-unquantize, shown in Figure 6.8(g) is interesting because the BOSCC-M version

outperforms both SELECT and BOSCC-N. While BOSCC-N has seven BOSCC instructions,

BOSCC-M has only four BOSCCs, associated to the four BOSCC regions with the highest

number of instructions and PAFS. As a result, while SELECT performs worse than the

baseline and BOSCC-N achieves a negligible improvement, the BOSCC-M version speeds up

by 1.12.

As discussed in Section 6.6, the parallelized main loop of GSM-Calculation, shown

in Figure 6.8(h), does not have any select instruction because no instructions guarded

by conditional statements in the sequential code are parallelized. However, six BOSCC

instructions are generated in BOSCC-N for another loop nest. Since the PAFS values for

all BOSCC regions are less than or equal to 10 %, BOSCC-N slowed down compared to

SELECT. Because of the same reason, BOSCC-M does not have any BOSCC instruction

generated and the performance is the same as SELECT.
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Figure 6.10: Speedups over scalar version for randomly generated data.

To further investigate how the performance of the BOSCC-M versions varies with the

input data set, we used a random number generator to derive synthetic data sets with

PAFS from 0% to 100% for TM, Chroma and Max. Figure 6.10 shows the speedups of the

SELECT, BOSCC-N and BOSCC-M parallel versions of these three kernels with the synthetic

data sets. For all three kernels, the speedup of SELECT decreases as the PAFS increases,

because the sequential version performs better when the scalar branches are taken more

often. In general, BOSCC-N runs increasingly faster than the sequential version as the

PAFS increases. This is because the BOSCC-N versions skip superword instructions, each

of which corresponds to SWS 3 scalar instructions. Mild slopes in the lower half of the

PAFS range are due to the branch prediction mechanism of the machine. Finally, BOSCC-M

usually performs as well as the better of the two other versions except for a small range

of PAFS values, again due to our model’s simple assumption for the cost of a branch.

6.7 Superword-Level Locality

The SLL algorithm described in Chapter 4 use compiler-controlled caching in superword

registers to reduce memory accesses. In Section 6.2, we described an implementation that

incorporates superword-level locality optimizations into an existing compiler exploiting

3See Section 2.3.3.
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superword-level parallelism [39]. Now, we describe the experimental evaluation that helps

to isolate and analyze the benefits of the SLL algorithm.

Figure 6.11 shows how the reductions in memory accesses translates into speedups

over MIT-SLP, which represents the original MIT SLP compiler. To isolate the benefits of

individual components of our implementation, we measure the performance of the code

at several stages of the optimization process. The first bar, normalized to 1, represents

MIT-SLP. The second bar, called Unroll+SLP-CF, shows the results of running the first

code transformation of the SLL algorithm, described in Section 4.2, which performs unroll-

and-jam on the loop nest to expose opportunities for superword reuse, and following up

with SLP. This bar isolates the impact of unrolling, since it is not until after the SLP

pass that this reuse is actually exploited. Also, because it is reordering the iteration space

to bring reuse closer together in time, this version also obtains locality benefits in the

data cache. Thus, this bar provides the cache locality benefits of unroll-and-jam, which

can be compared against the additional improvements from superword register locality.

From this bar and on, we use the compiler extended with our techniques, represented

by SLP-CF-S+B in Figure 6.2, instead of the original SLP compiler. By doing so, we can

make the performance gain achieved by our extensions explicit as compared to MIT-SLP.

The third bar, representing Unroll+SLP-CF+SWR, shows the speedups after superword re-

placement is additionally applied. Finally, Unroll+SLP-CF+SWR+RP shows the additional

improvement due to packing in superword registers, described in Section 4.5.3.

Overall, we see that in combination, applications achieve speedups between 1.40 and

8.69 over the original SLP compiler alone, with an average of 3.40. As compared to the de-

fault unroll amount, the Unroll+SLP-CF versions achieve huge performance gains for most

benchmarks by exploiting the unroll amounts determined by the SLL algorithm in addi-

tion to the code generation techniques of Chapter 5. Investigation of the low speedups in
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Figure 6.11: Speedups over MIT-SLP.

MMM and TM revealed that both had a severe register spilling. The register allocation algo-

rithm in the GCC backend compiler is not optimal and tends to make worse register alloca-

tions for the bigger basic blocks. Although the number of superword registers used by the

generated C codes is less than the available superword registers, the register spills occur

because of the register allocation algorithm. We expect that optimal register allocators

can eliminate the unnecessary register spilling [27]. When redundant memory references

are removed by superword replacement for MMM and TM, register spilling also decreases

achieving large speedups over MIT-SLP. For eight benchmarks, Unroll+SLP-CF+SWR shows

significant improvements. Further speedups are achieved for three benchmarks when

packing in superword registers is applied in Unroll+SLP-CF+SWR+RP. The other bench-

marks do not have the opportunities for packing in superword registers. Consideration

of tomcatv and swim shows that both programs have little temporal reuse, although

there is a small amount of spatial reuse that is exploited by our approach, particularly in
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tomcatv. We also observe additional superword-level parallelism due to index set split-

ting, motivated by the need to create a steady-state loop where the data is aligned to a

superword boundary.

In summary, the SLL techniques presented in Chapter 4 dramatically reduce the

number of memory accesses and yield significant performance improvements across these

14 programs. Thus, this section has demonstrated the value of exploiting locality in

superword registers in architectures that support superword-level parallelism such as the

AltiVec.

6.8 Summary

In this chapter, we presented the implementation of the techniques described in Chapter 3,

4, and 5. In evaluation of the implementation on 14 benchmarks, speedups ranged from

1.05 to 19.22 over the sequential input programs. To identify the factors contributing to

the overall performance improvement, further experiments were performed focusing on in-

dividual techniques. Our extension to exploit SLP in the presence of control flow enabled

speedups of 1.97 to 15 over the sequential input programs on 8 benchmarks. This is a

dramatic improvement, considering without this extension no performance improvement

was observed for 7 of 14 benchmarks. We also evaluated our BOSCC-based algorithm

to reduce parallelization overhead in the presence of control flow. On three out of eight

benchmarks, BOSCC instructions have been used to achieve further speedups. Moreover,

the profitability model to insert BOSCC instructions closely estimates the actual profit.

The implementation of the SLL algorithm is also evaluated on the 14 benchmarks. Com-

paring to the original SLP compiler, our implementation achieves speedups from 1.40 to

8.69 removing a majority of memory references.
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Chapter 7

DIVA AND PIM-SPECIFIC OPTIMIZATIONS

DIVA is a Processing-In-Memory (PIM) embedded DRAM device that supports superword-

level parallelism (SLP). Thus the two algorithms described in Chapter 3 and Chapter 4

are also applicable to DIVA. In this chapter, we focus on DIVA and PIM-specific issues

and optimizations. One such optimization is to exploit a DRAM memory characteristic,

called page-mode, automatically. A page-mode memory access exploits a form of spatial

locality, where the data item is in the same row of the memory buffer as the previous

access. Memory access time is reduced because the cost of row selection is eliminated.

The algorithm increases frequency of page-mode accesses by reordering data accesses,

grouping together accesses to the same memory row.

The DIVA architecture is described briefly in Section 1.5.2. In the next section, we

describe the instruction set architecture (ISA) features specific to the DIVA processor.

In Section 7.2, we introduce a compiler optimization that exploits page-mode memory

accesses in DIVA and present the experimental results on four data intensive kernels. This

experiment is separately described from those in Chapter 6 because it is performed on a

DIVA simulator instead of the PowerPC G4. In Section 7.3, we discuss code generation

issues specific to DIVA ISA. In Section 7.4, we present a preliminary experimental result

on a prototype DIVA system. Section 7.5 summarizes this chapter.
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Figure 7.1: The superword data flow.

7.1 The DIVA ISA

DIVA supports a wide range of superword instructions for superword datapath in addition

to ordinary scalar instructions. The intent of the superword datapath is to process objects

aggregated within a row of the local memory array by operating on 256 bits in a single

processor cycle. This fine-grained parallelism offers additional opportunity for exploiting

the increased processor-memory bandwidth available in a PIM. The superword functional

unit can perform bit-level operations, such as simple pattern matching, or higher-order

computations such as searches and reduction operations.

The superword data flow is shown in Figure 7.1 and has several features to distinguish

it from the other multimedia extension architectures. First is the ability to support condi-

tional execution of instructions on sub-fields within a superword, depending on the state

of local condition codes [9]. Although similar designs support some type of conditional op-

eration, the DIVA superword functional unit provides a much richer functionality through

the ability to specify conditional execution in almost every superword instruction and the

use of global condition code information in selection decisions. Second, even for appli-

cations where the superword operations are not applicable, the superword datapath can

be used to accelerate memory access time and communication. Contiguous data required

for the scalar or floating point datapaths can be loaded into (stored from) a superword
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register, and transferred directly to (from) the other register files at a small fraction of

the scalar memory access latency. Third, because there is no data cache, exploiting the

large capacity of the superword register file (1 KB) as described in Chapter 4 is even

more important. Finally, the superword datapath is integrated into the communication

mechanism, transferring data to/from the local communication buffer; this allows entire

communication packets to be read or written in only one operation.

Conditional execution, direct transfers to/from other register files (only in SSE), in-

tegration with communication, as well as the ability to access main memory at very low

latency, distinguish the DIVA superword capabilities from multimedia ISA extensions

such as SSE and AltiVec, as well as subword parallelism approaches such as MAX [42].

7.2 Page-Mode Memory Access

Accessing a data within a DRAM macro consists of two steps. First, the entire row

containing the data is copied into the DRAM open-row buffer. Then, the desired data is

accessed from the buffer. This mode of DRAM accesses requiring both row and column

accesses is called random-mode. However, most DRAM modules support an efficient

page-mode access, where a memory access to a location currently in the DRAM open-row

buffer fetches the data directly from that buffer, eliminating the cost of fetching the row

from the DRAM array. To fully exploit lower latency page-mode accesses, the user or the

compiler must reorganize the computation so that accesses to a same memory row are

grouped together, and there are no intervening accesses to other rows.

Exposing opportunities for grouping accesses to a same array may require transfor-

mations such as unroll-and-jam, to bring accesses issued in distinct loop iterations to the

body of the transformed loop, and statement reordering, to group the memory accesses.
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for(i=0;i<n;i++){
for(j=0;j<m;j++){

load A[j][i]
load B[i]

...
}

}

(a) Original

for(i=0;i<n;i+=4){
for(j=0;j<m;j++){

load A[j][i]
load A[j][i+1]
load A[j][i+2]
load A[j][i+3]
load B[i]
load B[i+1]
load B[i+2]
load B[i+3]

...
}

}

(b) After unroll-and-jam and reordering

Figure 7.2: Unroll-and-jam and reordering.

Recent research has proposed to exploit page-mode accesses through manual code trans-

formations [51, 47, 14]. This section presents a compiler algorithm for exploiting page

mode automatically.

Although the proposed compiler algorithm is applicable to other embedded DRAM

systems, we describe the algorithm from the viewpoint of DIVA. In Chapter 4, we pre-

sented an algorithm for exploiting locality in superword registers. In this section, we

show that with a similar approach we can also exploit spatial locality in the page of a

DRAM memory array.

The remainder of this section is organized as follows. Section 7.2.1 motivates our

approach using a simple example. Section 7.2.2 introduces our algorithm for exploiting

page-mode memory accesses. Section 7.2.3 presents experimental results on a set of four

multimedia kernels.

7.2.1 Motivation

Figure 7.2 illustrates the benefits of page-mode accesses using a simple loop nest with two

array references. Assuming that the sizes of arrays A and B are larger than the DRAM’s
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Ref. Loop j Loop i

A[j][i] m ∗ RMLatency n ∗m ∗ RMLatency
B[i] m ∗ RMLatency n ∗m ∗ RMLatency

Total 2 ∗ n ∗m ∗ RMLatency

(a) Original

Ref. Loop j Loop i′

A[j][i] m ∗ RMLatency n
4
∗m ∗ RMLatency

A[j][i+1] m ∗ PMLatency n
4
∗m ∗ PMLatency

A[j][i+2] m ∗ PMLatency n
4
∗m ∗ PMLatency

A[j][i+3] m ∗ PMLatency n
4
∗m ∗ PMLatency

B[i] m ∗ RMLatency n
4
∗m ∗ RMLatency

B[i+1] m ∗ PMLatency n
4
∗m ∗ PMLatency

B[i+2] m ∗ PMLatency n
4
∗m ∗ PMLatency

B[i+3] m ∗ PMLatency n
4
∗m ∗ PMLatency

Total n
2
∗m ∗ RMLatency + 3n

2
∗m ∗ PMLatency

(b) After unroll-and-jam and reordering

Table 7.1: Memory latency computation.

open-row buffer, all array references in Figure 7.2(a) are in random-mode, since reference

B[i] displaces the DRAM row containing A[j][i] from the open-row buffer and vice-versa.

For the same number of memory accesses in this loop nest, we can increase the page-

mode memory accesses by applying a series of code transformations, as shown in Fig-

ure 7.2(b). First, unroll-and-jam is used to create opportunities for page-mode accesses

by moving array references from successive loop iterations of the outer loop into the body

of the transformed inner loop. In the example, unroll-and-jam is used to unroll the outer

i loop and fuse together the resulting inner j loop bodies. Next, accesses to the same

memory page in the loop body may be grouped together by reordering the memory ac-

cesses in the transformed loop body, if the reordering does not violate data dependences.

In Figure 7.2(b), where the i loop is unrolled by a factor of 4, references to the same

array (A or B) in the body of the transformed loop are grouped together. This results in
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Figure 7.3: The page-mode memory access algorithm.

page-mode accesses for all references in the loop body, except leading references A[j][i]

and B[i], which are in random mode.

Table 7.1 shows the total memory access cost for the code in Figures 7.2(a) and (b),

if we assume that accesses are not going through cache. Assuming that random-mode

latency is three times the page-mode latency as in [33], loop (a) has a total latency cost

of 6 ∗ n ∗m ∗ PMLatency, while (b) has a cost of 3 ∗ n ∗m ∗ PMLatency, a factor of 2

difference in overall memory latency.

This example shows the potential for improving performance in embedded DRAM

devices through the above code transformations. To expose opportunities for page-mode

accesses by applying unroll-and-jam and memory access reordering, a compiler algorithm

must: (1) determine the safety of these code transformations and select a loop for which

unrolling is profitable; (2) select an unroll factor that increases page-mode accesses while

not causing register spilling; and, (3) transform the code to reorder the memory accesses.

In the next subsection we present our compiler algorithm for exploiting page-mode ac-

cesses, which includes these three steps.

7.2.2 The Page-Mode Memory Access Algorithm

In this subsection, we introduce a compiler algorithm for exploiting page-mode memory

accesses. Our algorithm is applicable to loop nests with array references in the loop body,

where the array subscript expressions are affine functions of the loop index variables. Only

array accesses are reordered by the algorithm, since it is difficult to determine whether
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two scalar accesses are on the same memory page. For presentation purposes, we make

some simplifying assumptions as follows.

1. Array objects are aligned at memory page boundaries.

2. The lowest dimension sizes of array objects are multiples of a memory page size.

3. The compiler backend does not change the memory access order generated by the

algorithm.

Some of these assumptions can be removed by modifying the compiler backend (1,3) or

by padding array objects (2).

The algorithm presented in this subsection unrolls a single loop in a loop nest, since

in practice unrolling more than one loop could create register pressure and instruction

cache misses. A set of heuristics is used to select which loop to unroll and its unroll

amount. These heuristics result in a fast algorithm that is effective for the benchmarks

presented in Section 7.2.3.

In Chapter 4, we present an algorithm for exploiting superword-level locality (SLL)

which uses unroll-and-jam to expose data reuse, and unrolls multiple loops in a nest.

However, the SLL algorithm cannot be used as is to exploit page-mode memory accesses.

Assuming that the SLL algorithm has been applied a priori and focusing on the goal of

exploiting page-mode allow much simpler algorithm which is computationally cheaper as

well.

Figure 7.3 illustrates the steps of the algorithm, which are described in the remainder

of this subsection. The first step selects which loop to unroll, after determining the

safety of the code transformations (unroll-and-jam and statement reordering). The second

steps selects an unroll factor that increases page-mode accesses while not causing register

spilling. The last three steps apply the code transformations to the loop nest.
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Selecting a Loop To Unroll The first step of the algorithm selects a loop to unroll,

based on the number of random-mode memory accesses of the loop nest after applying

unroll-and-jam. The algorithm uses data dependence information to determine the safety

of unroll-and-jam.

For each loop l in the loop nest, the algorithm computes the unroll amount Xl and its

corresponding number of random-mode accesses Rl, such that Rl is the smallest number

of random-mode memory accesses if l is selected to be unrolled (assuming that references

to a same memory page can be grouped together). Then the algorithm compares the

number of random-mode accesses of each loop in the nest and selects the loop with the

smallest Rl. For each loop l, the smallest unroll amount that minimizes Rl is computed

as in Equation 7.1.

Xl =
P

mina∈A(T (a) ∗ C(a, l))
(7.1)

where P is the memory page size, A is the set of array references in the loop nest which

are loop-variant with l in the lowest dimension, a is an array reference in A, T (a) is the

type size of a and C(a, l) is the coefficient of the index variable l in the lowest-dimension

subscript of a.

After computing the unroll amounts, the algorithm computes the corresponding num-

ber of random-mode memory accesses Rl, with the goal of selecting the loop with smallest

Rl. For each loop l, the number of random-mode accesses Rl is computed as the num-

ber of distinct pages in the memory-page footprint of A, Fl(A,Xl) (assuming that the

algorithm can group together references to a same page). In Chapter 4, we present the

computation of the superword footprint of a set of array references in a loop nest, which

consists of the number of distinct superwords accessed by the references, a function of

the unroll amounts. The memory-page footprint can be computed in a similar way to

that of the superword footprint.
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Controlling Register Pressure After selecting a loop l to unroll, the algorithm ad-

justs the unroll amount of the selected loop to avoid register pressure and register spilling,

which could offset the benefits of unroll-and-jam.

In Chapter 4, we presented the computation of the number of registers required to

keep the data accessed by the references in the loop nest after applying transformations

for increasing locality in the superword register file. Here we adopt a similar approach to

compute the number of superword registers required for the given unroll factor.

The total number of registers required (TNR) to keep the data accessed in the loop nest

is computed as the sum of the number of registers required for each group of uniformly

generated references. If the total number of registers is larger than the number of registers

available, the algorithm adjusts the unroll amount Xl, by dividing it by the ratio of TNR

and the number of available registers NREG.

Xl =

⌊

Xl
⌈

TNR
NREG

⌉

⌋

(7.2)

Since the smallest type size is used in Equation 7.1, all references that have spatial reuse

carried by loop l can exploit spatial reuse fully at the memory page level.

Aligning the Loop To Page Boundaries If the starting addresses of the memory

accesses in the unrolled loop body are not aligned to a page boundary, each set of memory

accesses to a same array will have one additional random-mode access per iteration. In

Chapter 4, we applied index set splitting to reduce the need for alignment operations.

Here, we apply the same transformation to reduce these unnecessary random-mode ac-

cesses. To determine the split points, we use Equation 4.15 except that superword size

(SWS) is replaced by P
T

where P is the memory-page size and T is the type size of a

representative array reference.
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for(i=32; i<N; i+=64){
load A[i + 0] (RMA)
load A[i + 32] (RMA)
load A[i + 8] (RMA)
load A[i + 40] (RMA)
load A[i + 16] (RMA)
load A[i + 48] (RMA)
load A[i + 24] (RMA)
load A[i + 56] (RMA)

...
}

(a) Unsorted

for(i=32; i<N; i+=64){
load A[i + 0] (RMA)
load A[i + 8]
load A[i + 16]
load A[i + 24]
load A[i + 32] (RMA)
load A[i + 40]
load A[i + 48]
load A[i + 56]

...
}

(b) Sorted

Figure 7.4: Sorting offset addresses.

Parameters Value Unit

Random-mode latency 12 Cycles
Page-mode latency 4 Cycles

Page size 256 Bytes

Table 7.2: DIVA simulation parameters.

Reordering Memory Accesses Finally, the reordering step hoists loads to the top

of the loop body and sinks stores to the bottom. While being hoisted / sunk, the loads

/ stores to the same array are grouped together and sorted by their offset addresses.

When there are unaligned array references even after aligning the loop, sorting the offset

addresses can reduce the number of random-mode accesses. Figure 7.4 shows an example

where the page size includes 64 elements of array A. All eight memory accesses are in

random mode before sorting. After sorting the offset addresses, only two random-mode

accesses remain.

7.2.3 Experiments for the Page-Mode Memory Access Algorithm

Two prototypes of the DIVA PIM chip have been fabricated recently [21], but the complete

DIVA system is not available for our experiments at the time of this writing. Therefore,
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Name Description Input Size

VMM Vector-matrix multiply 64 elements
MMM Matrix-matrix multiply 64 elements
YUV RGB to YUV conversion 32K elements
FIR Finite impulse response filter 256 filter, 1K signal

Table 7.3: Benchmark programs.

we used a cycle-accurate DIVA simulator (DSIM) [21], which is modified from RSIM [53].

Table 7.2 shows the simulation parameters for the memory system which closely match

those of the IBM Cu-11 embedded DRAM macro [33]. In general, there can be multiple

DRAM macros and multiple open pages in a single chip, but for our experiments we

assume that only one memory page is open at any given time.

We implemented the bulk of the algorithm presented in the previous subsection, and

integrated it into the Stanford SUIF compiler. The input to the modified SUIF compiler is

a C program, and the output is a DIVA-extended C program which, in turn, is translated

by the DIVA GCC backend.

Table 7.3 shows the four kernels used to evaluate the effectiveness of the algorithm,

a subset of the kernels from Chapter 6. Figure 7.5 shows the experimental flow. The

main algorithm involves selecting unroll factors, performing unroll-and-jam and memory

access reordering, and is represented by the hashed rectangles in Figure 7.5.

In Chapter 4, we selected unroll factors for unroll-and-jam that maximize reuse in

superword registers; here, we use the unroll factors determined by the algorithm in Sec-

tion 7.2.2, which are likely to be larger than in Chapter 4. In some sense, the optimiza-

tions for page-mode memory accesses are complementary to exploiting SLP and locality

in superword registers, and the page-mode optimizations are difficult to isolate in our

compiler. In fact, because the SLP and SLL optimizations reduce the number of memory

accesses, we will see less benefit from the page-mode optimizations than if considered in

isolation.
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Parallelization(SLP)

- Select a loop to unroll
- Control register pressure
- Align the loop to page 
  boundaries
- Unroll-and-jam

C program

Memory access reordering

Superword replacement(SWR)

DIVA gcc

DIVA Simulator(DSIM)

SLP 
version

UNROLL 
version

PMA
version

AltiVec extended C program

Figure 7.5: Experimental flow for page-mode memory access.

We use as our baseline the SLP version of the code with no unrolling beyond what is

required to exploit parallelization of the innermost loop. The UNROLL version includes

unroll-and-jam, where the loop selected by the algorithm in Section 7.2.2 is unrolled by

the chosen amount, and inner loop bodies are fused together. As compared to the baseline

version, this version isolates the benefits of unroll-and-jam and superword replacement in

terms of reduced memory accesses and less loop overhead. The PMA version reflects the

performance improvements due to memory access reordering, yielding the full benefit of

the optimizations for page-mode accesses.

In these experiments, we used optimization level -O1 for the DIVA GCC backend

rather than a higher level of optimization. This was required to avoid reordering of

memory accesses in subsequent optimization passes, which occurs at higher levels of

optimization.

For all programs but YUV, the algorithm was able to unroll the selected loop by the

unroll factor determined by Equation 7.1. For YUV, which references six distinct arrays,
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for(i = 0; i < 64; i++)
for(j = 0; j < 64; j++)

for(k = 0; k < 64; k += 8){
load C[i][j]
load B[i][k]
load A[j][k]

...
store C[i][j]

}

(a) VMM

for(i = 0; i < 64; i++)
for(j = 0; j < 64; j += 8)

for(k = 0; k < 64; k++){
load C[i][j]
load A[i][k]
load B[k][j]

...
store C[i][j]

}

(b) MMM

Figure 7.6: SLP versions of VMM and MMM.
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Figure 7.7: Normalized execution time.

this unroll factor was too large and resulted in register spilling. The algorithm reduced

the unroll amount by half and the register spilling was eliminated.

We first consider how the optimizations for exploiting page-mode memory accesses

impact memory stall time. Figure 7.7 shows the normalized execution times broken down

into processor busy time and memory stall time, derived from simulation. The UNROLL

version sees a significant reduction in both processor busy time (9% to 60%) and memory

stall time (25% to 71%). The primary reason for this is that superword replacement has

eliminated a large number of memory accesses, which not only reduces memory stall time,
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but also reduce processor busy time by eliminating address calculation and instruction

issue associated with the eliminated memory accesses. Further, reduction in loop control

overhead also reduces processor busy time. For all programs, the PMA version further

reduces memory stall time by 21% to 33%. As compared to the UNROLL version, we

have not eliminated any instructions, but rather have converted random-mode accesses

to page-mode accesses.

Next we consider in Figure 7.8 the percentage of all memory accesses that are in page-

mode. The percentages of page-mode accesses ranges from 25% to 37% for the baseline

version of the programs. We see a decrease in page-mode accesses as a percentage of

memory accesses for most programs for the UNROLL version, ranging from 6% to 32%.

This effect is because superword replacement has removed a large number of page-mode

memory accesses, and the remainder tend to be in random mode. For example, in the

VMM loop shown in Figure 7.6(a) after SLP, references to C[i][j] in the k-loop are

loop-invariant after unrolling, and are usually removed, but were page-mode accesses

in the SLP version due to the preceding store to the same location. In MMM, the

page-mode percentage actually increases for the UNROLL version, as can be seen in

Figure 7.6(b). References to A[i][k] are random-mode accesses, and are eliminated by

superword replacement. For the PMA version, which reflects the same number of memory

accesses as the UNROLL version, the percentages of page-mode accesses range from 63%

to 87%.

These results show that our algorithm has been successful at increasing the percentage

of page-mode accesses and reducing the memory stall time. We now see how the approach

impacts the overall performance. Figure 7.9 shows the speedups for the SLP, UNROLL

and PMA versions of Figure 7.5. Overall speedups as compared to the SLP baseline range

from 1.25 to 2.19. Most of this speedup comes from the 1.19 to 1.89 improvement from

unroll-and-jam and superword replacement, as can be seen from the UNROLL version.

The speedup of the PMA version over the UNROLL version ranges from 1.04 to 1.16.
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7.3 DIVA-Specific Code Generation

We described the DIVA ISA features in Section 7.1. In this section, we consider issues in

generating code for DIVA.

Although DIVA does not support predicated execution, almost all superword instruc-

tions can be executed conditionally. In Chapter 3, we described removing superword

predicates by inserting select instructions. The same goal can be achieved by using con-

ditional execution. Given a predicated superword instruction, a special instruction is

inserted to move the predicate to the mask register, which is referenced by the subse-

quent conditional execution. Figure 7.10 illustrates this using an example shown in (a).

For comparison, we also show the code in (b), generated by the select algorithm described

in Chapter 3. In (c), each predicated superword instruction is replaced with a sequence

of two instructions, that is, one for setting the mask register and the other for conditional

execution. Here, we observe an optimization opportunity where the later mask -setting

instruction is redundant if we can recognize that the two superword predicate values are

identical. The more instructions with the same predicate are collected, the more such

mask -setting instructions can be eliminated, leading to a larger performance benefit. In
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for(i=0; i<1024; i++){
if(c[i] != 1){

a[i] = c[i];
b[i] = d[i];

}
}

(a) Original

for(i=0; i<1024; i+=4){
v comp = c[i:i+3] != (1,1,1,1);
v pT, v pF = v pset(v comp);
a[i:i+3] = select(a[i:i+3], c[i:i+3], v pT)
b[i:i+3] = select(b[i:i+3], d[i:i+3], v pT)

}

(b) Select instructions inserted

for(i=0; i<1024; i+=4){
v comp = c[i:i+3] != (1,1,1,1);
v pT, v pF = v pset(v comp);
move to mask register (v pT);
a[i:i+3] = cond store(c[i:i+3]);
move to mask register (v pT);
b[i:i+3] = cond store(d[i:i+3]);

}

(c) Conditional execution

for(i=0; i<1024; i+=4){
v comp = c[i:i+3] != (1,1,1,1);
v pT, v pF = v pset(v comp);
move to mask register (v pT);
a[i:i+3] = cond store(c[i:i+3]);
b[i:i+3] = cond store(d[i:i+3]);

}

(d) Optimized conditional execution

Figure 7.10: Code generation for conditional execution in DIVA.

Section 3.4, we described an algorithm that forms a largest region of superword instruc-

tions guarded by the same superword predicate. The similar algorithm can be used for

this optimization.

As discussed in Section 7.1, the support for data transfer between different register

files allows an optimization, by which scalar memory latencies are reduced further. In

this optimization, we increase the number of instructions to reduce the latencies of scalar

memory accesses. For example, replacing one scalar memory access with a pair of a

superword memory access and a copy instruction will not be profitable whereas it may

be profitable if the same optimization is applied for two scalar memory accesses. Thus,

a code generation issue is to find the right number of scalar memory accesses for this

optimization to be profitable.

Since AltiVec supports the general permutation instruction, one field of a superword

register can be moved to any field of another register. The movement of the data fields is

guided by a permutation vector, that can be generated from an address dynamically as
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float a[], b[], c[];

for (i=0; i<DATASIZE; i++)
a[i] = b[i] + c[i];

Figure 7.11: StreamAdd

Processors Clock (MHz) Operating System Compiler (Optimization)

DIVA 140 DIVA O/S icc 8.0 (-O3)
Itanium2 900 Linux gcc 2.95.3 for DIVA (-O2)

Table 7.4: Experimental environments.

discussed in Chapter 5. DIVA allows accessing pre-arranged permutation vectors using

an index in a scalar register in addition to general permutation. While these permutation

instructions can be used for alignment operations and parallel reduction operations, their

versatility entices further exploration in code generation techniques for applications such

as matrix transpose and sorting.

7.4 Preliminary Bandwidth Demonstration

The DIVA processor described in Chapter 1 is fabricated and being integrated into a

complete system. Currently the second prototype of the DIVA chip is up and running

in an Itanium2 server. In this section, we present a preliminary performance result

demonstrating the data bandwidth of the DIVA processor.

Figure 7.11 shows a kernel, called StreamAdd, which is used to measure performance

for this section. Since there is no data reuse in this computation, and very little compu-

tation to hide memory latency, it is a useful benchmark for stressing memory subsystem

of architectures.

In this experiment, we compare the StreamAdd run times on DIVA to those on an

Itanium2 processor. Table 7.4 shows the experimental settings for the two processors.
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Figure 7.12: Run time of floating point StreamAdd.

The DIVA code was compiled with the DIVA compiler, which has a separate optimizing

compiler and a backend compiler. Based on the algorithms in Chapter 3 and Chapter 4,

the optimizing compiler parallelizes the code. The backend compiler is ported for DIVA

from GCC 2.95.3 extended to support the PowerPC AltiVec.

The StreamAdd performance results are shown in Figure 7.12. The X-axis represents

the data set sizes in number of array elements, and the Y-axis represents execution time

in micro seconds. There are two curves in the graph. The thick straight line labeled

DIVA shows deterministic performance increasing linearly as the problem size increases.

This is expected because DIVA does not have data cache. The Itanium2 result shows

the performance that varies as the problem size increases reflecting its more complicated

memory hierarchy. It is better for smaller problem sizes, but as the problem sizes get

larger, the way in which the system allocates memory leads to worse performance. Over

all, in this experiment we observe that the single DIVA execution time is comparable to

that of the Itanium2 execution time.
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7.5 Summary

In this chapter, the issues specific to DIVA and PIM architectures are described. We

presented a compiler algorithm that reduces random-mode memory accesses. In an ex-

perimental evaluation of the algorithm on a cycle-accurate DIVA simulator, we obtain

speedups ranging from 1.25 to 2.19 over the parallel baseline for four multimedia kernels.

In addition, we presented a preliminary experimental result demonstrating data band-

width on a prototype DIVA system. We observe that the performance of a single DIVA

processor is comparable to that of the Itanium2 processor.
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Chapter 8

RELATED WORK

In this chapter, we examine previous work related to each of our approaches and distin-

guish our research. Previous work related to our control flow extension, superword-level

locality algorithm and a DIVA-specific optimization is described in Sections 8.1, 8.2 and

8.3, respectively. In the last section, we summarize this chapter.

8.1 Exploiting SLP in the Presence of Control Flow

Some prior work has described automatic parallelization for multimedia extensions [39, 37,

64, 15, 42, 8]. Two distinct approaches are used, that is, SLP [39, 37] and an adaptation of

vectorization [64, 15, 42, 8]. Extending vectorization techniques for conditionals has been

addressed [8, 64], but there is no prior work describing how to parallelize conditionals

using an SLP approach.

If-conversion is described in [4, 3]. Ferrante and Mace describe restoring control flow

back from if-converted code [24]. However, their main focus is in generating a sequen-

tial code from parallel intermediate representations. More recently, Park and Schlansker

describe an if-conversion algorithm that is optimal in terms of the number of predicates

used and the number of predicate defining instructions [55], which is the algorithm we

use in our compiler. Vectorizing compilers targeting multimedia extensions should have

a mechanism corresponding to our unpredicate unless if-conversion is applied selectively
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only to the statements that will be parallelized. Mahlke describes a predicate CFG gener-

ator which restores the original control flow from a predicated hyperblock code [44]. We

use his algorithm in the unpredicate algorithm when an instruction cannot be inserted

into an existing basic block.

Concepts similar to the select instruction have been described elsewhere [22, 62, 49].

Bik and et. al. used a technique called bit masking to combine definitions. However, their

method is limited to singly nested conditional statements [8]. Chuang et. al. directly

generate phi-instructions from the CFG of a scalar code to address multiple-definition

problem in architectures supporting predicated execution [16]. A phi-instruction is a

scalar analog of the superword select instruction described in Chapter 3. Their approach

is related to ours in that Park and Schlansker’s algorithm is also used to derive predicates

for the phi-instructions. While phi-predication could be run as a pre-pass to SLP, the code

resulting from SLP would potentially contain remaining scalar predicated instructions.

In an architecture such as the AltiVec, efficient code generation of the predicated scalar

instructions would require an algorithm akin to the unpredicate pass described here.

Using phi-predication as opposed to full predication to parallelize conditionals in the

SLP compiler is a topic of future research.

Branch-on-superword-condition-code (BOSCC) is supported in the AltiVec G4 [50],

DIVA [31, 21], and other architectures [7, 6]. The movemask instruction in Pentium

can also be used for a similar purpose to BOSCC [34]. However, no prior work describes

generating BOSCC instructions automatically to reduce parallelization overhead of condi-

tionals. A vector flag population count instruction [46] can be used to change the control

flow similar to BOSCC instructions in vectorized programs. However, the probability

of taken BOSCCs decreases exponentially with the vector length, and the long vector

length of vector machines reduces the chances for the profitability of BOSCC instructions

dramatically.
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8.2 Superword-Level Locality

For well over a decade, a significant body of research has been devoted to code transfor-

mations to improve cache locality, most of it targeting loop nests with regular data access

patterns [25, 12, 70, 71]. Loop optimizations for improving data locality, such as tiling, in-

terchanging and skewing, focus on reducing cache capacity misses. Of particular relevance

to this thesis are approaches to tiling for cache to exploit temporal and spatial reuse; the

bulk of this work examines how to select tile sizes that eliminate both capacity misses and

conflict misses, tuned to the problem and cache sizes [13, 17, 23, 26, 28, 29, 38, 66, 69, 58].

The key difference between our work and that of tiling for caches is that interference is not

an issue in registers. Therefore, models that consider conflict misses are not appropriate.

Further, our code generation strategy must explicitly manage reuse in registers.

There has been much less attention paid to tiling and other code transformations

to exploit reuse in registers, where conflict misses do not occur, but registers must be

explicitly named and managed. A few approaches examine mapping array variables to

scalar registers [69, 11, 45]. Most closely related to ours is the work by Carr and Kennedy,

which uses scalar replacement and unroll-and-jam to exploit scalar register reuse [10]. Like

our approach, in deriving the unroll factors, they use a model to count the number of

registers required for a potential unrolling to avoid register pressure, and they replace

array accesses, which would result in memory accesses, with accesses to temporaries that

will be put in registers by the backend compiler. Their search for an unroll factor is

constrained by register pressure and another metric called balance that matches memory

access time to floating point computation time. Our approach is distinguished from all

these others in that the model for register requirements must take spatial locality into

account, we replace array accesses with superwords rather than scalars, and we also

consider the optimizations in light of superword parallelism.
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There are several recent compilation systems developed for superword-level paral-

lelism [39, 64, 15, 19, 5]. Most, including also commercial compilers [68, 48], are based

on vectorization technology [64, 19]. In contrast, Larsen and Amarasinghe devised a

superword-level parallelization system for multimedia extensions [39]. None of these ap-

proaches exploit reuse in the superword register file.

8.3 DIVA-specific Optimizations

Previous research has identified the benefits of exploiting page-mode DRAM accesses [51,

47, 14, 54, 30]. Moyer modeled memory systems analytically and developed a compiler

technique called access ordering that reorders memory accesses to better utilize the mem-

ory system [51]. McKee et al. described Stream Memory Controller (SMC) whose access

ordering circuitry attempts to maximize memory system performance based on the de-

vice characteristics [47]. Their compiler is used to detect streams but access ordering

and instruction issue is determined by the hardware. Chame et al. manually optimized

an application for the DIVA system [14] by applying loop unrolling and memory access

reordering to increase the number of page-mode accesses.

Panda et al. have developed a series of techniques to exploit page-mode DRAM access

in high-level synthesis [54]. Their techniques include scalar variable clustering, memory

access reordering, hoisting and loop transformations. While their ASIC design was able

to exploit page-mode memory access, they do not describe an algorithm for automatic

code generation. Grun et al. have optimized a set of benchmarks to better utilize efficient

memory access modes for their IP library based Design Space Exploration [30]. However,

their focus was on accurate timing models of the hardware system description.

Our research on exploiting page-mode memory access is distinguished from previous

research as the design and implementation of a compiler algorithm to exploit page-mode

automatically. Although the experiments are performed for a PIM-based system [31],
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this compiler framework is applicable to embedded-DRAM systems and can also be used

as a preprocessor for high-level synthesis.

8.4 Summary

This chapter described previous work related to our approaches described in this thesis.

Our SIMD parallelization in the presence of control flow is distinguished by its applicabil-

ity to arbitrary acyclic control flow graphs and the two optimizations to reduce paralleliza-

tion overheads. The superword-level locality algorithm is the first approach that exploits

superword register files as a compiler-controlled cache. Our page-mode algorithm for em-

bedded DRAM devices is the first compiler approach that exploits page-mode memory

accesses automatically.
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Chapter 9

CONCLUSION

Multimedia extension architectures have been around for the last decade. Yet, compil-

ers that automatically map sequential applications to exploit the SIMD parallelism for

such architectures are relatively new. Although multimedia extensions are different from

conventional vector processors in many aspects, most existing commercial / research com-

pilers are based on the technique targeting loop-level parallelism used for conventional

vector machines. More recently, a new approach that exploits superword-level parallelism

(SLP) is suggested specifically targeting multimedia extension architectures [39]. This

thesis has extended the SLP compiler approach by addressing two important open issues:

how to exploit SLP in the presence of control flow and how to use superword register

files as a compiler controlled cache. For DIVA, which is a processing-in-memory architec-

ture, we have described a DIVA-specific optimization that exploits a faster DRAM access

mode, called page-mode, automatically. In the next section, we describe our contributions

by summarizing each technique and in Section 9.2, we describe our future work.

9.1 Contributions

This thesis makes the following contributions.
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9.1.1 SLP in the Presence of Control Flow

Control flow is common in the core computation of multimedia applications. However,

the SLP compiler cannot exploit parallelism across basic block boundaries. This thesis

has extended the SLP compiler for exploiting SLP in the presence of control flow. A key

insight is that we can use techniques related to optimizations for architectures supporting

predicated execution, even for multimedia ISAs that do not provide hardware predication.

We derive large basic blocks with predicated instructions to which SLP can be applied.

After parallelization, the basic block can be a a mix of predicated scalar and superword

instructions. Since our target architectures do not support predicated execution, both

superword and scalar predicates must be removed. We describe how to minimize the

overheads for removing superword predicates and re-introduce efficient control flow for

scalar predicated instructions. In addition, we have discussed other extensions to SLP

to address common features of real multimedia codes. We have presented automatically

generated performance results on 14 multimedia codes to demonstrate the power of this

approach. We observe speedups ranging from 1.09 to 15.00 as compared to sequential

execution.

As an optimization on the code parallelized for control flow, we also evaluate the

costs and benefits of exploiting branches on the aggregate condition codes associated

with the fields of a superword such as the branch-on-any instruction of the AltiVec.

Branch-on-superword-condition-codes (BOSCC) instructions allow fast detection of ag-

gregate conditions to bypass a parallel code segment, an optimization opportunity often

found in multimedia applications such as image processing and pattern matching. Our

experimental results show speedups of up to 1.40 on 8 multimedia kernels when BOSCC

instructions are used as compared to the versions not using them.
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9.1.2 Compiler Controlled Caching in Superword Registers

Parallelization is not as effective when bottleneck is memory accesses. Thus optimizations

targeting memory hierarchy are even more important for the architectures supporting

SLP. This thesis has described a compiler algorithm that exploits these superword regis-

ter files as a compiler controlled cache to avoid unnecessary memory accesses. Accessing

data from superword registers, versus a cache or main memory, has two advantages, i.e.,

removing memory access instructions and their latencies. This research is distinguished

from previous work on exploiting reuse in scalar registers because it considers not only

temporal but also spatial reuse. As compared to optimizations to exploit reuse in cache,

the compiler must also manage replacement, and thus, explicitly name registers in the

generated code. We have presented a set of results derived automatically on 14 bench-

marks. Our results show speedups ranging from 1.40 to 8.69 as compared to using the

original SLP compiler.

9.1.3 Implementation and Evaluation of the Proposed Techniques

The proposed algorithms to exploit both SLP in the presence of control flow and locality

in superword registers have been fully implemented into a compiler by extending the

original SLP compiler. Our extension also includes additional code generation techniques

described in Chapter 5. We have described our implementation for a target architecture,

the PowerPC AltiVec. The automatically generated parallel C programs are compiled by

the backend compiler and run on the PowerPC G4. The overall speedups achieved by the

compiler implementation range from 1.05 to 19.22. Since these speedups are the results

of multiple techniques, we also have presented experimental results isolating the benefits

of individual techniques.
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9.1.4 DIVA-Specific Optimizations

Since DIVA is a new architecture, there exist new compiler optimization opportunities.

This thesis has described a compiler algorithm and several optimization techniques to

exploit a DRAM memory characteristic(page-mode) automatically. A page-mode mem-

ory access exploits a form of spatial locality, where the data item is in the same row of

the memory buffer as the previous access. Thus, access time is reduced because the cost

of row selection is eliminated. The algorithm increases frequency of page-mode accesses

by reordering data accesses, grouping together accesses to the same memory row. We

implemented this algorithm and presented speedup results for four multimedia kernels for

a PIM embedded DRAM device, DIVA. The speedups achieved by exploiting page-mode

memory access alone range from 1.04 to 1.16, resulting in overall speedups ranging from

1.25 to 2.19 when combined with optimizations targeting superword-level parallelism and

locality as compared to SLP. These results show that there is a benefit in exploiting

page-mode memory access in embedded systems, where the DRAM access time domi-

nates the memory latency seen by the processor. Furthermore, our results show that

for embedded systems with support for superword-level parallelism [65, 9, 31], optimiza-

tions for exploiting the DRAM’s page-mode accesses are complementary to optimizations

for superword-level parallelism and superword-level locality. In addition, we presented

a preliminary experimental result demonstrating data bandwidth on a prototype DIVA

system. We observe that the performance of a single DIVA processor is comparable to

that of the Itanium2 processor.

9.2 Future Work

In the course of this research, we encountered several open issues and future directions

for this work described as follows.
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Parallelization for architectures supporting SLP involves a certain overhead because

of the architectural features and limitations. For example in AltiVec, superword mem-

ory accesses are required to be aligned to superword boundaries, not all operations are

supported for all operand types, and data movements between register files are not di-

rectly supported. To get around these requirements and limitations, usually additional

instructions are generated. We plan to expand this research by developing a cost model

for parallelization so that codes are not parallelized when doing so may generate adverse

effect.

Also, we plan to expand this research in the context of DIVA. Although we already

have run several applications on DIVA, at the point of this writing, running applications

on the DIVA system is not as easy as in commercial product systems. We expect to be

able to run more applications on DIVA in the near future and compare the results with

those on the AltiVec. Exploiting DIVA specific ISA features is also left as a future work.

Most of our current benchmark programs are selected from multimedia and scientific

application domains. While we desire to include more applications from those two do-

mains, we also plan to apply our techniques to the ones in other domains such as data

intensive search algorithms in artificial intelligence. Traditionally, artificial intelligence

applications are not considered suitable for SIMD parallelization. However, we see that

their requirements for high data bandwidth and large volume of computation are well

matched by the features of the DIVA processor. Currently, we are working on mapping

a link discovery algorithm [1] to the DIVA processor.
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