Evaluating Compiler Technology for Control-Flow
Optimizations for Multimedia Extension Architectures

Jaewook Shin, Mary Hall and Jacqueline Chame

Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, California 90292

{jaewook,mhall,jchame }@isi.edu

ABSTRACT to expose parallel operations on objects in a superword can lead to
This paper addresses how to automatically generate code for mul-more effective parallelization than the more complex code transfor-
timedia extension architectures in the presence of conditionals. Wemations associated with vectorization. Whether SLP or vectoriza-
evaluate the costs and benefits of exploiting branches cagigre- tion is used, parallelization in the presence of control flow is still
gatecondition codes associated with the fields afugerword(an an open issue for multimedia extensions. Specifically, while SLP
aggregate object larger than a machine word) such as the branchis simple and effective, it only identifies parallelism within a basic
on-any instruction of the AltiVec. Branch-on-superword-condition- block. The following inherently parallel loop would not be paral-
codes (BOSCC) instructions allow fast detection of aggregate con- lelized:

ditions, an optimization opportunity often found in multimedia ap-

plications. This paper presents compiler analyses and techniques

for generating efficient parallel code using BOSCC instructions. for (i=0; i <16; i++)
We evaluate our approach, which has been implemented in the it (afi] '= 0)
SUIF compiler, through a set of experiments with multimedia bench- b[i]++;

marks, and compare it with the default approach previously imple-

mented in our compiler. Our experimental results show that using o .

BOSCC instructions can result in better performance for applica- 1 n€ limited instruction-set support for control-flow constructs leads
tions where the aggregate condition codes of a superword oftentC Unique challenges in generating efficient parallel code for multi-
evaluate to the same value. media architectures.

Recently, we have developed compiler technology to support SLP
1. INTRODUCTION in the presence of control flow for both the PowerPC AltiVec [17]
Many modern microprocessors include an expanded instruction setand a research architecture called DIVA [8, 6]. In [19], we de-
specifically targeting multimedia applications, with a functional scribe a general approach, which uses superselect opera-
unit that operates on aggregate objects to perform SIMD parallel tions to combine the fields of data computed on multiple control

operations on variable-sized fields in the objexy(,8, 16, 32 or flow paths, as discussed in the next section. In this paper, we exam-
64-bit fields). If the aggregate objects are larger than a machine ine an optimization which can be used in some cases to improve the
word, they are calleduperwordq12]. performance of our general approach udimgnch-on-superword-

condition-codegBOSCC) instructions. BOSCC instructions allow
Recently proposed parallelization techniques for multimedia exten- the fast detection of aggregate conditions often found in multime-
sion architectures are based on two distinct approaches. One apdia applications. The benefits of BOSCC instructions depend on
proach relies on exploiting classical vectorization technology [20, properties such as triensityof true or false branches, the num-
4,5, 3, 7]. Another approachuperword-level parallelizatio(SLP), ber of instructions within a branching construct and the data set
involves packingsomorphicinstructions and their associated data Size. This paper presents a compiler algorithm and optimizations
into superwords, possibly performing loop unrolling to expose par- for parallelization in the presence of control flow using BOSCC
allelism [12, 11, 14]. SLP relies on the observation that multimedia instructions, and experimental results that illustrate the tradeoffs
extension architectures support short “vectors”, and that unrolling associated with these optimizations.

The remainder of the paper is organized as follows. Section 2 il-
lustrates the problem using two alternative versions of SLP code
for the PowerPC AltiVec. Section 3 describes experiments on syn-
thetic data that provide insight into the tradeoff space associated
with using BOSCC instructions. Section 4 presents the compiler
analysis and the algorithm for code generation. Section 5 describes
our compiler implementation and a set of performance measure-
ments on seven multimedia computations. Section 6 discusses re-
lated work and Section 7 concludes the paper.



2. BACKGROUND

In this section we discuss how to exploit SLP in the presence of

control flow using special instructions supported by multimedia ex- Figure 3: Merging two superwords using aselect  instruction
tension architectures. First, we briefly show how the SLP compiler

parallelizes a simple loowithoutconditional statements, using the ) ] ) ) )
example C code in Figure 1(a). Figure 1(b) shows the first step tecture of the PowerPC AltiVec; other multimedia extension archi-
which is unrolling the loop to expose superword-level parallelism tectures typically support similar instructions. Figure 2(b) shows a
in the loop body [12]. An unroll factor of four is selected based on Parallel version of the code in Figure 2(a), where both control flow
the assumption that the superword register width is sixteen bytesPaths are executed with SLP exploited in each path. The values
and the array type sizes are four bytes. In this case, the unroll fac-from each path are selected and merged to form the superword re-
tor is the same as theiperword siZSWS), which we define as the ~ Sult. This approach is based on a superwsetect — operation
number of data elements in a machine superword. Next, the par_that selects individual fields from two superword definitions ac-

allelizer packs together isomorphic instructions and the resulting cording to the value of a Superwqrd predicate variable. Concretely,
code is shown in Figure 1(c). the effect of theselect operation tst = select(srcl,

src2, mask) " istoassigrsrc2 todst forthe bit-fields where
the correspondingnask bit is 1. Otherwisesrcl is assigned to
dst (Figure 3). In the example, the superword predicate variable
is represented agpT, and is generated based on the result of a
superword compare instruction.

= SELECT( [2]2]2]2]. [3[3]3]3]. [1[o]1]0] ):

for (i=0; i<1024; i++)
Cl[i] = Ali] + BI[il;

(a) Original

The code in Figure 2(c) takes advantage of a common instruction
supported by multimedia extensiofsanch on superword condi-
tion code¢BOSCC), which checks the aggregate value of the con-
dition codes associated with each field of a superword predicate.
For example, a branch-on-none instruction can be thought of as an
AND of the condition codes of all fields of a superword, that is, a
branch is taken if none of these condition codes is true. The su-
perword predicate is derived from the superword condition codes
resulting from the previous superword compare operation.

for(i=0; i<1024; i+=4)
Cli] = Ali] + BIi;
C[i+1] = Afi+1] + B[i+1];
C[i+2] = Afi+2] + B[i+2];
C[i+3] = A[i+3] + B[i+3];

(b) Unrolled

for(i=0;i<1024; i+=4)
Cli:i+3] = A[i:i+3] + B[i:i+3]; The code in Figure 2(b) suffers from the cost of always executing

both control flow paths and the extsalect instruction, which

may offset the benefits of parallelism. In Figure 2(c) these over-

heads may be significantly reduced if the expression associated

(c) Parallelized

Figure 1: Example: Superword level parallelization

for (i=0; i<1024; i++)
if (fore[i] != 255)

with the BOSCC is false most of the time.

In the remainder of this paper we describe the tradeoff space in se-
lecting between these two approaches for SLP in the presence of

back[i] = forefi; control flow. The next section shows results of a synthetic bench-

(a) Original mark to illustrate this tradeoff space, followed by an algorithm and
9 experimental results from our compiler implementation.
for (i=0; i<1024; i+=4)%
v255 = (255,255,255,255);
v_pT = fore[i:i+3] != v255;
back([i:i+3] = select(back[i:i+3], fore[i:i+3], WT);

3. THE CHARACTERISTICS OF BOSCC

To gain insight into the factors influencing the profitability of BOSCC
instructions, we performed a series of experiments using the fol-
lowing synthetic benchmark.

(b) Parallelization usingelect for(i=0; i <datasize; i++) {
temp = AJi;
if (temp == BI[i])

for (i=0; i<1024; i+=4) C[i] = temp + DIiJ;

v255 = (255,255,255,255);

v_pT = fore[i:i+3] = v255;

branch-on-nongv_pT) L1; N

Ll.back[|:|+3] = select(back[i:i+3], fore[i:i+3], ypT); In this code, whenever the conditiglemp == B[i])  evalu-

: ates to false, the code following the conditional is bypassed. Thus,

} a BOSCC branch is most profitable when the condition evaluates
to false. Profitability therefore depends on thge densityof the
predicate, the frequency of true values for the branch test. We ex-
Figure 2: Example: Two approaches for SLP in the presence of pect that low true densities should correspond to more benefit from
control flow BOSCC instructions.

(c) Parallelization using BOSCC

We now consider superword-level parallelization in the presence of We present the results of a set of experiments in the three graphs
control flow. We base our discussion on the instruction set archi- from Figure 4. In each graph, the horizontal axis corresponds to
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(a) SWSis 4 and data set size is 16 KB. (b) SWS is 4 and data set size is 128 MB. (c) SWS is 16 and data set size is 4 KB.

Figure 4: Run Time of Synthetic Kernels

the true density of the input data set. We used a random numberThe results of Figure 4(b) show how the tradeoff space is affected
generator to create data sets with true densities fidnto 100%. when the data footprint exceeds the L2 cache size. As the com-
putation becomes memory bound, the benefits of parallelization
Each graph shows the execution time of four versions of the code, become less significant. Thus, the performance gap between the
as a function of true density. Tisealarcurve represents the execu- scalar and parallel versions is reduced. For true densities below
tion time of the original scalar code. The other three versions were 40%, the scalar version is actually the fastest. TEBON version
hand-coded in C extended with the Motorola-AltiVec programming behaves similarly to thecalarversion for low true densities, while
model. Theselectversion corresponds to what would be generated it behaves similarly to theelectversion for higher true densities.
by the default approach in our compiler, as shown in Figure 2(b) TheBON+BOAversion has the best performance for very high true
and described in [19]. ThBON version was derived by adding a  densities.
branch-on-non@BON) instruction to the assembly code of the-
lect version to bypass the code guarded by the conditional when To evaluate the effects of increasing the amount of available paral-
the test on all fields evaluates to false, similar to the example in lelism, in Figure 4(c) shows the impact of modifying the data type
Figure 2(c). Finally, th&ON+BOAversion was derived by adding  to char , thus increasing the superword size to 16. This change
a branch-on-al(BOA) to theBON version. The branch-on-all per-  increases the performance gap between the scalar version and the
mits an additional optimization which avoids the select operation; other parallel versions for all values of true densities. The various
if all fields are known to evaluate to true, then the value of all fields parallel versions exhibit very similar behavior.
of the corresponding superword Gfare the result of the operation
guarded by the conditional. From the experiments shown in Figure 4, we can summarize the
following conclusions. The BOSCC versions incur an overhead
In Figure 4(a) and (b), the superword size (SWS) is four, that is, due to the addition of branches as compared tcstiectversion,
each superword can hold four integer array elements. Therefore theand sometimes this overhead makes them unprofitable. For this
amount of available parallelism in a superword operation is four. reason, we have decided in our compiler to use just one BOSCC
Figures 4(a) and (b) show the run times of the benchmark for two instruction, comparable to tH8ON version. We have also deter-
data sizes: in (a) the data size fits in the L1 cache and in (b) the datamined that low true density can be used as one predictor of prof-

size is larger than the L2 cache. itability. In addition, the profitability of thd8ON version over the
selectversion increases as the cost of the instructions in the branch
First, we consider the results of Figure 4(a). Hwalar curve is body increases. Also, as parallelism increases, the profitable true

consistently slower than the various parallel versions. It performs density range of th&8ON version actually decreases. While not
best when the true density is either very low or very high. This shown in these experiments, a related profitability criteria is how
is because the G4’s branch prediction is most effective when the many instructions appear in the code bypassed by the branch; more
branching behavior is consistent. In thelectversion, the branch instructions lead to greater benefit. Finally, the cost of memory ac-
is eliminated and replaced with a merge of fields across the differ- cess instructions can dwarf the benefits of parallelizing the compu-
ent control flow paths. For this reason, the execution time is the tation, but theBON version performs comparably to the best ver-
same regardless of the true density. It has the best performancesion for all true densities. In general, while not always the best

among the four versions for true densities at or ab2¥&. The performing version, th8ON version has behavior that is compa-
performance of th8ON version is best for true densities néés rable to the best version for all of the experiments, whereas both
and is the same as tlselectversion for true densities abo€%. the scalarandselectversions sometimes are much slower than the

Interestingly, we see that the slowest performance is at a true den-others. Based on the insights presented in this section, we build a
sity of 16%, also related to branch prediction accuracy. It is lower model which can be used to guide the generation of BOSCC in-
than50% because the branch-on-none is taken only when the con- structions only when profitable.

ditions for all four consecutive scalar comparisons are false. For a

superword size of four and true density Bf the probability for

all four conditions to be false il — D)*. When two BOSCC in- 4. ALGORITHM

structions are used for tHBON+BOAversion, the overhead of an N this section we present the compiler analysis and code genera-
additional branch overcomes any benefit. tion techniques used in our approach. We assume that paralleliza-

tion has been performed aseélectinstructions are inserted where



Algorithm INSTRUMENT

control flow paths merge, and focus on using BOSCC to reduce Given a basic block B

the overheads introduced by parallelization of multiple control flow

paths. The main components of the algorithm are: a profitabil-  p . find superword predicates(B)
ity model for BOSCC instructions; a profiling phase for collecting if (P ==0) return

data for the BOSCC model; identifying regions of code and pred-  Insert a basic block counter to B
icates associated with a BOSCC instruction; and code generation for each superword predicate preslP
for inserting BOSCC instructions. Insert a counter for pred

4.1 BOSCC model

The BOSCC model determines the profitability of using a BOSCC

instruction to bypass code, allowing the compiler to decide whether vec = vecld(i_0, ptr); )
or not to generate a BOSCC instruction. The model uses two key *(-Pasicblock + 0) = *(basicblock +0) + 1;

properties of the code to determine profitability. The fiPAFS xggﬂg Z xgggg‘g Bgigig

(perqentage of all falsg superwoidss the percentage of superword  \gc121 = veocmpe'q(vec, véchO);

predicates where all fields are false, and indicates how frequently vec123 = veccmpeq(vec118, vec120);

a BOSCC branch is taken. Determining P®&FSvalue associated  vec125 = veccmpeq(vecl19, vecl24);

with a particular superword predicate must be done dynamically, vec126 = vecand(vec121, vec123);

and is computed in a separate profiling phase as discussed in SecYec127 = vecand(vec126, vec125); .
tion 4.2. The secondyBI (number of bypassed instructionis the xggigg Z xggclrggeq((vector unsigned charjvec127, vec120);
number of instructions bypassed when a BOSCC branch is taken,gq| = vecld(i_0, pt’r135);

which represents the number of instructions for a single execution yec138 = (vector bool char)vesplat ug(0);

of the parallelized code. THeBI can be computed statically by the  instrument = vec_all_eq(vec130, vec138);

compiler. if (instrument == 1)

(a) Algorithm

The number of instructions of theelectand BOSCC versions are (-Superword_predicates + 0) = *(superword.predicates + 0) + 1;

Equation 1 and 2 respectively, and a BOSCC instruction is prof-
itable wheneverVI (select ) > NI(BOSCG.

Ni(select ) = NBI (1) (b) Example

NI(BOSCG = NBI+1— PAFSx NBI @ Figure 5: Automatic instrumentation to compute PAFS in pro-
In Equation 2, we add an additional instruction for the BOSCC filing phase.
branch, and subtract the number of instructions skipped by the
BOSCC branch (PAFS NBI). In reality, the cost of executing ] ) ] ] )
a BOSCC instruction may be higher or lower than that of other The PAFSvalue in the previous model is determined using au-
instructions depending on how the branch predictor performs. The tomatic instrumentation in a separate profiling phasgigure 5
additional weight of executing BOSCC instructions can be varied to (&) shows the simple algorithm for inserting instrumentation code.

improve the precision of the model, but since it is machine-specific, First, for each basic block, all superword predicates are identified.
we omit it here. Next, for each basic block that contains superwsedect in-

structions, we measure the total number of times the block is exe-

Note that this model takes into account the effects discussed in thecuted and, for each predicate, the number of BOSCC's taken. To
previous section of the data type size and associated parallelismjncrement the counter only when the superword predicate contains
as well as the amount of computation bypassed by the BOSCC in- false values in all the fields, we also use a BOSCC instruction. Use

struction. However, it ignores locality effects, which must be ad- 0f BOSCC expedites the profile run as compared to checking the
dressed separately. individual fields in a sequential loop. An example of instrumented

code is shown in Figure 5 (b). The instructions in bold font are

To provide intuition as to why parallelization using BOSCC is more added for profiling.

profitable than scalar execution of the equivalent code, let us as-

sume that a scalar instruction is mapped to a single equivalent su-4.3  ldentifying BOSCC predicates

perword instruction and that the run time is computed as the num- prior to code generation, the compiler locates predicates associated
ber of executed instructions. In this specific situation, we can have with select instructions and identifies the set of instructions guarded
a parallelized code using a BOSCC where each instruction is the py each predicate. The third operand of each superselett
SuperWOI’d Counterpal’t of the scalar instruction in the Original. The instruction’ as defined in Section 2, represents a predicate_

BOSCC can be thought of as the counterpart of the original scalar

branch. If the branch body is executed in the scalar version more The algorithm to extend these predicates to other instructions is
than once out of SWS iterations, the branch body in the BOSCC shown in Figure 6. Initially, a null predicate is associated with
version will be executed exactly once for SWS scalar iterations. In g| instructions. The algorithm in Figure 6(a) scans the code to
this case, the version using BOSCC will run faster than the scalar |ocateselect instructions. For eachelect instruction whose
version because of less loop overhead. If the branch body is not - — — ) o o )
executed in the scalar version for SWS iterations, the branch body *While profiling has limitations in deriving dynamic information,

in the BOSCC version also will not be executed and will run faster Particularly when a different input data set is used than was used
because of less loop overhead in the profiling stage, we forgo more elaborate approaches for de-

riving dynamic information on-the-fly, since issues of deriving dy-
. namic information are orthogonal to the focus of this work. Other
4.2 Profiling Support to Compute PAFS approaches could also be used to derive the value of PAFS.

sel = vecsel(sel, vec, vec130);




Algorithm ISP (B): Given a basic block B

[/ Initially, all instructions are associated with null predicates
for each select instruction I:“dst = select(srcl, src2, pred)B

where dst == srcl
I/ srcl is associated with 'true’ value of pred
I src2 is associated with 'false’ value of pred
predicate(lx— pred;
IdentifyBranchBody(src2, I, pred);
IdentifyMemoryAccesses(srcl, dst, pred);

(a) Identifying superword predicates

Algorithm IdentifyBranchBody (src, |, pred):

Given an operand src, an instruction | and a predicate pred

rd < reaching definitions of src;

if (rd is not a single reaching definition
I is not the only use of rdjeturn ;

predicate(rd)— pred;

for each source operand src of rd
IdentifyBranchBody(src, rd, pred);

(b) Identifying branch body

Algorithm IdentifyMemoryAccesseqsrc, dst, pred):
Given operands src, dst and a predicate pred

rd < reaching definitions of src
u < uses of dst
if (rd is single reaching definition rd is a loadA
u is the only use\ u is a storen
rd and u access the same address)
predicate(rd}— pred
predicate(u)}— pred

(c) Identifying unnecessary memory accesses

Figure 6: Algorithm to identify a predicate for instructions

first source operand and the destination operand are the same, it
associates the predicate found in the third source operand with the
select instruction, and then follows use-def and def-use chains to

locate other instructions to which this predicate can be associated.
Two sets of instructions are considered, as shown in Figures 6(b)

and (c).

The goal of the algorithm in Figure 6(b) is to identify the set of
instructions that are executed only when the predicate evaluates to
true. The result of a superworkklect instruction is the first
operandgrcl ) when the predicatpred contains all false values.

We can therefore bypass any instructions that define the value of the
second operansic2 if all the fields ofpred are false. This set of
instructions can be thought of as the branch body from the original
program, although it could include an even larger set of instruc-
tions. The algorithmdentifyBranchBody then recursively
follows the definitions of the variables contributing to the value of
src2 . Those that have a single definition reaching a single use
can be guarded by the predic@ted , and can be bypassed by the
BOSCC instruction. The goal of the algorithm in Figure 6(c) is to
eliminate unnecessary memory accesses occurring when all fields
of pred evaluate to false. If a load tercl and a store ofist

occur in the code, the value is not modified between the load and
store, and no other instructions depend on this load and store, both
memory accesses can be predicated wittd . The algorithm in
Figure 6 guarantees that at most one predicate is associated with
each superword instruction.

4.4 Code Generation

Figure 7(b) shows the main algorithm to insert BOSCC instruc-
tions. After the predicate for each instruction is identified, instruc-
tions with the same predicate are combined into a BOSCC region
if there are no intervening dependences. In the algorithm shown
in Figure 7(a), the initial BOSCC regions are formed by finding
consecutive instructions guarded by the same predicate. Then the
BOSCC resions associated with the same non-null predicate are
merged if no data dependences with the intervening instructions
prevent the code motion. The algorithm first checks if the later re-
gion can be moved to the end of the earlier region. If this is not
possible because of the data dependences with the intervening in-
structions, the algorithm checks if the earlier region can be moved
before the first instruction of the later region. The goal is to form
the largest possible region guarded by a single BOSCC predicate.
The number of adjacent instructions guarded by the same predicate
provides the value dfiBI for the BOSCC model, while the value of
PAFSis derived from profiling. If profitable, a BOSCC instruction

is inserted just prior to the instructions that form a BOSCC region,
and it branches to the instruction immediately following the last
instruction of the BOSCC region.

5. IMPLEMENTATION AND EXPERIMENTS

This section describes our SUIF implementation of the algorithm
presented in Section 4, and presents an experimental evaluation of
our approach. The experimental performance data was obtained
by using our implementation to automatically perform superword-
level paralellization on a set of kernels from multimedia applica-
tions.

5.1 SLP Implementation

We have implemented the algorithms of Section 4 in the SUIF com-
piler [9]. The implementation, shown in Figure 8, is based on our
extension of Larsen andAmarasinghe’s SLP compiler [12] to ex-
ploit SLP in the presence of conditionals, denoted ISI-SLP [19].
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Figure 8: An SLP-based compiler that supports BOSCC.

Algorithm FBR (B): Given a basic block B
n—2o0
Region[0]« new region(NULL)
current«— NULL
prev« NULL
for eachinstruction l€ B
pred«— predicate(l)
if (currentZ pred)
Region[n].end— prev
n++
Region[n]« new region(pred)
Region[n].moved— false
Region[n].begin— |
current«— pred
prev— |
Region[n++].end— |

for (i=1; i<n; i++)
for (j=i+1; j<n; j++)
if (Region([i].predicate? NULL A

Region[i].moved == false\

Region[i].predicate == Region[j].predicate)

if (Region[j] can be moved after Region[i].end)
move instructions in Region[j] after Region[i].end
Region[j].moved— true

else if(Region[i] can be moved before Region[j].begin)
move instructions in Region[i] before Region(j].begin
Region[i].moved— true

return Region, n

(a) Form BOSCC regions

Algorithm Insert-BOSCC
Given a basic block B

B’ — ISP(B)
R, n«— FBR(B’)
for (i=1; i<n; i++)
if (R[i].moved == falseA R[i].predicate NULL)
NI_select— # instructions(R[i])
NI_boscc— Nl_select + 1 - PAFS(R[i])x Nl_select
if (NI_boscc< Nli_select)
Insert boscc(R[i])

(b) BOSCC insertion algorithm main

Figure 7: BOSCC insertion algorithm

The boxes inside the thick dashed line represent the algorithms de-
scribed in this paper. The input to our compiler is sequential C code
and the output is parallelized C code that may contain BOSCC in-
structions. The compiler runs in two phases. In the first run, it
generates instrumented code which is then compiled by an AltiVec-
extended GCC [17] and linked to a library that supports the gener-
ation of a PAFS file. Thénstrumentation for BOSCCorresponds

to the profiling algorithm of Figure 5, and generates a file that re-
lates basic block indices to predicate names. This file is read by
the instrumented executable for computing the PAFS values. In the
second run, the predicates in the source code are annotated with
PAFS values produced in the profiling rudentify Predicatesm-
plements the algorithm shown in Figure 6 dndert BOSCOm-
plements the algorithm of Figure 7.

5.2 Experimental evaluation

We performed a set of experiments to evaluate the effectiveness of
the two approachesé¢lectandboscg presented in Section 4. For

the experiments presented in this section, we used seven kernels
selected from multimedia applications.

The experiments were performed on a Motorola PowerPC G4 with
a 533 MHz MPC7410 processor, an 8-way set-associative 32KB
L1 cache and an 2-way set-associative 1IMB L2 cache. To com-
pile both scalar and superword codes, we used an AltiVec-extended
GCQwith the-O3 option.

Table 1 shows the seven kernels used in the experiments, each con-
taining at least one conditional. The data widths of the primary ob-
jects of each kernel, ranging from 8-bit to 32-bit fields, are shown
in the third column. The last two columns describe the two input
data sets used in the experiments: the original input data, and a
synthetic input designed to yield a particular PAFS value.

Figure 9 shows speedup curves for the kernels in Table 1. Each
graph shows the speedups of three parallel versions of a kemael,
lect, N-BOSCCandM-BOSCG with respect to the sequential ver-
sion of the kernel. Th&\-BOSCC(Naive BOSC(version is de-
rived by inserting a BOSCC instruction in all possible BOSCC re-
gions. In theM-BOSCC(Model-based BOSCersion, the model
described in Section 4 is used to evaluate the profitability of insert-
ing BOSCC instructions. All three versions of each kernel were
derived automatically using our SUIF-based implementation.

Figure 9(a) shows the speedups of TM for each of the 72 templates
of the kernel’s input data set, for versioselect N-BOSCCandM-
BOSCC The speedup dfl-BOSCCvaries with the input data sets,
since the true density varies from template to template. Nhe
BOSCCuversion also has a BOSCC instruction for all templates,



Data Width | Tnput Size (original) | Input Size (synthetic) |

Name | Description [

Chroma Chroma keying 8-bit character | 48 x 48 color image (12 KB) 400 x 5 color image(12 KB)

Sobel Sobel edge detection 16-bit integer 1024 x 768 gray scale image (3 MB) N/A
™ Image correlation 32-bit integer 64 x 64, 72 32x 32 (1.4 MB) 16 x 64, 1 16x 32(10 KB)
Max Max value search 32-bit float 2100x 256 x 256 (52 MB) 2 8 x 256 (16 KB)

transitive Shortest path search 32-bit integer 21024 1024 nodes (8 MB) N/A
MPEG-distl | distl of MPEG2 encoder | 8-bit character | data for the first 1000 calls (11 MB)| N/A
EPIC-unquantizg unquantizeimage of unepic| 16/32-bit integer| reference input (393 KB) N/A

Table 1: Benchmark programs
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Figure 9: Speedups over scalar version for real data
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Figure 10: Speedups over scalar version for randomly generated data

ing the input data to the MAX kernel. The speedups of MAX are

Figure 11 shows that the speedup curve of the BOSCC versions1.26 forselectand 1.22 forN-BOSCGC as shown in Figure 9(c).
closely matches the percentage of taken BOSCC branches of eachin N-BOSCC each BOSCC body contains a single instruction, the

template. Although not shown in the figure, the speedupselafct
follow the inverse of the percentage of taken BOSCC branches, be-
cause the run time of the sequential baseline is affected by the PAFS

while that ofselectis not.

35

Speedup
w
o

25

A\ A
~re A A /
A ACAYSS VA

AV

———- % taken boscc’'s
speedups

0 16 32 48 64

Template

100

90

80

70

60

50

(%) sO0S049 usxelL

selectinstruction shown below.

max = select(max, new _value, compare);

We expected GCC to generate a BOSCC instruction for the region
associated with theelectinstruction. However, the GCC version
we use generates code such that shéectinstruction is always
executed and a newopy instruction is added after the BOSCC,
possibly because the destination variabteax) is live across the
iterations of the innermost loop. Thié¢-BOSCChas two extra
instructions, a BOSCC instruction and an extra copy instruction,
resulting in a slow down with respect $elect When this problem

is corrected manually at the assembly level by removing the copy
instruction and moving the BOSCC ahead of the select instruction,
the newN-BOSCQperforms better thaselect

For theN-BOSCCversion ofSobe] a BOSCC instruction is gener-
ated for four BOSCC regions containing 2, 2, 1, and 1 instructions,
respectively, yielding the same performance asstflectversion.

The PAFS for each BOSCC region are 17 %, 4 %, 2 % and 82 % re-
The speedups of the parallel versions of Chroma-keying are shownspectively. The high and low values of PAFS have reduced the cost
in Figure 9(b). The horizontal axis corresponds to the ratio between of BOSCC instructions. Also, large latency of memory references
the sizes of the foreground object and the background image in thehave played a role in this result by overlapping the BOSCC la-
input data set (both the size and shape of the foreground object af-tency. When memory latency is reduced by reducing the data size,
fect the true density of the input data). Since in Chroma-keying a N-BOSCGCslows down by 10 % with respect select No BOSCC
BOSCC branch is taken when all pixels in a superword are outside instructions are generated for thleBOSCCversion. The speedups
the foreground object, the speedups corresponding to smaller fore-of the parallel versions with respect to the sequential baseline are
ground objects are larger, as expectedsétect the runtime does 2.59 for all three versions, as shown in Figure 9(d).

not vary with the true densities, but there is a small speedup due to

the fact that in the sequential version the body of the conditional is For Transitive N-BOSCCperforms slightly worse thaselect as
executed more often as the true density increabe80SCCfol- shown Figure 9(e), again because the only BOSCC region in the
lows the better of theelectandN-BOSCGCspeedups for mostinput  kernel contains a single instruction. In addition, since the BOSCC
data sets. The few exceptions are caused by a simplification in ourinstruction is never taken, the hardware branch predictor performs
model, where we assume that the cost of executing a BOSCC in-well.

struction is the same as any other instruction. In general, branch in-

structions cost more than arithmetic and logical instructions as the TheN-BOSCGrersion ofMPEG-distlhas 16 BOSCC instructions,
percentage of the taken BOSCCs approaches 50 %. The BOSCQyenerated for 4 basic blocks. Each BOSCC region consists of two
model makes the right decisions around 0 % and 100 % but it tendsinstructions, and the PAFS ranges from 30 to 40% for all BOSCCs
to make wrong decisions in between the two ends when the marginincreasing their costs. Thus th&BOSCCversion does not have

is small. BOSCC instructions.

Figure 11: TM: % taken BOSCCs

For MAX, the input data set was derived by running the TOM- EPIC-unquantizeshown in Figure 9(g) is interesting because the
CATV benchmark (from which the kernel is extracted) and collect- M-BOSCCversion outperforms botkelectandN-BOSCC While



N-BOSChas seven BOSCC instructiomd;BOSCChas only four Authors would like to thank Samuel Larsen and Saman Amaras-
BOSCCs, associated to the four BOSCC regions with the highestinghe at MIT for providing their SLP implementation. Especially,
number of instructions and PAFS. As a result, wrakdectper- Samuel Larsen deserves a special thanks for his tremendous sup-
forms worse than the baseline aNeBOSCCachieves a negligible port. Also, we wish to thank Mark Stephenson at MIT for providing
improvement, thé1-BOSCCversion speeds up by 12 %. the initial implementation of Park and Schlansker’s RK-algorithm.
This material is based on research sponsored by AFRL and NSA
To further investigate how the performance of MeBOSCCver- under agreement number FA8750-04-1-0265. The views and con-
sions varies with the input data set, we used a random number gen<lusions contained herein are those of the authors and should not
erator to derive synthetic data sets with PAFS from 0% to 100% be interpreted as necessarily representing the official policies or
for TM, Chroma-keying and MAX. Figure 10 shows the speedups endorsements, either expressed or implied, of AFRL and NSA or

of the select N-BOSCCand M-BOSCCparallel versions of these
three kernels. For all three kernels, the speedugelefctdecreases

the U.S. Government.

as the PAFS increases, because the sequential version performs beg REEFERENCES

ter when the scalar branches are taken more often. In geieral,
BOSCCruns increasingly faster than the sequential version as the
PAFS increases. This is because MB8OSCCversions skip su-
perword instructions, each of which corresponds to SWS scalar in-
structions. Mild slopes in the lower half of the PAFS range are
due to the branch prediction mechanism of the machine. Finally,
M-BOSCCusually performs as well as the better of the two other
versions except for a small range of PAFS values, again due to our
model’s simple assumption for the cost of a branch.

6. RELATED WORK

There are several prior work on automatic parallelization for mul-
timedia extensions [12, 11, 20, 4, 13, 3, 7, 14]. Two distinct ap-

proaches are used, that is, SLP [12, 11, 14] and an adaptation of

vectorization technique [3, 20, 7]. Conventional parallelization
technique for conditionals has been documented in [3, 20]. Bik an
et. al. use a technique call&@it maskingto combine two defini-
tions. However, their method is limited to singly nested conditional
statements [3]. Our previous work describes the SLP techniques in
the presence of control flows [19]. To exploit SLP for conditioinals,
we borrow many techniques developed for instruction level paral-
lelism [18, 15].

d

Branch on superword condition code(BOSCC) is supported in Al-
tiVec G4 [17], DIVA [6], and other architectures [2, Thovemask
instruction in Pentium can also be used for a similar purpose to
BOSCC [10]. However, no prior work describes generating BOSCC
instructions automatically to reduce parallelization overhead of con-
ditionals. Vector flag population count instruction [16] can be used
to change the control flow similar to BOSCC instructions in vec-
torized programs. However, the probability of taken BOSCCs de-
creases exponentially to the vector length and the long vector length

of vector machines reduces the chances for the profitability of BOSC{8]

instructions dramatically.

7. CONCLUSION

This paper has described key concepts in optimizing control flow
constructs for multimedia extension architectures. In many multi-
media ISAs, including the PowerPC AltiVec, parallel code in the
presence of control flow can utilizelect instructions to com-
bine multiple definitions along different control flow paths. We dis-
cussed how to optimize this type of code using a special instruction

that examines superword condition codes to bypass unnecessary

computation when the entire superword associated with a control
flow test has all false values. We have described an implementation

and presented a set of results that pinpoints the tradeoff space as-

sociated with these two alternate versions of superword code in the
presence of control flow.
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