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Second order structure and identifiability

{Yt} is a zero-mean stationary Gaussian process which is thus characterized
by its second-order structure given below

covθ(Yt,Yt) =
σ2

1− ρ2

(
α1(α1 + ρα0 + ρ2α−1)t +α0(ρα1 +α0 + ρα−1)t +

α−1(ρ2α1 + ρα0 +α−1)t
)

+ Γ, (1)

covθ(Yt,Yt+1) =
σ2

1− ρ2

(
α1(ρα1 +α0 + ρα−1)t +α0(ρ2α1 + ρα0 +α−1)t +

ρα−1(ρ2α1 + ρα0 +α−1)t
)
, (2)

covθ(Yt,Yt+k) =
σ2

1− ρ2
ρk−2(α1 + ρα0 + ρ2α−1)(ρ2α1 + ρα0 +α−1)t, (3)

for all k ≥ 2.

The study of this space-time covariance function leads to the following Propo-
sition which is proven below.

Proposition 1 Assume that (M) holds. Assume further that σ2

1−ρ2 = 1 and
that the vectors α1, α0 and α−1 are linearly independent. Then the parameters
can be identified from the distribution of the process {Yt}.
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Let {Yt} [resp. {Ỹt}] denote a process satisfying (M) with parameters
θ = (ρ, σ,Λ,Γ) [resp. θ̃ = (ρ̃, σ̃, Λ̃, Γ̃)]. We assume that σ2

1−ρ2 = 1 and Λ is full

ranked, with the same constraints holding true for θ̃. We also assume that {Yt}
and {Ỹt} have the same second-order structure. We prove below that if these
conditions hold true then θ = θ̃ up to the sign of Λ i.e. ρ = ρ̃, σ = σ̃, Λ = ±Λ̃
and Γ = Γ̃. The proof is based on the properties of Ck = cov(Yt,Yt+k).

• Identification of ρ and σ. According to (3), we have Ck = ρk−2C2 for
k ≥ 2 and

C2 =
σ2

1− ρ2
uvt

with u = α1 + ρα0 + ρ2α−1 and v = ρ2α1 + ρα0 + α−1. Since α−1,
α0 and α1 are linearly independent, u 6= 0 and v 6= 0 and thus C2 6= 0.
ρ can thus be expressed as a ratio between some coefficients of C3 and
C2 and we deduce that ρ = ρ̃. Using the constraint σ2

1−ρ2 = 1, we also

deduce that σ2 = σ̃2.

• Identification of Λ when ρ 6= 0. According to (2-3) we have C2 −
ρC1 = (1 − ρ2)α1α

t
−1 and thus α1α

t
−1 = α̃1α̃

t
−1 since ρ2 6= 1. We

deduce that there exists a real constant k1 6= 0 such that α−1 = k1α̃−1

and α1 = k−1
1 α̃1. We also have uvt = ũṽt where ũ and ṽ are defined

similarly to u and v. We deduce that there exists a real constant k2 6= 0
such that ũ = k2u and ṽ = k−1

2 v and thus ũ− ṽ = k2u− k−1
2 v with

ũ− ṽ = (1− ρ2)α̃1 + (ρ2 − 1)α̃−1

= (1− ρ2)k−1
1 α1 + (ρ2 − 1)k1α−1 (4)

k2u− k−1
2 v = (k2 − ρ2k−1

2 )α1 + ρ(k2 − k−1
2 )α0

+(k2ρ
2 − k−1

2 )α−1 (5)

Since α−1, α0 and α1 are linearly independent, we can identify the co-
efficients of the linear combinations (4-5) and deduce, when ρ 6= 0 that
k2 ∈ {−1, 1} and αi = k2α̃i for i ∈ {−1, 0, 1}.

• Identification of Λ when ρ = 0. In this case,

C1 = σ2(α1α
t
0 +α0α

t
−1), (6)

C2 = σ2α1α
t
−1 (7)

By similar reasoning as previously from (7) there exists k1 6= 0 such that
α−1 = k1α̃−1 and α1 = k−1

1 α̃1. From (6) we deduce that α1(k1α̃0 −
α0)t + ( α̃0

k1
−α0)αt−1 = 0.
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If k1α̃0−α0 6= 0 then there exists k2 6= 0 such that α1− k2
k1
α̃0−k2α0 = 0

(R1) and 1
k2
α−1 +α0 + k1α̃0 = 0 (R2).

Then

(R1)− k2

k1

(R2) = α1 + (k2 +
k2

k2
1

)α0 +
1

k2
1

α−1 = 0.

Since α1, α0 and α−1 are linearly independent we obtain k1 = k2 = 0
which is a contradiction.

If k1α̃0−α0 = 0, this implies α̃0

k1
−α0 = 0, then k1 = ±1. In both cases,

α1, α0 and then identifiable from the covariance C2 and C1.

• Identification of Γ. According to (1), Γ can be expressed from C0 and
the other parameters. We easily deduce that Γ̃ = Γ

Here we prove that full-symmetry can not be achieved under the chosen
identifiability constraints. Separability of a space-time covariance function
implies full-symmetry of this latter (Gneiting, 2002). Full-symmetry of the
space-time covariance function implies that the matrix C2 is a symmetric
matrix. The symmetry of C2 implies uvt = vut, u and v are then collinear
vectors which implies a collinearity between α1, α0 and α−1. The space-
time covariance function defined by the model is not fully-symmetric and then
non-separable.

Maximum Likelihood Estimation for the model

(M) and associated reduced models

Maximum likelihood estimation of the parameter θ for models with latent
variables consists in maximizing the incomplete likelihood function based on
observed set (y1, ...,yT ):

L(θ;y1, ...,yT ) = p(y1, ...,yT ; θ) = L(θ;y1, ...,yT ) = p(y1)
T∏
t=2

p(yt|y1, ...,yt−1; θ).

In the Gaussian linear case, the likelihood of the observations (y1, ...,yT ) can
be computed easily since for all t ∈ {1, ..., T} (Y1, ...,Yt) is a Gaussian vector.
It gives for the model (M):

L(Yt|Y t−1
1 = yt−1

1 ) = N (ΛX̃t|t−1,Ft|t−1) where X̃t =

 Xt+1

Xt

Xt−1

 ,

with X̃t|t−1 = E(X̃t|Y t−1
1 = yt−1

1 ) and Ft|t−1 = Var(Yt|Y t−1
1 = yt−1

1 ) = ΛPt|t−1Λ
t+Γ
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where Pt|t−1 = Var(X̃t|Y t−1
1 = yt−1

1 ) = E((X̃t−X̃t|t−1)(X̃t−X̃t|t−1)t|Y t−1
1 = yt−1

1 )

with yt−1
1 = (y1, ...,yt−1). Both quantities X̃t|t−1 and Pt|t−1 are computed

from Kalman filter described below (see also (Shumway and Stoffer, 2006)).
However no explicit expressions of the optimal parameters are available from
this incomplete likelihood, a maximum likelihood estimation procedure would
involve a numerical optimization of this function which is not reasonable in
high dimension. A major feature of the EM algorithm (Dempster et al., 1977)
is the maximization of the complete likelihood over the parameter θ.

Kalman recursions

The goal of filtering (respectively smoothing, respectively prediction) is to ob-
tain as much as possible information about the hidden variable Xt from the ob-
servations (y1, ...,yt) (respectively (y1, ...,yT ), respectively (y1, ...,yt−1)). The
solution consists in computing recursively the conditional law of Xt according
to (y1, ...,yt) (respectively (y1, ...,yT ), respectively (y1, ...,yt−1)), which real-
izes the best approximation of Xt according to (y1, ...,yt) in terms of mean
square error.

Kalman prediction and filtering: (X̃t,Y1, ...,Yt−1) is a Gaussian vector
then the conditional distribution of X̃t according to (Y1 = y1, ...,Yt−1 = yt−1)
is a Gaussian distribution with parameters: X̃t|t−1 = E(X̃t|Y1 = y1, ...,Yt−1 =

yt−1) and Pt|t−1 = Var(X̃t|Y1 = y1, ...,Yt−1 = yt−1) = E((X̃t − X̃t|t−1)(X̃t −
X̃t|t−1)t|Y t−1

1 = yt−1
1 ); and L(X̃t|Y1 = y1, ...,Yt = yt) = N (ΛX̃t|t,Pt|t).

Relationships between predicted and filtered quantities are the following:

X̃t|t−1 = ρ̃X̃t−1|t−1,

P̃t|t−1 = ρ̃P̃t−1|t−1ρ̃
t + σ̃,

X̃t|t = X̃t|t−1 +Kt(Yt −ΛX̃t|t−1)

and
P̃t|t = (I −KtΛ)P̃t|t−1,

where Kt = P̃t|t−1Λ
t(ΛP̃t|t−1Λ

t+Γ)−1 and K is called the Kalman gain. The
two first expressions are easily derived from independence of εt and Yt−1 and
of (X̃t−1 − X̃t−1|t−1) and εt. The two last relations are based on properties of
the Gaussian process of innovations It = Yt − E(Yt|Y1 = y1, ...,Yt−1 = yt−1).

Kalman smoothing: Computation of X̃t|t and P̃t|t is obtained through
the following backward recursions:

X̃t|t = X̃t|t + Jt(X̃t+1|T − ρ̃X̃t|t),
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P̃t|t = P̃t|t + Jt(P̃t+1|T − P̃t+1|t)J
t
t ,

Jt = P̃t|tρ̃
tP̃−1

t+1|t

and
P̃t,t−1|T = P̃t|tJ

t
t−1 + Jt(P̃t+1,t|T − ρ̃P̃t|t)J tt−1.

Similar computations of the previous ones based on conditional expectation of
multivariate normal distribution are used to compute these quantities.

EM algorithm

Thanks to the Markov properties and Bayes formula, the complete likelihood
of the model (M) for θ = (ρ, σ,Λ,Γ) is written as:

L(θ;x0, ..., xT ,y1, ...,yT ) = L(θ; X̃1, ..., X̃T−1,y1, ...,yT )

= p(x0)
T∏
i=1

p(xi|xi−1; θ)
T∏
i=1

p(yi|X̃i; θ).

However the set (x0, ..., xT ) is not observed, the EM-algorithm enables to ap-
proximate θ̂ that maximizes the quantity E(log(p(X̃1, ..., X̃t,Y1, ...,YT ; θ))|Y T

1 =
yT1 ). The EM-algorithm computes approximations θ̂n of θ̂ in a recursive way
by performing the following two steps at each iteration n:

Expectation step: Computation of

Q(θ, θ̂n) = E(log(L(X̃1, ..., X̃T−1,Y1, ...,YT ; θ))|Y T
1 = yT1 ; θ̂n),

through the Kalman filtering and smoothing recursions (see (Shumway
and Stoffer, 2006)).

Maximization step: Computation of θ̂n+1 by maximization of the function
(θ → Q(θ, θ̂n)).

Since X tMX = Trace(MXX t) for all K-dimensional vector X and K×K-
matrix M , the quantity Q(θ, θ̂n) is derived:

Q(θ, θ̂n) = −1

2

(
(T − 1)(log(2π) + log(σ2)) +

1

σ2

T∑
i=2

E((Xi − ρXi−1)2|yT1 ; θ̂n)

+T (K log(2π) + log(det(Γ)))

+
T∑
i=1

Trace(Γ−1E((yi −ΛX̃i)(yi −ΛX̃i)
t|yT1 ; θ̂n))

)
.

Then the following quantities x̂i = E(Xi|yT1 ; θ̂n), x̂i,i−1 = E(XiXi−1
t|yT1 ; θ̂n),

ˆ̃Xi = E(X̃i|yT1 ; θ̂n) and ˆ̃Xi,i = E(X̃iX̃i
t|yT1 ; θ̂n) are needed for all i ∈
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{1, ..., T} and derived from the Kalman filter and smoother. At each M-step,
analytical expressions of the estimates of the parameters can be derived:

ρn =

T∑
i=2

x̂i,i−1

T∑
i=1

x̂i,i

,

Λn =
( T∑
i=1

yi
ˆ̃Xi

t
)( T∑

i=1

ˆ̃Xi,i

)−1

and Γn =
1

T

T∑
i=1

(yiyi
t −Λn

ˆ̃Xi
tyi

t).

The estimation of Γn in models (MΓ) and of Λn in the model (MΛ) are pro-
cessed by numerical optimization of the associated part of the log-likelihood.
For the model (MΓ), Λn is determined by its analytical expression and in-
jected in the associated part of the likelihood which is optimized numerically
to determine the parameters that structure Γn. Γn is the maximizer of:

(σ1, ..., σK ,Λ1,Λ2)→ T (K log(2π) + log(det(Γpar)))

+
T∑
i=1

Trace(Γ−1
parE((yi −ΛnX̃i)(yi −ΛnX̃i)

t|yT1 ; θ̂n)).

Where Γpar is the parametric covariance defined by (σ1, ..., σK ,Λ1,Λ2). Initial
conditions of the parameters of the structure of Γ are determined empirically.
In the estimation procedure associated with (MΛ), Λn is determined as the
maximizer of the function:

(βLat
1 , ..., β9)→ T (K log(2π) + log(det(Γn−1)))

+
T∑
i=1

Trace(Γ−1
n−1E((yi −ΛparX̃i)(yi −ΛparX̃i)

t|yT1 ; θ̂n)),

with Λpar =
(

1 | Long | Long2
) βLat

1 βLat
4 βLat

7

β2 β5 β8

β3 β6 β9

 . Initial condi-

tions of this optimization are determined by a least square estimation between
Λ̂, the output of the EM processes for the model (M), and Λpar. Γn is then
determined as the maximizer of:

Γ → T (K log(2π) + log(det(Γ)))

+
T∑
i=1

Trace(Γ−1E((yi −ΛnX̃i)(yi −ΛnX̃i)
t|yT1 ; θ̂n)).

The splitting of optimization in Λ and Γ into the EM algorithm refers to
a Generalized Expectation-Maximization algorithm in which at each M-step
only an improvement of the approximated incomplete likelihood is required.
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Prediction as a validation tool

The time-step of the data makes unrealistic the use of the proposed model as
a forecasting tool. Nevertheless, forecasting is used here a classical statistical
tool for validation. Indeed it enables to evaluate many features linked to
statistical modeling and it can, for instance, help to detect overfitting. The
Markovian structure of the model (M) is such that the short-term forecast can
be efficiently computed through the Kalman recursions (see (Brockwell and
Davis, 2006, chapter 8)). The forecast is performed on the last 8 years of data
(validation set) after fitting the model on the first 25 years of data (training
set). In practice the forecast skills of the model at location i ∈ {1, ..., K} is
evaluated by computing the natural empirical estimate of the Mean Square
Percentage Error (MSPE) defined as

MSPE(i) =
Var(Yt(i)− E[Yt(i)|Y0, ...,Yt−1])

Var(Yt(i))

where the MSE of the forecast error (the numerator) is normalized by the
variance of the field at the individual locations, with Yt the original non trans-
formed wind.

For comparison purpose, a vector autoregressive model of order 1 (VAR(1))
was also fitted on the multivariate process Y of transformed mean-corrected
wind speed. Such a high-dimension response vector may lead to a model VAR
which suffers from over-parameterization and to a difficult interpretation of the
parameters. Note that the BIC and MSPE criteria lead to coherent results.

Model Parameters Log-likelihood BIC MSPE [min ; max]
GMM ML

VAR(1) 495 -20707 46961 [ 0.249 ; 0.350 ]
(M2) 209 -24849 52040 [ 0.268 ; 0.410 ] [ 0.256 ; 0.418 ]
(M) 208 -24954 52238 [ 0.264 ; 0.410 ] [ 0.264 ; 0.414 ]
(MΛ) 186 -25399 52895 [ 0.277 ; 0.428 ] [ 0.264 ; 0.417 ]

(MΓ∼Gauss) 78 -29110 59082 [ 0.308 ; 0.428 ] [ 0.274 ; 0.389 ]
(MΓ∼Sinus) 78 -35615 72094 [ 0.349 ; 0.478 ] [ 0.292 ; 0.403 ]

Persistence forecast [ 0.423 ; 0.468 ]

Table 1: Table of log-likelihoods and BIC indexes for the different models and
Mean Square Percentage Error of one-step ahead forecasts by these models.
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