
Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007)
Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007)

Software Design of SHARP

A. Siegel, T. Tautges, A. Caceres, D. Kaushik, and P. Fischer
Argonne National Laboratory

9700 S. Cass Avenue, Argonne, IL
Mathematics and Computer Science Division

siegela@mcs.anl.gov tautges@mcs.anl.gov acaceres@mcs.anl.gov kaushik@mcs.anl.gov
fischer@mcs.anl.gov

G. Palmiotti, M. Smith
Argonne National Laboratory

9700 S. Cass Avenue, Argonne, IL
Nuclear Engineering Division

gpalmiotti@anl.gov msmith@anl.gov

J. Ragusa
Texas A&M University

College Station, TX
Department of Nuclear Engineering

ragusa@ne.tamu.edu

ABSTRACT

SHARP (Simulation-based High-efficiency Advanced Reactor Prototyping) is a modern suite of codes
to simulate the key components of a fast reactor core. The SHARP toolkit is organized as a collection
of modules, each representing the key components of the physics to be modeled – neutron transport,
thermal hydraulics, fuel/structure behavior – together with pre and post-processing for geometry
definition, mesh generation, visualization, user interface, etc. The physics models are designed to make
minimal possible use of lumped parameter models, homogenization, and empirical correlations in favor
of more direct solution of the fundamental governing equations, when sufficient computing resources
are available. Thus, one of the key design goals is to effectively leverage leadership class computing
resources – viz. BG/P and Cray Supercomputers that are on the current trajectory to delivering
sustained petaflops performance. Further, the nature of the physical problem to be investigated will
require either strong or weak coupling between some or all of the existing modules (e.g. operator split
vs. fully coupled), while multiple implementations of each physics module, representing different
algorithms, will also be required (e.g. deterministic versus Monte Carlo) for verification and to explore
different physical regimes. Accomplishing these goals in the context of ultra-scalable architectures and
multidisciplinary and possibly distributed development teams is a daunting task. In this paper we
explain our inital lighweight and loosely coupled framework, its initial design, and a number of current
open research questions in this area.

Key Words: Nuclear Reactor simulation, coupling, scientific software design

1. Introduction

The SHARP project (Simulation-based High-efficiency Advanced Reactor Prototyping) at Argonne
National Laboratory is a multi-divisional collaborative effort to develop a modern set of design and

Siegel, Tautges, Caceres, et al.

analysis tools for liquid metal cooled fast reactors. Ultimately, this suite of codes is envisioned to replace,
piecemeal, existing legacy tools that were first designed over twenty years ago and have since served as the
standard for fast reactor design and analysis. SHARP includes a strategy to allow newly built codes to
coexist with and couple to legacy codes as part of an incremental “phasing in” that allows uninterrupted
productivity by the reactor design team end users.

In this paper we report on our early efforts to develop an improved modeling capability specifically for the
reactor core. Conceptually, the physical phenomena, though coupled, can be decomposed roughly along
traditional mono-disciplinary lines: heat transfer, neutron transport, and structural/fuel behavior. In each
area (to varying degrees) the legacy codes are considerably simplified compared to what one finds in
companion fields – this is true e.g. in terms of supported dimensionality, spatial/temporal resolution,
numerical methods, physical models, and sophistication of software design. In terms of the physics,
traditionally some degree of tuning and calibration has been used to “validate” the codes, which then has
enabled predictions for states in some sense “close to” this validation baseline. Drastically improved
models offer the hope of both more accurate predictions (to reduce uncertainty margins, e.g. “hot channel
factors”) as well as something closer to virtual prototyping – viz. predictive simulations for regimes much
further from an experimental reference.

Given the complexity and unique requirements of the SHARP software, considerable up-front work must
be done to ensure that the individual modeling efforts are unified to meet the physics/engineering goals of
the project from the perspective of the end user. This includes allowing the end user to select combinations
of physics models based on the specific design problem – e.g. low resolution, fast turnaround
single-physics studies for early scoping using sub-channel models; localized Direct Numerical Simulations
(DNS) or Large Eddy Simulations (LES) to study isolated physical effects; full core Reynolds Averaged
Navier-Stokes (RANS) for late-stage design studies; tightly coupled modules for fast transients; Monte
Carlo calculations to establish benchmark baselines; deterministic second order calculations for
homogenized whole core power profiles, etc.

Such a sophisticated project is unlikely to succeed without considerable forethought into the software
architecture of the overall system. We are well aware of the pitfalls of one-size-fits-all frameworks that are
overly general and focus too much on software abstraction; that said, the other extreme is equally
unproductive. We instead advocate a more agile and balanced physics-based approach. This first step is to
hypostatize a (somewhat artificial) boundary among different components of the system that are then
developed independently and brought together by a defining rules, standards, and a set of shared utilities
based on these formalisms (the framework). This is critical to manage complexity, minimize redundancy of
effort, facilitate future change, and make the code more readily comprehensible to third party and/or and
in-house developers.

In this paper we present the initial design of the SHARP framework in the context of the simpler
sub-problem of a coupled reactor core simulation. The intent is to illustrate the framework design, its
interaction with the development of the individual physics modules, and how ancillary services such as unit
testing, pre- and post-processing, and parallel coupling are provided by the framework in a loosely coupled
and flexible manner.

2/ 3

Software Design of SHARP

2. Problem Statement

The design of the SHARP framework includes specifications for the “hooks” (placeholders) for both the
individual physics modules and computational tools that comprise the entire code system. Additionally,
SHARP contains particular implementations of these physics modules that are critical to meeting our
physics/engineering goals in the early phase of the project. It is understood that alternative codes and/or
enhancements to these existing codes will be continuously required throughout the evolution of the project.
Defining and refining the rules that will accommodate these alternate implementations is a key focus of the
early part of the project.

To study specific steady state and slowly transient phenomena, we follow a loosely coupled design
philosophy that emphasizes the independence of the individual modules while retaining the ability to
couple them in a variety of configurations. Abstractly, the framework includes the following physics
components: heat transfer, neutron transport, depletion, and fuel/structural materials. Additionally, there is
a complementary collection of utility modules for cross section processing, material properties, mesh
generation, visualization, mesh mapping, load balancing, parallel i/o, and unit/integral testing.

2.1. Governing equations

Assming suitable boundary conditions are applied, the coupled reactor core neutronics-thermal/neutronics
equations can be written as a single coupled system:

ḟ = Lf + Nf (1)

where ˙denotes time differentiation, L(f) denotes the linear part of the operator, N(f) the nonlinear part,
and

f =



ψ
T
ρ
�u


 (2)

In (2), ψ is the angular neutron flux, T the medium temperature, ρ the medium density and �u is the coolant
velocity. The temperature and density can further be divided into coolant and fuel regions, denoted by
T = Tc ∪ Tf and ρ = ρc ∪ ρf . The angular flux ψ is then obtained from the linear transport equation:

[
1
v

∂

∂t
+ Ω̂ · ∇ + σρ,T (�r,E)

]
ψ(�r, Ω̂, E, t) =

qex(�r, Ω̂, E, t)

+
∫
dE′

∫
dΩ′σs(�r,E′ → E, Ω̂′ · Ω̂)ψ(�r, Ω̂′, E′, t)

+
χ(E)
4π

∫
dE′νfσ(�r,E′)

∫
dΩ′ψ(�r, Ω̂′, E′, t).

(3)

3/ 3

Siegel, Tautges, Caceres, et al.

In (3), v the scalar neutron speed, E the neutron energy, �r = (x, y, z) the spatial coordinate, t the time,
Ω̂ = (θ, φ) the direction of neutron travel, qex an external neutron source, σρ,T the total interaction cross
section, σs the scattering cross section, χ the fission spectrum, and νf is the number of neutrons emitted
per fission.

The subscripts on σρ,T are explicitly included to denote the dependence of cross sections on both the fuel
and coolant temperature and density, which is the principle source of (non-linear) coupling between
different physics modules.

With a solution to (3) the volumetric heat generation rate q′′′ can be estimated by:

q′′′(�r, t) =
∫
dE′σ(E′)W (E′)

∫
dΩ′ψ(�r, Ω̂′, E′, t) (4)

The heat equation for both fluid and fuel can then be solved with q′′′ as a source (of course �u = 0 in fuel
region):

ρCp

(
∂

∂t
+ �u · ∇

)
T (�r, t) = ∇ · κT∇T (�r, t) + q′′′(�r, t) + f (5)

The fluid velocity �u in (4) is obtained from the Navier-Stokes equation. For simplicity, we write the
Boussinesq approximation of the equation where density changes are considered negligible except in the
buoyancy term (in general an equation of state is needed to close the system):

∂�u

∂t
+ �u · ∇�u = − 1

ρ0
∇p+ ∇ · νT∇�u+

ρ′

ρ0
gk̂ (6)

∇ · ρ0�u = 0 (7)

Equation (6) is non-linearly coupled to the heat equation through the temperature dependence of the
dynamic viscosity ν, denoted explicitly by νT .

The details of the discrete formulations of above equations are reported in companion papers ([1] [2]) and
are not essential to understanding the inter-module coupling problem. When the physics is split into
separate components, these couplings take the form of specific data values that are interpolated from source
to target meshes and sent between the modules through well defined interfaces.

SHARP currently includes the following specific implementations of physics modules to independently
solve the above equations:

Nek: a spectral element code that solves the 3-D incompressible (Boussinesq) time-dependent
Navier-Stokes equation with conjugate heat transfer on unstructured higher-order quadrilateral meshes
([5]). Nek is written primarily in Fortran77 using MPI for distributed memory systems and has recently
showed good scalability to 30,000 processors on BG/L.

UNIC: an unstructured deterministic neutron transport code that incoporates parallel even parity, sweeping,
and ray tracing algorithms flexibly within the same code. UNIC has recently been parallelized using

/ 3

Software Design of SHARP

PETSc (which itself uses MPI) and is currently running benchmarks on moderate-sized clusters as a
precursor to larger scalable runs on Cray and Blue Gene systems.

Separating physics modules into distinct components and implementing coupling as interactions between
these components imposes a number of requirements on the overall design of the SHARP framework. This
design will have a strong influence on the degree and frequency with which these interactions can occur
during a given simulation. The design of the SHARP framework is discussed in general terms next,
followed by descriptions of specific use cases.

3. Design of Coupling Framework

The general approach we take is to separate each physics module into a driver and library, with the bulk of
modeling located in the library and the driver containing code specific to a particular use case. Coupling
between physics modules is implemented by passing data through a common mesh representation,
accessed through a common Application Programming Interface (API). This approach preserves flexibility
in a number of key aspects, while also providing a common focal point for the coupling activities.

The mesh API is an important part of this design, since it acts as the communication mechanism between
physics modules. As described below, it also provides access to various mesh services needed for
high-performance reactor simulation. The ITAPS mesh interface, which is used for this API, is described
next.

3.1. The ITAPS Mesh Interface

The Interoperable Tools for Advanced Petascale Simulations (ITAPS) center is a collaboration between
several universities and DOE laboratories funded by the DOE Scientific Discovery for Advanced
Computing (SciDAC) program. The primary objective of the ITAPS center is to simplify the use of
multiple mesh and discretization strategies within a single simulation on petascale computers. This is
accomplished through the development of common functional interfaces to geometry, mesh, and other
simulation data. Although eventually all the ITAPS interfaces will be used, in this paper only the ITAPS
mesh interface is described. The implementation of this interface we are using is MOAB ([4]).

The data model defined in IMesh consists of four basic data types:

Entity: The basic topological entities in a mesh, i.e. the vertices, triangles, tetrahedra, etc.

Entity Set: Arbitrary groupings of entities and other sets. Sets can have parent/child relations with other
sets.

Interface: The object through which mesh functionality is accessed and which “owns” the mesh and its
associated data.

Tag: A piece of application-defined data assigned to Entitys, Entity Sets, or to the Interface itself.

This data model, although quite simple, is able to represent most data in a typical PDE-based simulation.
For example, combinations of sets and tags can be used to represent processor partitions in a mesh,

5/ 3

Siegel, Tautges, Caceres, et al.

groupings of mesh representing the geometric topology on which the mesh was generated, and boundary
condition groupings of mesh. It has also been shown to allow efficient storage of and access to mesh data.

The MOAB library ([6]) is an implementation of the IMesh interface. MOAB provides memory- and CPU
time-efficient storage and access to mesh data using array-based storage of much of these data. MOAB
provides element types encountered in most finite element codes (including quadratic elements) as well as
polygons and polyhedra. Tools included with MOAB provide parallel partitioning, parallel IO, and
commonly used functions like finding the outer skin of a contiguous mesh.

3.2. Requirements

There are several process-based requirements which guide the design of SHARP for various reasons:

• Minimally intrusive: A variety of codes and code modules have already been developed for use in
reactor simulation, each with tens or even hundreds of man-years invested in their development and
qualification. It is infeasible to expect that these applications be entirely re-written to fit into a new
code coupling framework. Therefore, the effort required to attach a new code or physics module to
the framework must be minimally intrusive to the original code.

• Compatibility with standalone development: There are many simulation methods which, while not
developed originally for that purpose, are well suited to reactor simulation ([5]). The coupling
framework must be compatible with standalone development of physics modules, to be able to get
updates to these modules as they are developed.

• Utility services: New physics modules are being developed which could take advantage of various
advanced techniques like adaptive mesh refinement if components implementing these techniques
could be incorporated easily. The coupling framework must also include utility services like these,
along with a mechanism to add other services as they become available.

• Integrated multi-physics: Finally, there is a need to integrate physics modules of various types to
perform coupled simulation for some problems. The coupling framework should be designed to
minimize the effort required to incorporate additional physics modules and couple them to other
modules in the framework.

3.3 Spatial Domain Coupling

There is a wide spectrum of possibilities in how to couple various types of physics modules together. In a
loosely coupled system, each physics might be solved on an entirely different spatial discretization, with
exchange of data only at the beginning of each timestep or iteration. Closely coupled systems can use
related or identical grids, and can even be formulated implicitly with the other physics and solved in the
same solution step. However, a common element in all these formulations is the spatial domain or
discretization(s) on which the physics are solved. The SHARP framework design couples physics together
and with other services through the spatial discretization or mesh.

The mesh can be accessed using the Interface object described in a previous section. This domain can be
presented as an entity set; if multiple meshes are used for loosely coupled systems, these are presented
simply as multiple entity sets within the same Interface object. The dependent variables computed by each

6/ 3

Software Design of SHARP

physics module can be written to the grid as tags, either at the end of each call to the module or throughout
the course of that module’s execution. Hence the mesh acts as a communication mechanism between
physics modules through those tags. If multiple grids are used, other utility modules are used to map data
between those grids.

A graphical depiction of this framework is shown in (3.3.3). The mesh Interface, implemented using
MOAB, acts as the focal point for interactions between physics modules and with various other services.
Various types of codes can be constructed on this framework, as described below.

3.3.1. Basic requirement: driver & library

A basic requirement we use to accomplish this coupling approach is to separate each module into a driver
code and a library, where the driver sets up the calculation assuming standalone operation, then calls
functions in the library to compute the actual physics. The standalone driver implements its own IO,
communication, and other functionality otherwise found in the framework of the coupled code. The
libraries of physics capabilities are shown in (3.3.3) as libPhys1 and libPhys2.

3.3.2. Standalone physics code

Assuming the separation into driver and library, a physics code can be built and developed as a standalone
code, as shown for driver1 in (3.3.3). Improvements to most physics capabilities are likely to occur in the
library rather than in the driver, and thus are available to other use cases which rely on the library. This
approach requires the additional effort to define functional interfaces to new capabilities as they are added
to the library. However this effort is low, given that these interfaces do not change frequently.

Given this structure, new developments in the physics module do not prevent coupled solutions based on
that module from running as before (because the interfaces to previous capabilities do not change). Coupled
solutions can take advantage of new capabilities simply by using the interfaces defined for those functions.

3.3.3. Standalone physics code + services

Using a common mesh API gives a code access to other mesh services also using that API. For example,
mesh services based on the ITAPS mesh interface include mesh partitioning ([8]), adaptive mesh
refinement ([9]), and mesh smoothing ([7]). Using the MOAB implementation of this mesh API provides a
mesh representation which is highly memory- and cpu time-efficient as well ([4]). For codes which do not
already have a significant investment and which are early in the development cycle, using this mesh
representation speeds development of the physics capability. This approach also enables the physics
module to use advanced computational techniques like adaptive mesh refinement that they would otherwise
not have time to explore.

This use case is depicted in (3.3.3) as the combination of driver2, libPhys2, and the core mesh API and
services. In this case, the physics module can couple either directly to MOAB, for efficiency, or through the
Mesh API, to preserve the option of using a different implementation of the Mesh API.

/ 3

Siegel, Tautges, Caceres, et al.

Figure 1. Interrelationship among the components of MOAB

3.3.4. Coupled physics code

The degree of coupling used for a given coupled code depends not only on what is appropriate numerically,
but also what kinds of physics modules, solution strategies, and grids are available for that code. For
example, requiring two physics modules to solve on the same grids restricts the choice of available
implementations of each module to those which use the chosen grid type or those which can be changed to
use that grid type in the available time. In some cases this approach will over-constrain the problem, due to
resource constraints or simply because the required physics modules are not available. Therefore, we
choose to preserve as much flexibility as possible, by designing the system to allow both loose and tight

8/ 3

Software Design of SHARP

coupling, on the same grid or different ones.

If different grids are used, there will be a need to pass solution data from one grid to another. This process
can be accomplished using a “data coupler” tool, which is simply another tool implemented on top of the
mesh API. One thing this does require is that the mesh for both physics modules is available through that
API. In effect, this forces the representation of those meshes to be in the same implementation (in our case,
MOAB). However, this is desirable from the standpoint of computational efficiency too. For example, this
preserves the option of implementing the data coupler inside MOAB, allowing it to operate on data in its
native representation (rather than indirectly through a Mesh API) for greater efficiency. The only additional
requirement for this approach is that MOAB be able to represent grids used by the various physics
modules. This is our motivation for choosing MOAB, which is general enough to do this.

Figure (3.3.3) depicts a coupled driver incorporating all of these design elements. In this code, libPhys1
retains its native data representation, using a mesh adapter to pass a subset of its data through the Mesh API
for coupling purposes. libPhys2 uses MOAB as its native representation, for efficiency, and therefore does
not need an adapter. The code system uses common services available through the Mesh API, including a
data coupler to couple data from libPhys1 and libPhys2. The overall solution process and passing data
between physics modules is coordinated by the coupled driver. In the future, it may be desirable to separate
some of this coordination logic into an additional library, for use in multiple, separate coupled codes.

4. Coupling Details

4.1. Data Flow

Given appropriate discretizaations of 3 on mesh Ωn and 4 on mesh Ωth, regardless of the numerical
procedure used within each solver and the details of the coupler, the following is an abstract description of
the algorithmic strcuture for the coupled steady state problem:

Step 1: Start with inital guess for macroscopic cross section Σ, ρc, ρf , Tc, Tf

Step 2: Update φ on Ωn using (3) and compute q′′′ from φ using (4)

Step 3: Map q′′′ on Ωn to q′′′ on Ωth

Step 4: Update values of ν and α on Ωth

Step 5:Update Tf , Tc, and ρc on Ωth using q′′′ as source term

Step 6: Update Σ on coarse mesh subregion of Ωn using new values of Tf , Tc and ρc

Figure 4.1 shows how this algorithm is realized in terms of the different modular components of the code.
Note that, as described in the next section, each module individually, including the mesh component, is
partitioned across a distributed memory parallel machine in a way that in general is completely arbitrary
and configurable by the user (or automated by load balancing software with user suggestions). This is
covered in more detail in the next section. Also notice that this description is valid for steady state
problems as well as slowly evolving physics (e.g. burnup). When studying faster transients, the

9/ 3

Siegel, Tautges, Caceres, et al.

architecture will in general need to allow a tighter degree of coupling to achieve both good performance
and adequate time accuracy.

UNIC

MOAB

XSection

Depletion

Nek

T c,
T f,

c on th

q on
n

q,

,
 o

n
th

T

c, T
f, rc on R(

th)

 on R(
n)

 on R(
n)

Driver

Material
Properties

T c,
 T

f
on

 R
(

th
)

,
 o

n
th

Figure 2. Depiction of the individual modules of SHARP and their interrelationships. Ωn denotes
the UNIC mesh, Ωth the Nek mesh and R is a linear restriction (coarsening) operator that represents
entities on homogenized regions of the mesh.

4.2. Data Volume

As shown in Figure 4.1, we need to exchange data proportional to the size of coarse mesh (number of
vertices) between neutronics module (UNIC) and thermal hydraulics module (Nek). The neutronics mesh
is usually much coarser than thermal hydrualics mesh. We expect to use between one million (subassembly
level) to fifty million (full core level) mesh vertices in UNIC while Nek will use rougly ten times that
amount. The number of degrees of freedom (DOF) in UNIC is proportional to the product of number of

0/ 3

Software Design of SHARP

energy groups (GN), mesh vertices (SN), and angular moments (AN = n(n+1)
2 where n is the Pn order).

So the ratio of DOF to data exchanged is GN ×AN . Since we ultimately expect to use a large number
(O[10,000]) of energy groups and high angular order, the data exchaged is relatively quite minimal
compared to the DOF employed in the neutronics problem. Though the cross sections used in UNIC
depend on temperature and density, these variations in the steady state case are also expected to be small.
Therefore, the coupling between UNIC and Nek is expected in general to be weak with relatively small
amount of data excahnge (as compared to the DOF each computation). We are currently beginning detailed
coupling performance studies to test this hypothesis.

5. Framework Configuration and Testing

In our implementation, all modules are compiled into a single executable, SHARP, which then runs as a
single MPI process. The top-level execution flow is controlled by the SHARP driver, which successively
calls the individual modules’ API functions, as described in section 3.

5.1. Module API

A typical API for a physics module phys includes functions such as:

phys init() Module initialization: allocate storage, set up MPI communicator, read in input files, etc.

phys solve() Compute our part of the solution to the problem.

phys export() Write the solution from the module’s internal data structures to MOAB/TSTT. If the
module uses MOAB for its internal representation, this is a no-op.

phys import() Read from MOAB/TSTT the parts of the solution that are calculated by other
modules. For example: if phys is a thermal-hydraulics module, read in the heat generation computed
by the neutronics module.

phys finalize() Clean-up: close files, compute diagnostics, etc.

Greater granularity is of course possible, but the above functions represent the minimum functionality
expected from most modules.

When data needs to be transferred between two modules, the SHARP driver calls their respective
import/export functions; if the two modules use different meshes, the driver calls a MOAB function to map
the data in between the export and import steps.

5.2. Common conversion changes

Converting a standalone application to expose an API as described in section 5.1 is for the most part a
simple question of refactoring code or creating a wrapper layer. New code is in principle only needed to
implement the import() and export() functions. This approach makes a negligible impact on the
performance of the standalone application.

/ 3

Siegel, Tautges, Caceres, et al.

One key aspect of the refactoring is that data declarations in the entry point of the standalone application
phys (its main() function) must be moved to the phys init() function.

Another required change is the switch from using MPI’s global communicator (which is sufficient for most
standalone codes) to a new communicator specific to the module. This is necessary in the coupled case if,
for example, we wish to run a module on only a subset of the processors that SHARP has available.

Although we have not yet encountered issues with name clashes – two modules defining functions or
global variables with the same name – we expect to be able to write simple tools to automatically detect
and correct these.

Other issues are anticipated to appear, however we believe most codes can be relatively easily adapted to
work with our framework, without losing performance or the ability to exist as standalone programs.

5.3. Configuration and build system

We have in place a custom configuration/build system which tries to accommodate different modules’
existing build systems, should they exist. The main design requirement behind it is to have the possibility
that, after a module has been added to the SHARP source tree, it is always possible to automatically create
a source distribution of the standalone application. To the SHARP user, our system looks much like the
“./configure; make” standard.

5.4. Testing

Our framework is designed to allow for a comprehensive testing system which we are in the process of
implementing, using both unit and integrated testing.

Unit testing occurs at the level of the module APIs: a test will set up a context, call an individual function,
and verify the output. The more fine-grained the API, the more stringent testing can be. Here, the use of
IMesh simplifies testing since we can access the output of different modules’ functions through a single
interface.

The other half of our testing strategy is integrated testing, which treats a SHARP executable as a black box.
Typical types of tests that fall under this category are scaling, performance and regression.

6. CONCLUSIONS

We have demonstrated a simple lightweight software architecture for coupled steady state and slow
transients calculations in a fast reactor core. The architecture implements parallel coupling of physics
modules and places a high degree of emphasis on their autonomy via a weak coupling strategy that allows
for different mesh representations and prescribes relatively non-restrictive rules for incorporating legacy
components. While the basic concepts of the framework are general, we outlined some specific aspects of
the reactor core modeling problem that mitigate against potential performance problems associated with
this technique. We have implemented the framework with initial implementations for physics and utility
modules and carried out a simple coupling benchmark. In a subsequent paper, we aim to demonstrate the

2/ 3

Software Design of SHARP

flexibility of the module to incorporate alternate implementations of the same physics as well as examine in
detail the scalable performance of these techniques.

REFERENCES

[1] P. Fischer, J. Lottes, A. Siegel, G. Palmiotti, “Large Eddy Simulation of Wire Wrapped Fuel Pins”
Joint International Topical Meeting on Mathematics & Computation and
Supercomputing in Nuclear Applications, Monterey, CA, April, (2007).

[2] G. Palmiotti, M. Smith, C. Rabiti, M. Leclere, D. Kaushik, A. Siegel, B. Smith, E. E. Lewis, “UNIC:
Ultimate Nuetronic Investigation Code” Joint International Topical Meeting on Mathematics &
Computation and
Supercomputing in Nuclear Applications, Monterey, CA, April, (2007).

[3] “Spallation Neutron Source: The next-generation neutron-scattering facility in the United States,”
http://www.sns.gov/documentation/sns brochure.pdf (2002).

[4] R. Meyers et. al, “SNL Implementation of the TSTT Mesh Interface,” Proceedings of 8th
International conference on numerical grid generation in computational field simulations, Honolulu,
HA, June 2-6, 2002.

[5] P. Fischer, G.W. Kruse, and F. Loth, “Spectral Element Methods for Transitional Flows in Complex
Geometries,” J. Sci. Comput., 17, pp. 81-98 (2002).

[6] “MOAB, a Mesh-Oriented datABase” http://cubit.sandia.gov/MOAB/

[7] M. Brewer et. al, “The Mesquite Mesh Quality Improvement Toolkit,” Proceedings of 12th
International Meshing Roundtable, Santa Fe, NM, September 14-17 2003, pp. 239-250

[8] K. Devine et. al, “Zoltan Data Management Services for Parallel Dynamic Applications,”
Computing in Science and Engineering, 4, pp. 90-97 (2002)

[9] K. Devine et. al, “Zoltan Data Management Services for Parallel Dynamic Applications,”
Computing in Science and Engineering, 4, pp. 90-97 (2002)

3/ 3

