Improving the Performance of TN
Matrix Vector Product

Dinesh Kaushik

Argonne National Laboratory

Tensor Matrix Vector Product

e QOperator comes from the tensor product of a dense matrix
with the identity matrix

A=AQISQI+I QA B+ T XA

* A, Ay, A, are one directional operators (dense)
e v and w are vectors of size n?

W = AvV

« Build the large sparse matrix
- Large sparse matrix of size (n3x n3 for 3D case)
- Slow memory bandwidth limited performance
 Just evaluate the action of A on v (without explicitly
forming A)
- Done as dense matrix-matrix multiplication
- Very efficient implementation
- Huge savings in memory

Performance Issues for Sparse Matrix Vector Product

Little data reuse

High ratio of load/store to instructions/floating-point
ops

Stalling of multiple load/store functional units on the
same cache line

Low available memory bandwidth

Sparse Matrix Vector Algorithm: A General
Form

for every row, i {
fetch ia(i+1)
forj=1a(i)toia(i+21) { //loop over the non-zeros of the row
fetch ja(j), a(1), x,(jaQ@)),-xy(aQ))
do N fmadd (floating multiply add)
)
Store y, (1)yN(1)
¥

Estimating the Memory Bandwidth
Limitation

Assumptions

e Perfect Cache (only compulsory misses; no overhead)
* No memory latency
* Unlimited number of loads and stores per cycle

Data Volume (AlJ Format)

m*sizeof(int) + N*(m-+n)*sizeof(double)

/ ia, N input (size n) and output (size m) vectors
+ Nnz* (sizeof(int) + sizeof(double))

/I ja, and a arrays
= 4*(m+nnz) + 8*(N*(m+n)+ Nnz)

Estimating the Memory Bandwidth
Limitation (Contd.)

Number of Floating-Point Multiply Add (fmadd) Ops = N*nz
For square matrices,

Bytestransferred/fmadd =(16 + :I e oy =2

Nhz N

(Since Nnz >> n, Bytes transferred / fmadd ~12/N)

Similarly, for Block AlJ (BAIJ) format

Bytestransfered/fmadd = (16 + : K : + (i gl

=)
N*b” Ne N*b N

6000

Realistic Measures of Peak Performance

Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

E Theoretical Peak
O Mem BW Peak

W Oper. Issue Peak
O Observed

Power 4 (1.3 GHz)

Pentium 4 Xeon (2.4 GHz)

BlueGene (700 MHz2)

Second Choice: Dense Matrix-Matrix
Multiplication

e We just need to store the small dense matrices of size
nxn
- for 3 dimensions memory needed is 3n?

- Good ratio of flops to bytes: O(n* operations O(n3)
doubles

- Gets better for higher dimensions

Evaluating the Tensor Product Terms

e Typel

(Im ® An)vmn » [A’l]nxn[v]nxm

e Type?2

(An ® I m)an - [V]mxn [An]nan

e Type3

(I, @A ®1,)v,,

- Loopover Type2fori=1,p

Perfrormance ot I ensor Iviatrix-Vector

Multiplication — 3D case

(Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)
Memory Bandwidth Limited Bound 670 Mflops/s

6000

5500
5000 F

4500

Custom

MXM
GEMM

4000 F

Mflops/s

3500 | [q

- \Y) I .‘ l'g.;'
3000 H Ff
2500 | %0

2000 70

1500 = ¢

1000 i
500 £

20 40 60 80 100

Performance of Tensor Matrix-Vector

Multiplication — Fixed Mesh Points (n=7)
(Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)

3500 —
3250 |

3000 /

2750; ——=—— Custom
2500 F o MXM

- —o—— DGEMM
2250 ;

© -
% 2000 F
o —
= 1750 F
= -
1500 |
1250 §
1000 i
750 i—
500 i—

250 :_\ I I I I I I I I I I I I I I
3 4 5 6 7 8 9 10
Dimensions

Performance of Tensor Matrix-Vector

Multiplication —Long Reaction Co-ordinate
(51 points along reaction path and 7 points in other dimensions)

5000

4000

Custom
MXM
——o—— DGEMM

3000 -

Mflops/s

2000 |-

1000 [~

3 4 5 6 7 8 9 10
Dimensions

o Very efficient implementation
= Sparse matvecs take about 80% of execution time

- We expect that tensor product implementation can
Improve the performance by a factor of three to five

o Possible to solve much larger problems because of
huge savings in memory requirement

« Parallel implementation

Acknowledgements

e Barry Smith, William Gropp, and Paul Fischer for
many helpful discussions

	Improving the Performance of Tensor Matrix Vector Product�
	Tensor Matrix Vector Product
	Two Ways
	Performance Issues for Sparse Matrix Vector Product
	Sparse Matrix Vector Algorithm: A General Form
	Estimating the Memory Bandwidth Limitation
	Estimating the Memory Bandwidth Limitation (Contd.)
	Realistic Measures of Peak Performance�Sparse Matrix Vector Product�One vector, matrix size, m = 90,708, nonzero entries nz =
	Second Choice: Dense Matrix-Matrix Multiplication
	Evaluating the Tensor Product Terms
	Performance of Tensor Matrix-Vector Multiplication – 3D case � (Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)
	Performance of Tensor Matrix-Vector Multiplication – Fixed Mesh Points (n=7) � (Intel Madison Processor 1.5 GHz, 6 Gflops/s Pe
	Performance of Tensor Matrix-Vector Multiplication –Long Reaction Co-ordinate�(51 points along reaction path and 7 points in o
	Conclusions and Future Work
	Acknowledgements

