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CONCLUSIONS	 REFERENCES	

MODELING IN SITU MAPREDUCE-LIKE ANALYSIS JOBS	

MODELING LIGHT SOURCE DATA ANALYSIS WORKFLOW	

•  Simula9ons	and	experiments	are	costly	to	perform,	in	terms	of	procuring	the	required	resources,	and	job	wait	9mes.		
•  Analysis	of	petabytes	of	data	from	simula9ons	and	experiments	require	strategically	u9lizing	the	analysis	resources.	
•  Modeling	the	performance	of	analysis,	simula9on-analysis	workflows	and	experiment-analysis	workflows	helps	scien9sts	
plan	their	simula9on	and	experiment	campaigns.	

•  Scien9fic	experiments	at	synchrotron	light	sources	are	configura9on-sensi9ve	and	depend	on	many	parameters	such	as	
the	number	of	projec9ons	and	dose	exposure	9me.	Timely	analysis	of	collected	data	can	help	deciding	on	configura9on	
parameters	and	lead	to	more	accurate	data	acquisi9on.		

•  Available	compute	resources	at	light	sources	are	typically	insufficient	for	analyzing	the	generated	data,	thus	we	require	
performance	models	and	so\ware	tools	to	perform	efficient	analysis	on	distributed	HPC	resources.	

using input data size information (i.e.
projection data), the td value of target
compute clusters, number of nodes/
processes, and application-specific
information such as the number of
iterations. This information is then used
for setting the parameters in the
computational model, and execution
times for different compute resources
are estimated. For the queue/wait time
stage, the system first collects the
current states of the queues in the target
compute clusters. This state information
includes all jobs that are currently
running or waiting in the clusters’
queues. The performance models
component simulates each of these
queues with the user-specified recon-
struction job and estimates the queue
times.

Note that the performance models
component extensively uses Globus and
the resource configuration file for esti-
mations. It also provides an interface in
which different light source application
models can easily be integrated.

Our system can be used for execution
and modeling of large workflows that
execute on many geographically
distributed resources.

3.1.4. Workflow execution engine.
The workflow execution engine is the intermediate layer that
orchestrates the other components. Users of the workflow
management system interact with this layer to initiate work-
flow executions and performance estimations.

3.2. Execution of workflow management system

Fig. 3 shows the execution flow of our system, which consists
of two main processes (daemons) that manage the execution
of workflows: master daemon ðMDÞ and worker daemon ðWDÞ.
The user interacts with the MD process and initiates the
workflow execution. MD is responsible for running the
previously defined components, namely the data transfer,
metascheduler, performance models and workflow execution
engine.

Our workflow management system can interact with any
end-point that is enabled in Globus. In Fig. 3, we show four
different end-points: two are compute end-points, one is a
cloud end-point, and one is a storage end-point. Since storage
resources can be managed easily with Globus, WD is executed
on compute resources only.

Fig. 3 illustrates a sample workflow scenario. Initially, the
user interacts with MD and (1) initiates the workflow execution.
MD then establishes a connection with Globus and (2) starts
transferring data (which need to be processed) from the
storage to the compute end-point. While data are being

transferred, MD (3) creates command scripts and initiates
another transfer request from MD to the compute resource.
After the transmission, WD starts executing the retrieved
scripts. The scripts consist of different bash commands, such as
job submission, sample data generation (for data transfer
estimations) or queue status commands (for queue time esti-
mation). In our workflow example, the transferred script has
job submission commands; hence WD enqueues the job to the
cluster’s queue. This job is then executed by the cluster’s
resource manager. Recall that the metascheduler component
creates job submission commands depending on the target
cluster’s environment. Therefore the scripts can transparently
be generated by MD. Once WD finishes executing all the
commands in the script, it informs MD with a status file. MD then
initiates another data transfer that (4) sends the processed
data from the compute to the data end-point.

4. Experimental results

In this section, we present the experimental evaluation of our
performance models and workflow management system. In
particular, we compare and analyze the estimated and real end-
to-end execution times of tomographic reconstruction work-
flows that run on geographically distributed resources.
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Figure 3
Execution of the workflow management system. Each rectangle (and the cloud) represents a
geographically distant location. Steps (1)–(4) illustrate a sample workflow, in which (1) the user
initiates an iterative tomographic reconstruction workflow; (2) projection dataset, input, is
transferred from Storage Endpoint0 to Comp. Endpoint0; (3) system generated resource allocation
script is transferred and submitted to Comp. Endpoint0 for reconstruction; (4) reconstructed image,
output, is transferred to Cloud Endpoint0 for visualization and storage.

Mo#va#on	
•  Technological	advances	in	x-ray	sources	and	detectors	
enable	increasingly	complex	experiments	and	rapid	data	
acquisi9ons	(e.g.	16GiB/s	data	genera9on	rates)	

•  Timely	analysis	of	this	data	is	important	
•  Experimental	facility	users	have	limited	9me	to	perform	
experiments	and	collect	data	

•  Near-real-9me	data	processing	is	highly	desirable	to	verify	
accuracy	of	data	and	determine	proper	configura9on	for	
experiments	

Objec#ves	
•  Improving	the	paralleliza9on	of	tomographic	reconstruc9on	
jobs	to	minimize	turnaround	9me	

•  Enabling	u9liza9on	of	geographically	distributed	resources	
•  Es9ma9ng	execu9on	9mes	of	different	stages	in	workflows	
•  Data	transfer,	queue/idle	9me,	computa9on	9me	

Implementa#on	
•  A	MapReduce-like	middleware	for	tomographic	reconstruc9on	algorithm	
•  A	workflow	management	system	for	light	source	data	analysis	jobs	
•  Models	and	methods	for	es9ma9ng	execu9on	9me	of	workflow	stages	
•  Es9ma9on	of	data	transfer	rates	between	resources	
•  Bandwidth	Delay	Product	+	Ini9aliza9on	Cost	
•  Cluster	queue	9me	predic9on	
•  Simula9on	of	target	cluster’s	job	queue	
•  Modeling	the	performance	of	tomographic	reconstruc9on	jobs	

Experiments	
Applica9ons:	Itera9ve	tomographic	reconstruc9on	algorithms	
HPC	Resources:	Mira	Blue	Gene/Q	(32K	cores),	Stampede	,	Gordon	

Results	
•  Reconstruc9on	9mes	decreased	from	days	to	minutes	(24-core	
worksta9on	vs.	32K	cores	on	Mira	BG/Q)	

•  Es9ma9on	of	end-to-end	workflow	execu9on	with	2.1-23.3%	error	rate	

•  Modeled	performance	of	map-reduce	like	in	situ	data	analysis	kernels	
•  Extended	SKOPE	performance	modeling	framework	to	model	cache	
•  Developed	models	to	propose	the	op9mal	set	of	analysis	computa9ons	
that	can	be	performed	within	9me	and	space	constraints	

•  Proposed	mixed-integer	linear	programs	for	formula9ng	op9mal	in	situ	
and	co-analysis	execu9on	workflows	

•  Shorter	turnaround	9me	of	experimental	data	analysis	workflow	help	
verifica9on	of	collected	data	and	steering	experiments	at	light	sources	

•  Developed	performance	models	and	so\ware	tools	for	execu9on	of	light	
source	data	analysis	tasks	on	distributed	HPC	resources	
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Predic9ng	Scalability	of	Smart	(conducted	on	the	TACC	Stampede	cluster	using	4	nodes)	Smart:	A	MapReduce-Like	Framework	for	In-Situ	Scien9fic	Analy9cs	

SKOPE	Exten9ons:	Modeling	Disk-Based	and	In-Situ	Analy9cs	

MODELING END-TO-END SIMULATION-ANALYSIS WORKFLOW	
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Mixed	integer	linear	programming	(MILP)	based	model	
incorporates	various	system	and	applica9on	parameters	STORAGE	

Analysis	Simula#on	 Analysis	Simula#on	

Analysis	Simula#on	

Analysis	Simula#on	

Data	transfer	

Mode	1:	In	situ	analysis	
Simula9on	and	analysis	alternates	at	a	
desired	interval	

Mode	2:	Local	co-analysis	
Simula9on	processes	communicate	data	
directly	to	analysis	processes	

Mode	3:	Remote	co-analysis	
Simula9on	communicates	data	to	analysis	
via	some	form	of	storage	

Objec#ve	of	Linear	Program	
Maximize	number	of	different	important	analyses	and	their	frequencies	

Constraints	
Throughput,	available	memory/storage,	analysis	specifica9ons	

Output	
Analyses	feasibility	and	their	frequencies	

Mo#va#on	
Derive	maximum	scien9fic	insight	from	the	simula9ons	with	minimum	delay	

Experiments	
Applica9ons:	LAMMPS,	FLASH,	miniMD	
Systems:	32,768	cores	on	Mira	Blue	Gene/Q,	1080	cores	on	Edison	Cray	XC30	

Results	
100x	faster	than	post	hoc	analysis	
More	than	85%	u9liza9on	of	allowed	9me	for	simula9on-9me	analysis		

Model	for	memory	access	9me	of	2-level	cache	hierarchy:	

For	applica9ons	used	in	our	experiments,	the	cache	miss	rate	is	dependent	on	dataset	size	(D),	data	access	
stride(s),	cache	capacity	(C1	and	C2	for	L1	and	L2	respec9vely)	and	block	size	(B1	and	B2	for	L1	and	L2	respec9vely)		

Cache	Performance	Model	for	a	Two-Level	Cache	Hierarchy	

By	defining	parameters	in	the	hardware	
model	in	SKOPE,	and	collec9ng	memory	
access	informa9on	such	as	read,	write,	
access	stride	from	code	skeletons,	we	

can	u9lize	SKOPE	to	predict	cache	
performance.	
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•  Developed	
•  Performance	models	for	mapReduce-like	in	situ	data	
analysis	jobs	

•  In	situ	and	co-analysis	execu9on	workflow	op9miza9on	
models	for	scien9fic	applica9ons	

•  Performance	models	for	light	source	experimental	data	
analysis	workflow	


