
A Dynamic Scheduling Approach for Coordinated Wide-Area Data
Transfers using GridFTP ∗

Gaurav Khanna1, Umit Catalyurek2, Tahsin Kurc2, Rajkumar Kettimuthu3,
P. Sadayappan1, Joel Saltz2

1Department of Computer Science and Engineering, The Ohio State University
2Department of Biomedical Informatics, The Ohio State University

3 Mathematics and Computer Science Division, Argonne National Laboratory

Abstract

Many scientific applications need to stage large vol-
umes of files from one set of machines to another set
of machines in a wide-area network. Efficient execu-
tion of such data transfers needs to take into account
the heterogeneous nature of the environment and dy-
namic availability of shared resources. This paper pro-
poses an algorithm that dynamically schedules a batch
of data transfer requests with the goal of minimizing the
overall transfer time. The proposed algorithm performs
simultaneous transfer of chunks of files from multiple
file replicas, if the replicas exist. Adaptive replica se-
lection is employed to transfer different chunks of the
same file by taking dynamically changing network band-
widths into account. We utilize GridFTP as the underly-
ing mechanism for data transfers. The algorithm makes
use of information from past GridFTP transfers to esti-
mate network bandwidths and resource availability. The
efficiency of the algorithm is evaluated on a wide-area
testbed.

1 Introduction

Grid computing technologies have enabled scientists
to generate, store, and share data distributed across mul-
tiple sites. Data analysis in a Grid setting involves use
of distributed collections of storage and computational
systems and transfer of large volumes of data in a wide-
area network. An example is the LHC [1] experiment at
CERN. The data which is generated by a CMS experi-
ment at LHC needs to be transferred to a Tier-1 site in

∗This research was supported in part by the National Science
Foundation under Grants #CCF-0342615, #CNS-0403342 and #CNS-
0643969.

the US where it is processed and then multi-cast onto
many domestic US tier-2 sites. As another example,
consider a multi-institutional study which collects and
analyzes biomedical image data, obtained from high-
resolution scanners to develop animal models of phe-
notype characteristics in disease progression. Hundreds
or thousands of images can be obtained from a subject
and there can be hundreds of subjects in a study. These
images may be collected and stored at multiple sites. Re-
searchers wishing to carry out an analysis using images
from a large population of subjects will query image
datasets at multiple sites. The image files extracted as a
result of the query will then either be downloaded to a lo-
cal system or be transferred to computational machines
distributed in the environment for processing. These
scenarios involve transfer of large volumes of files from
the storage sites to the computational sites. Address-
ing this problem requires efficient coordination of data
movement across multiple source sites, destination sites,
and intermediate locations over the wide-area network.

In this work, we seek efficient algorithms to sched-
ule and execute the transfer of a set of files distributed
across multiple machines to another set of machines in
a wide-area environment. The objective is to minimize
the total execution time of a batch of file transfer re-
quests. A destination machine receives a subset of the
files. The subsets of files assigned to different destina-
tion machines may overlap, i.e., a file may be mapped to
multiple destination machines. Figure 1(a) illustrates an
example of the problem. Files labeled byFi are stored
on distributed storage repositories. A subset of files are
to be transferred to disks on a distributed set of compute
nodes, denoted byNi , over a wide-area network. Fig-
ure 1(b) shows that two different sources of a fileF1
can be used simultaneously to transfer disjoint chunks
of the file, thereby increasing the throughput. The figure
shows that once a replica ofF1 is created on the node

1

N1′ , then the nodeN1′ and the storage repositoryD3
can simultaneously transfer the file to the nodeN1 .

We present a network flow based mixed integer pro-
gramming (IP) formulation of the scheduling problem.
The resulting solution is a lower bound on transfer time
under idealistic conditions of resource availability and
performance. We then propose a dynamic scheduling
heuristic which employs network bandwidth informa-
tion obtained from past GridFTP transfers to adapt its
scheduling decisions, thereby, accounting for the re-
source availability fluctuations in the wide-area environ-
ment. The algorithm also employs adaptive replica se-
lection, if files are replicated in the environment during
previous transfers. It performs simultaneous transfer of
portions of files from multiple replicas to maximize data
transfer bandwidth. We have developed an implemen-
tation of our algorithm using GridFTP [4] as the under-
lying transport protocol for data transfers. We experi-
mentally evaluate the algorithm on a wide-area network
testbed consisting of clusters located at geographically
disparate locations. The results show that the algorithm
can take advantage of multiple replicas and concurrent
data transfers.

2 Related Work

GridFTP [4] is a widely used protocol which enables
secure, reliable and high performance data movement.
It facilitates efficient data transfer between end-systems
by employing techniques like multiple TCP streams per
transfer, striped transfers from a set of hosts to another
set of hosts and partial file transfers. In this work, our
contribution is a new dynamic scheduling scheme to
collectively schedule a batch of file transfer requests.
Our approach performs adaptive replica selection and si-
multaneous transfer of a file from multiple replicas. In
this paper, we have applied our approach in conjunction
with GridFTP, that is, the scheduling algorithm employs
GridFTP as the file transfer protocol.

BitTorrent [13] is an incentive-based file sharing sys-
tem which employs a tit-for-tat strategy where in the
peers which contribute more data at faster rates get pref-
erential treatment for downloads. In BitTorrent, a source
peer can upload data to upto 5 other peers simultane-
ously, the chosen peers being the ones which provide
the highest upload rates to the source peer. In addition,
it also incorporates the concept of optimistic unchoking
where in periodically, a source peer chooses a randomly
selected peer from the set of requesting ones and starts
uploading to it. This allows a site to discover peers that
possess the data of interest and that may be able to up-
load to it at higher rates regardless of the site’s upload
rate. However, the key principle on which BitTorrent

relies upon is based on incentives. In this work, the
goal is to minimize the total transfer time in a collab-
orative setting where the global objective of minimizing
the time is more important than each site’s local ben-
efits. Bullet [11], Chainsaw [12] and Splitstream [5]
are examples of systems designed for high-bandwidth
data dissemination, motivated by applications like real-
time multimedia streaming. However, all these systems
target data distribution from a single source to a large
number of receivers, that is, multicast. In our work, we
target the scheduling problem in a very generic context
which involves coordinated data movement across mul-
tiple sources, destinations and intermediate sites.

Stork [10] is a specialized scheduler for data place-
ment activities on the Grid. The scheduler allows check-
pointing and monitoring of data transfers as well as
use of DAG schedulers to encapsulate dependencies be-
tween computation and data movement. In this paper,
we focus on modeling the heterogeneity and the dynam-
ics of a wide-area environment to perform efficient col-
lective file transfer scheduling. Swany et al. [14] ex-
ploits the ”logistical effect” which essentially means im-
proving performance by dividing a connection into a se-
ries of shorter, better performing connections. Giersch
et al. [6] have addressed the problem of scheduling a
collection of tasks sharing files onto heterogeneous clus-
ters. Their work focused mainly on task mapping and
they proposed extensions to the MinMin heuristic [7] to
lower the scheduling cost. In our past work, we looked
at the problem of scheduling a batch of data-intensive
tasks [9]. We have also investigated scheduling of file
transfers in data center environments where in the sched-
uler has ultimate control [8]. In this work, we are target-
ing dynamic heterogeneous wide-area environments like
Grids.

3 Network Flow Formulation

In this section, we propose a mixed integer program-
ming (IP) formulation of our target problem. The for-
mulation is based on the maximization of network flows
from sources to sinks. The wide-area environment is
represented by a graphG = (V, E) , referred to here as
the platform graph. In this graph,V is the set of ma-
chines andE represents the network edges. A network
edge is the wide-area connection between two machines.
The weight of the edge is a measure of the achievable
bandwidth between the two machines. The set of two
tuplesR = {< fℓ, vd >} represents that filefℓ needs
to be transferred to the destination nodevd . The set of
two tuplesD = {< fℓ, vs >} denotes that filefℓ is
present on the source nodevs . Multiple replicas of a
file may exist and each replica is represented by a two

2

F3

F2

N1’

N2’

N3’

Processors Disks

F10

F13 F9

F12

F1F4

Compute Cluster C1

Compute Cluster C2

C1−C2

Data Transfer
across clusters

F5

Distributed Storage

Data Transfer from remote storage

D1

Data Transfer from remote storage
D2

D3
NETWORK

C1−D

C2−D

Repositories D
N1

N2

N3

Processors Disks
F7

F4 F5

F1 F1

F10

F11

F12

F13

F9

NETWORK

F7 F8

F6F5

F4

NETWORK

F3

F2F1

C1−C2
NETWORK

of File F1
Chunks

Chunks
of File F1

of File F1
Chunks

of File F1Chunks

F6F5

F4F3

F2F1

D3C1−D
NETWORK

N1’ F4 F1

N1 F2F7

(a) (b)

Figure 1. (a) The wide-area data staging problem, (b) Simultaneous usage of multiple replicas of File F1

tuple in D .
The optimization problem solves for a set of vari-

ablesFlowijℓ , whereFlowijℓ is the rate (bandwidth)
at which file fℓ is transferred through the link between
the nodesvi andvj .

Let InF lowiℓ be the rate at which the filefℓ enters
the nodevi along the incoming edges.

(∀ℓ)(∀i, i ∈ V)InF lowiℓ =
∑

(∀j,(j,i)∈E)

Flowjiℓ (1)

For each filefℓ , the flow on each outgoing edge
which emanates from the nodevi cannot exceed the in-
flow at which the filefℓ enters the nodevi . This neces-
sarily holds true for all the nodes except the source node
set for the filefℓ .

(∀ℓ)(∀j)(∀i, i ∈ V − {k| < fℓ, vk >∈ D})

Flowijℓ ≤ InF lowiℓ (2)

The total inflow rate of all the files entering a node
vi should not exceed the bandwidth capacity at the node
vi , V Cap(i) . Similarly, the total outflow rate on all out-
going edges should not exceed the bandwidth capacity at
the nodevi .

(∀i, i ∈ V)
∑

(∀ℓ)

InF lowiℓ ≤ V Cap(i) (3)

(∀i, i ∈ V)
∑

(∀j)(∀ℓ)

Flowijℓ ≤ V Cap(i) (4)

The aggregate flow rate for all the files through the
edgee between the nodesvi andvj should not exceed
the bandwidth capacityECap(ij) of the edgee .

(∀i, i ∈ V)(∀j, (i, j) ∈ E)
∑

(∀ℓ)

Flowijℓ ≤ ECap(ij)

(5)

We only consider destination nodes as intermediate
nodes for other transfers. Therefore, an edge from a
node vi to a nodevj can have a non-zero flow for a
file fℓ , only if the nodevj belongs to the destination
node set for the filefℓ .

(∀i, i ∈ V)(∀j, (i, j) ∈ E)(∀ℓ, < fℓ, vj >/∈ R)

Flowijℓ = 0 (6)

A feasible solution should not have flow cycles for
each filefℓ . In other words, for each filefℓ , for all cy-
cles in the graphG comprising only a subset of destina-
tion nodes for the filefℓ , the flow for the file on atleast
one of the edges belonging to the cycle should be equal
to zero. LetCyclesℓ be the set of all the cycles in the
graphG consisting only of a subset of destination nodes
of the file fℓ . Each element of the setCyclesℓ is a set
of edges which constitute that cycle.

(∀ℓ)(∀C, C ∈ Cyclesℓ)(∃(i, j), (i, j) ∈ C)Flowijℓ = 0
(7)

The finish timeFinishT imeℓk of a transfer request
for a file fℓ to its destinationvk is computed as follows.

FinishT imeℓk =
FileSize(ℓ)

InF lowkℓ

(8)

Note that the finish time is computed based on the
total incoming flow to the destination nodevk for the
file fℓ . We cannot use the total outgoing flow from the
sources of thefℓ to compute the finish time since there
are possibly multiple destinations for each file and there-
fore outgoing flow from a source node for a particular
file is not necessarily the aggregate flow for a particular
file-destination pair.

The objective is to minimize the total transfer time
Makespan = max∀ℓ,k FinishT imeℓk . Note the ob-
jective function is a non-linear function which means
that the problem is non-linear optimization problem with

3

linear constraints. We represent the objective func-
tion in an alternate way which makes the problem a
linear optimization problem. We define a function
NormalizedRateℓk for each file transfer request.

NormalizedRateℓk =
InF lowkℓ

FileSize(ℓ)
(9)

With the new formulation, the objective becomes
the maximization ofMinRate , which is the minimum
value of NormalizedRateℓk over all file transfer re-
quests. The solution to this optimization problem will
provide, for each file transfer request, the flow rates
which the request should employ for each edge in the
graph. These flow rates can then be used to find the total
transfer time,Makespan . This value of total transfer
time acts as a lower bound under idealistic conditions of
resource availability and performance.

The flow based IP formulation inherently assumes
that all file transfers take place in parallel and simul-
taneous file transfers on the same link share bandwidth.
From a theoretical standpoint, serializing transfers on a
resource, or simultaneous execution with resource shar-
ing, results in the same makespan. In practice, how-
ever, because of limited resources on nodes and the
high cost of congestion on lossy wide-area links, which
leads to a continuous loop between TCP slow-start and
congestion-avoidance phases, the solution obtained by
the IP cannot be achieved for large batches with thou-
sands of requests. Moreover, the scheduling overhead
of a mixed integer programming approach may be un-
acceptable, especially for large workloads and system
configurations. Therefore, in this paper, we employ the
solution obtained by the IP as a lower bound on the total
transfer time and use it as a yardstick to compare against
our proposed dynamic scheduling heuristics which we
discuss in detail in Section 4.

4 Dynamic Scheduling Algorithms

In our approach, scheduling is done per chunk ba-
sis. Chunk is a portion of the file being staged to a des-
tination machine. Transfer of chunks for a file can be
inter-leaved with transfer of chunks for other files. Our
scheduling approaches are iterative, employ adaptive
replica selection, and use of multiple sources for simul-
taneously transferring multiple pieces of the same file,
i.e., non-overlapping portions of a chunk,sub-chunks,
can be retrieved simultaneously from multiple file repli-
cas. In a wide-area environment, the network is often the
bottleneck. A good choice of replicas along with con-
current transfer of data can be expected to yield good
performance. Thus, given a graphG , the set of tuples

R = {< fℓ, vd >} , the set of tuplesD = {< fℓ, vs >} ,
our objective is then to compute a schedule that will min-
imize the total file transfer time. The schedule comprises
of a set of four tuples< Vs, vd, cℓ, t > . Here, cℓ is a
chunk of file fℓ to be transferred,vd is the destination
machine,Vs is the set of source machines, from which
portions of the chunkcℓ will be transferred, andt is the
time at which the transfer of the chunk will start.

Replica selection depends upon a number of fac-
tors like network bandwidths, round-trip times, and file
sizes. Moreover, in a wide-area network, the network
bandwidth may fluctuate considerably. In order to han-
dle dynamic network characteristics, our approach car-
ries out replica selection “at the level of chunks” in an
adaptive manner. We should note that as files are staged
to their respective destination nodes, these nodes can act
as replica sources for other requests of the same file. We
employ dynamic information obtained on the fly from
previously executed file transfers to drive our schedul-
ing and replica selection decisions.

In order to support adaptive replica selection at chunk
level and concurrent use of multiple replicas, we rede-
fine the request setR and the data structureD . We
define the modified request setR′ as the set of three
tuples, R′ = {< fℓ, vd, cur request offset(ℓ, d) >
| < fℓ, vd >∈ R} denoting that fℓ needs to
be transferred to the nodevd starting at the offset
cur request offset(ℓ, d) . This means that a sub-
set of the file fℓ is already present at the nodevd

up to an offsetcur request offset(ℓ, d) . The value
of cur request offset(ℓ, d) will change with time as
more and more chunks of filefℓ get written onto node
vd . The initial values ofcur request offset(ℓ, d)
are set to 0, since the transfer of a file will start at
offset 0. Similarly, D is redefined asD′ = {<
fℓ, vs, last byte offset(ℓ, s) > | < fℓ, vs >∈ D} ,
representing that the filefℓ is currently present on the
nodevs up to the offset valuelast byte offset(ℓ, s) .
Here,vs can be one of the original source nodes of the
file, or a destination node, to which the file has already
been partially transferred. In the casevs is a destination
node, the value oflast byte offset(ℓ, s) will change
over time as more and more chunks become available
on vs . The final value oflast byte offset(ℓ, s) will
be the size of the file,size(fℓ) .

4.1 Global Dynamic Scheduling Algo-
rithm

This scheduling scheme proceeds in steps and in
each step it selects a pending file transfer request<
fℓ, vd, cur request offset(ℓ, d) > from R′ and com-
putes a schedule for the request. A request is considered

4

pending if the file associated with the request has not
been completely transferred to its corresponding desti-
nation and no other chunk of this file is being transferred
to the same destination. The schedule for a request con-
sists of a four tuple with the following elements: (1) the
set of replica locations (Vs) to be accessed to retrieve
the data, (2) the size of the chunk (ChunkSize) which
will be scheduled for transfer at the current scheduling
instant, (3) the portions of the selected chunk to be ob-
tained from each source, and (4) the TCP buffer sizes to
be used for each connection.

In our current implementation, we employ GridFTP
as the underlying transfer mechanism. Each source node
runs a GridFTP server. Each destination node uses the
GridFTP client side API to retrieve the portions of the
file. Since a destination node can become a replica
source for a file, a GridFTP server runs on each des-
tination node as well. After the schedule for a chunk
has been computed, the scheduler sends the schedule in-
formation to the corresponding destination node. The
destination node starts the retrieval of the chunk from
the source nodes. The scheduler moves on to the next
pending file transfer request and repeats the whole pro-
cess. The overall scheduling scheme is illustrated in Al-
gorithm 1.

At step 7, the replica selection method denoted as
SelectReplicas is invoked to select replicas for the
transfer request; the algorithm for replica selection is de-
scribed in the next section. The output from this method
makes up the schedule for the request. The next step
(step 8) is to compute the expected minimum comple-
tion time for transferring a chunk of the requested file.
The transfer completion time is computed as follows.
We first divide the aggregate chunk of sizeChunkSize
into sub-chunks which will be fetched from each replica.
The size of the sub-chunks are chosen to be in the same
ratio as that of the bottleneck bandwidths between each
source host and the destination. The transfer completion
time is then simply the maximum of the times taken to
send each sub-chunk from a source to the destination.
At step 9, following the well-known MinMin [7] algo-
rithm, among all the pending requests, the file transfer
request with the minimum expected completion time is
chosen to be scheduled on the set of resources which
yield its minimum completion time. The overall process
repeats until all the file transfers have been scheduled.
The replication selection step, the determination of the
chunk size, and dynamic bandwidth prediction are pre-
sented in detail in the following sections.

Algorithm 1 Global Dynamic Scheduling Heuristic

Input: Platform G = (V, E) and a setR = {<
fℓ, vd > | file fℓ is requested by destinationvd}

1: R′ = {< fℓ, vd, 0 > | < fℓ, vd >∈ R} { start
transfer of each file from offset 0}

2: D′ = {< fℓ, vs, size(fℓ) > | < fℓ, vs >∈ D}
3: HostBwi = the host bandwidth at nodevi

4: while there are pending requests, i.e.,R′ 6= ∅ do
5: if ∃vd such thatHostBwd > ǫ then
6: for each request r =

< fℓ, vd, cur request offset(ℓ, d) >∈ R′

do
7: < Vs, ChunkSize,

TCPBufSize, SubChunkSize >←
SelectReplicas(G, D′, r)

8: Compute the expected finish time to transfer
the chunk of filefℓ to destinationvd .

9: Choose the requestr with the minimum ex-
pected finish time

10: Schedule the transfer of the chunk of the filefℓ

from replica nodesVs to the nodevd .
11: R′ ← R′ − {r}
12: Update the expected available host bandwidth

(HostBwi) at the source and destination
nodes.

13: for every completed chunk transfer
< Vs, vd, cℓ, t > do

14: Update the available network bandwidths be-
tween sources (vs ∈ Vs) and node (vd)

15: if endOffset(cℓ) < size(fℓ) then
16: R′ ← R′

⋃
{

< fℓ, vd, last byte offset(endOffset(cℓ), d) >
}

4.1.1 Replica Selection

The replica selection algorithm (Algorithm 2) proceeds
as follows. For each replica locationvs , we record the
bandwidth obtained through past GridFTP transfers to
find the network bandwidths and end-to-end latencies
from the locationvs to the destinationvd . To perform
replica selection, we apply a two phase heuristic. Each
phase involves applying a filtering condition to choose a
subset of replica sources of the file to fetch the data. The
first filtering condition is based on the file size and its re-
lation to the slow start phase of TCP. The second filtering
condition is based on the expected available bandwidth
at the sources and destination of files as well as the ex-
pected available bandwidth in the network. The output
of the second filtering condition is a subset of replicas to
be used for transferring the file. The TCP buffer size and
the size of the portion of the chunk to be fetched from

5

each replica are also computed.

Algorithm 2 Replica Selection Algorithm
Input: A pending request< fℓ, vd, off >

1: for Each existing replicavs of the file fℓ do
2: Compute the bandwidth delay productBDPs =

NetBws,d × RTTs,d for the link between hosts
vs andvd .

3: if size(fℓ) ≥ C ×BDPs then
4: add the replicavs to the tentative replica set

Ts

5: for each replicavs ∈ Ts in decreasing order of
available bandwidth values tovd do

6: Add the replicavs to the final replica setVs

7: Update the destinationHostBwd to account for
the transfer betweenvs andvd (if NetBWs,d >
HostBwd the transfer bandwidth betweenvs

andvd will be HostBwd)
8: if HostBwd < ǫ then
9: break

10: if Vs = ∅ then
11: pick the sourcevs ∈ Ts with highest bandwidth

and setVs ← {vs}
12: Compute ChunkSize , TCPBufSize ,

SubChunkSize per replica, usingVs and vd

and available network bandwidth
13: return < Vs, ChunkSize,

TCPBufSize, SubChunkSize >

TCP is a window-controlled transport protocol and
the performance of a TCP connection is dependent on
the Bandwidth-Delay product(BDP). The BDP of a
network path is defined as the product of bandwidthBw
of the path and the round-trip timeRTT . TCP has an
initial slow start phase where in it gradually increases
the send window size. If the TCP buffer size equals the
BDP , the connection will be able to saturate the path,
achieving the maximum possible throughput. However,
if the amount of data to be transferred is lower than the
BDP , the observed bandwidth will be smaller than the
maximum achievable bandwidth. Hence, if the file size
is smaller than a pre-determined multiple ofBDP (step
3 in the algorithm), the replica is tentatively not consid-
ered for selection. Otherwise, the replica is added to the
list of tentatively selected replicasTs . The output of this
phase yields a subset of replicas.

In the second phase, the subset of replicas,Ts , is fur-
ther pruned based on the network bandwidth between
each replica and the destination host and the bandwidth
available at the destination hosts. Employing too many
replica sources in parallel may overwhelm the destina-
tion host in which case each TCP connection may lose
packets and hurt performance. Therefore, the replica

sources should be chosen in a manner so that the aggre-
gate in flow rate of packets matches the available band-
width at the destination host. We use a greedy algorithm
for selecting sources. For each replica location, a bottle-
neck bandwidth is computed as the minimum of the ex-
pected network bandwidth and the available bandwidth
at the destination. We order the replica sources of the se-
lected subset of replicas in non-increasing order of avail-
able bandwidth values to the destination nodevd , and
choose them one by one until we saturate the bandwidth
of the destination host.

If no replica is selected at the end of this phase, the
best replica is chosen for the file and added to the setVs

(step 11). The best replica is simply the replica which
yields the least completion time for the transfer and is
chosen by taking into account the bandwidths from each
replica location.

4.1.2 Chunk Size

The size of a chunk is decided statically. For a file trans-
fer request, it is the maximum of a pre-determined frac-
tion of the file size and a threshold value. The motiva-
tion behind this is the slow start and congestion control
mechanism of TCP. If the size of the chunk on a cer-
tain network edge is less than the BDP, the transfer of
the chunk will finish in the slow-start phase, thereby not
permitting use of the maximum achievable bandwidth.
The threshold value for a given file transfer request is
computed as a pre-determined multiple of the sum of
the BDPs between each source replica and the destina-
tion node.

4.1.3 Dynamic Bandwidth Prediction

The bandwidth to access data from a file replica is an im-
portant factor in replica selection. Replicas with higher
access bandwidth are expected to give better perfor-
mance. The key issue is to determine an accurate mea-
sure of expected bandwidth from a replica. We employ
bandwidth information obtained from previous GridFTP
transfers to predict the future access bandwidths. For
each file transfer that has finished so far, we track and
save the information about the achieved bandwidth be-
tween the source-destination pair into a circular queue.
We employ simple mean-based predictors to estimate
the value of the bandwidth in the next interval. In future,
we plan to employ more sophisticated techniques [16]
for more accurate bandwidth predictions.

In addition, we employ a dynamic bandwidth scal-
ing mechanism which works in a control feedback loop
as follows. If the observed bandwidth between a given
source-destination pair is able to meet a certain percent-

6

age of the expected bandwidth value forN successive
transfers using the source-destination pair, the expected
network bandwidth for the next file transfer between the
two nodes is scaled up by a pre-determined constant,
BW SCALE . The new value of expected bandwidth
is then used to calculate the TCP buffer size for the file
transfer between the two nodes. However, If the ob-
served bandwidth between a given source-destination
pair is lower than a certain fraction of the expected
bandwidth value forN successive transfers that use the
source-destination pair, the expected network bandwidth
for the next file transfer between those two nodes is
scaled down byBW SCALE .

4.2 Local Dynamic Scheduling Algo-
rithm

The global dynamic scheduler presented in Sec-
tion 4.1 coordinates all the data-transfers between mul-
tiple sources and destinations. In this section, we de-
scribe a simplified variant of the global dynamic sched-
uler, which only uses local information in each destina-
tion node. The key idea here is that clients act indepen-
dently and there is no master which coordinates multi-
site file transfers. Each client (destination node) makes
requests for files it needs one by one irrespective of what
other clients are doing. For each file transfer, a client
employs dynamic bandwidth information obtained from
past file transfers and uses multiple replicas to optimize
the transfer time of each file transfer. In other words,
the local scheduler employs optimizations to minimize
the transfer time of each file in much the same way as
the global dynamic scheduler. The difference is that the
scheduling decisions is made by each destination node
independently. The scheduling strategy is illustrated in
Algorithm 3.

Algorithm 3 Local Dynamic Scheduling Heuristic

Input: Platform G = (V, E) and a setR = {<
fℓ, vd > | file fℓ is requested by destinationvd}

1: On each destination nodevd independentlydo
2: for each file request< fℓ, vd > in non-decreasing

file size orderdo
3: for each chunk of filefℓ do
4: < Vs, ChunkSize,

TCPBufSize, SubChunkSize >←
SelectReplicas(G, D′, r)

5: Schedule concurrent transfer of the chunk of
file fℓ from replica nodesVs to nodevd .

6: When transfer completes, update the available
bandwidths between sources (vs ∈ Vs) and the
destination node (vd)

BMI CSE ORNL ANL

BMI 880 880 100 4
CSE 880 880 120 4
ORNL 100 120 900 10
ANL 4 4 300 700

Table 1. Link bandwidths (Mbps) between
a pair of nodes located at different sites.

5 Experimental Results

We compare our dynamic scheduling approaches
against the optimistic lower bounds we obtained via IP
formulation and a baseline strategy, referred to here as
Naive Scheduling. In the baseline strategy, each
destination node picks a randomly chosen replica source
for retrieving a file instead of employing dynamic band-
width information or multiple replicas.

5.1 Experimental Setup

We employ GridFTP [4] as the file transfer pro-
tocol. GridFTP exposes a set of API calls [2] for
setting the TCP buffer sizes and for obtaining por-
tions of a file from a source. In our implementa-
tion, a master scheduler sends control information to
clients (destination hosts). Each destination host calls
globus ftp client partial get() to inform a source of
the file it needs along with the start and end off-
sets. This is followed by a series of asynchronous
globus ftp client register read() calls which are
used to transfer data from the source.

The experiments were carried out across 4 clusters
that are located at geographically distributed sites. The
first site, the BMI cluster, is a memory/storage cluster at
the Department of Biomedical Informatics at the Ohio
State University. The cluster consists of 64 nodes with
an aggregate 0.5 TBytes of physical memory and 48TB
of disk storage. The second site, the CSE cluster, is a
64 node cluster located at the Department of Computer
Science and Engineering at the Ohio State University.
Each node of the cluster is equipped with two 3.6 GHz
Intel processors and 2 GBytes main memory. The other
two sites belong to the Teragrid [15] network. One of
them is the ORNL NSTG cluster which consists of 28
dual processor 3.06 GHz Intel Xeon nodes. The other
one is the UC/ANL IA-32 Linux cluster which consists
of 96 dual-processor Intel Xeon nodes. Table 1 shows
the bandwidths in Mbps(Megabits per second) between
pair of nodes from different sites.

For evaluation, we compared the performance of the

7

various scheduling schemes under a varying set of sce-
narios covering different file replica distributions, file-
to-destination mappings and chunk sizes. For the ex-
perimental workloads, we employed three different file
sizes corresponding to the files to be transferred. The
sizes were 10MB, 50MB and 500MB respectively. In
each workload, the fraction of the total number of files to
be transferred for each file size was decided based on the
distribution of these three file sizes in the GridFTP traces
obtained from Globus metrics for a recent 12-month pe-
riod [3]. The fraction of the number of files of each type
is 0.5, 0.35 and 0.15 respectively for the 10MB, 50MB
and 500MB files.

We measure the performance in terms of two metrics,
namely, the average throughput which is the ratio of the
total data transferred to the total execution time, and the
average response time over all the requests in the work-
load.

5.2 Performance Evaluation

Figure 2 shows the relative performance of the Global
Dynamic Scheduling (GDS), Local Dynamic Scheduling
(LDS) and Naive Scheduling schemes on work-
loads with increasing degree of replication. This ex-
periment was conducted across the 4 sites (BMI-ORNL-
ANL-CSE) in a (4-3-2-3) configuration. The numbers in
the parentheses refer to the number of nodes employed
at each site, respectively. The input request set consisted
of 300 files, the size of each of which is one of the three
aforementioned values. In addition, the request set con-
sisted of multiple destination node mappings for each
file. In this experiment, all the requests in the input set
had their destination as one of the nodes of the BMI clus-
ter. The degree of replication here refers to the average
number of file replicas present in the environment. Ini-
tially, the replicas were placed only on the ORNL nodes
(average number of initial replicas being 1 or 2). Then,
the degree of replication is increased by placing more
file replicas on the ANL and CSE nodes. For the cases
where the average number of replicas is one or two, all
the file transfers employ either the ORNL cluster (ini-
tial replicas) or the BMI cluster (as files are created on
the BMI nodes, they themselves can act as file replicas).
The node-to-node bandwidth from an ORNL node to
a BMI node is around 100Mbps. However, the band-
width for a send from an CSE node to a BMI node is
around 880Mbps. Therefore, as the degree of replica-
tion increases, the average throughput shows a signifi-
cant performance improvement for theGDS scheduler.
This is because, as replicas are placed on the CSE clus-
ter, the algorithm makes an intelligent choice of choos-
ing the CSE replicas more often than the other replicas.

The results also show that theGDS is able to consistently
outperform the other two approaches. In the other two
schemes, clients act independently and make requests
for files without any coordination. Each file needs to
be sent to multiple different destinations, leading to in-
creased end-point contention due to multiple simultane-
ous requests for the same file. Therefore, the perfor-
mance improvement in these schemes due to increased
replication is offset by the endpoint contention caused
due to uncoordinated local scheduling. In terms of the
average response time,GDS performs the best.GDS
schedules the requests with the minimum expected com-
pletion time first. On the other hand, inLDS andNaive
Scheduling, since multiple clients act independently
of each other, requests with higher expected completion
times can possibly execute before requests with lower
expected completion times, thus increasing the overall
response time.

Figure 3 shows the relative performance of the vari-
ous scheduling schemes with increasing degree of repli-
cation. However, in this case, the initial replication is
handled differently. The replicas were initially placed
only on the CSE nodes. The degree of replication is then
increased by placing more file replicas on the ORNL
and ANL nodes respectively. This experiment was con-
ducted by employing the same system configuration em-
ployed in the experiment corresponding to Figure 2. The
input request set consisted of 1500 file transfers. The re-
sults show that as the number of replicas increase, the
average throughput does not show a significant increase,
as expected. More and more replicas were placed on
nodes with low link bandwidths to the destination, re-
sulting in no significant performance improvement.

Figure 4(a) shows the the relative performance of the
various scheduling schemes on workloads with increas-
ing number of clients (destination hosts). This exper-
iment was conducted across the 4 sites (BMI-ORNL-
CSE-ANL) in a (10-3-3-2) configuration. The numbers
in the parentheses are the number of nodes employed
at BMI, ORNL, CSE, and ANL, respectively. During
the experiment, the number of nodes on the BMI clus-
ter was varied from 4 to 10. Each request in the input
set was destined to one of the BMI nodes. The num-
ber of requests in the input set varied from 300 for the 4
BMI nodes to around 600 file transfers for the 10 BMI
nodes. Again, the request set consisted of multiple desti-
nation node mappings for each file. The degree of repli-
cation in these experiments refers to the average num-
ber of file replicas initially present. The average number
of initial file replicas was set to 5. The figure shows
that as the number of clients increase, the throughput in-
creases. This is because, as file replicas are created on
BMI nodes, these replicas also act as sources for other

8

Increasing number of replicas
(ORNL-ANL-CSE)

0

400

800

1200

1600

1 2 3 4 5

Number of initial replicas

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

GDS LDS Naive

Increasing number of replicas
(ORNL-ANL-CSE)

0

50

100

150

200

1 2 3 4 5

Number of initial replicas

A
ve

ra
g

e
R

es
p

o
n

se

ti
m

e(
s)

GDS LDS Naive

(a) (b)

Figure 2. Performance of all the algorithms with increasing number ofreplicas (replicas added in the order ORNL-ANL-
CSE) in terms of the (a) Average throughput and (b) Average response time.

Increasing number of replicas
(CSE-ORNL-ANL)

0

600

1200

1800

2400

1 2 3 4 5

Number of initial replicas

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

GDS LDS Naive

Increasing number of replicas
(CSE-ORNL-ANL)

0

50

100

150

200

250

1 2 3 4 5

Number of initial replicas
A

ve
ra

g
e

re
sp

o
n

se

ti
m

e(
s)

GDS LDS Naive

(a) (b)

Figure 3. Performance of all the algorithms with increasing number ofreplicas (replicas added in the order CSE-ORNL-
ANL) in terms of the (a) Average throughput and (b) Average response time.

Increasing number of clients

0

500

1000

1500

2000

2500

4 6 8 10

Number of clients

T
h

ro
u

g
h

p
u

t(
M

b
/s

)

GDS LDS Naive

Multiple sites (as destinations)

0

400

800

1200

1600

1 2 3 4 5

Number of Initial replicas

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

GDS LDS Naive

(a) (b)

Figure 4. (a) Performance in terms of throughput (Mbps) of all the algorithms with increasing number of clients (b)
Performance in terms of throughput (Mbps) of all the algorithms for workloads where multiple sites act as clients as wellas
sources.

9

requested transfers of the same file. Even though the
aggregate amount of transferred data increases as the
number of BMI clients increases, the aggregate band-
width increases by a greater factor, leading to increased
throughput. Furthermore, the extent of performance im-
provement is maximum for theGDS scheduler. As the
number of clients increase, the effects of end-point con-
tention is expectedly higher.GDS makes a better job
of accounting for contention by making efficient coordi-
nated scheduling decisions, whereas the other schemes
make client-side local decisions which cause a lot of
end-point contention.

Varying Chunk Size

0

500

1000

1500

2000

1 1.5 2 2.5 3

File Size/Chunk Size

T
h

ro
u

g
h

p
u

t(
M

b
/s

)

GDS LDS Naive

Figure 5. Performance of all the algorithms with de-
creasing chunk size.

Figure 4(b) shows the the relative performance of the
various scheduling schemes on workloads with nodes
belonging to different sites acting as destinations. This
experiment was conducted across the 4 sites (BMI-
ORNL-CSE-ANL) in a (4-3-3-2) configuration. The in-
put request set consisted of around 450 file transfers,
the destination nodes for each file transfer were evenly
distributed across the BMI, ORNL and CSE nodes. In
this case, initially, the replicas were placed only on the
ORNL nodes. Then, the degree of replication is in-
creased by placing more file replicas on the ANL and
CSE nodes. As is seen from the figure, as the num-
ber of replicas is increased, the performance gap be-
tweenGDS and the other algorithms increases. An in-
crease in the number of replicas (with replicas being
added to the CSE cluster) creates more opportunity for
faster transfers and more parallelism.LDS andNaive
Scheduling, however, experience a lot of end-point
contention, since each node can possible act as a source
and a destination for multiple files simultaneously.

In the experimental results shown so far, the replica
selection algorithm only chose fully-written files as
replica sources for getting portions of files. In other
words, a file which is in the process of being written
to a destination nodevd cannot act as a source for the
transfer of the same file to another nodevd′ , even if the

required portion of the file at the destinationvd′ has al-
ready been written at nodevd . Once the file is com-
pletely written at nodevd , it can act as a replica source
for other file transfers. We relaxed this constraint to al-
low for chunk-level replica sources. That is, a file which
has not been completely written to a nodevd can still act
as a source for other transfers of the same file. Figure 5
shows the performance results as a function of decreas-
ing chunk size for all three algorithms by incorporating
chunk-level replica sources. Here, the x-axis denotes the
fraction FileSize

ChunkSize
. Increasing the value of this param-

eter implies the file is transferred in smaller and smaller
chunks. The results show that the throughput increases
by employing smaller chunks up to a certain point, after
which it shows a decrease. The initial increase is due
to the fact that as the chunk size decreases, the number
of possible replica sources for each file increases. Since
each file has multiple destinations, chunks of file being
written to some destination nodes can act as sources for
other destination nodes. However, as the chunk size de-
creases further, the latency and I/O overheads of trans-
ferring the file in a greater number of chunks offset the
potential benefit due to an increased number of file repli-
cas.

5.3 Scheduling overhead

In our system, the scheduler computes the schedule
information for a chunk request and sends this informa-
tion to the corresponding destination node. The desti-
nation node starts the retrieval of the chunk from the
source nodes. The scheduler moves on to the next pend-
ing file transfer request and repeats the whole process.
Therefore, the scheduling performed by the centralized
master and the file transfers between slave nodes occur
in parallel. The end-to-end execution time is defined as
the elapsed time between the instant when the sched-
uler accepts a batch of requests to the instant when all
the requests have been completed. The non-overlapped
scheduling time is the difference between the end-to-end
execution time and the total file transfer time. In other
words, the non-overlapped scheduling time is the per-
ceived scheduling overhead. In our experiments, we ob-
served that the non-overlapped scheduling time is neg-
ligible. This is because, the schedule is generated itera-
tively while the file transfers are taking place.

5.4 Lower-bound Comparisons

Tables 2 and 3 show the comparison of the lower
bounds obtained from the IP formulation in Section 3
with the experimental values obtained by employing the

10

N CSE-ORNL-ANL (Single dest.) ORNL-ANL-CSE (Single dest.)
Lower bound GDS % Increase Lower bound GDS % Increase

1 148.6 201.4 36 250 289.3 16
2 142.6 193.5 36 163.2 195.9 20
3 134.6 191.6 42 125.4 165.65 32
4 134.6 183.4 36 114.2 149.7 31
5 134.6 157.8 17 79.4 125.12 58

Table 2. Comparison (in terms of transfer time(secs)) between lowerbounds andGDS scheduling algorithm for single-
destination workloads. HereN represents the average number of initial file replicas.

N CSE-ORNL-ANL (Multiple dest.) ORNL-ANL-CSE (Multiple dest.)
Lower bound GDS % Increase Lower bound GDS % Increase

1 347.6 611.6 76 508.8 783.44 54
2 323.5 591.5 83 295.3 580.4 96
3 322.6 585.08 81 196.3 387.7 97
4 307.6 515.8 68 116.5 252.3 117
5 307.6 508.01 65 81.5 165.33 103

Table 3. Comparison (in terms of transfer time(secs)) between lowerbounds andGDS scheduling algorithm for multi-
destination workloads. HereN represents the average number of initial file replicas.

GDS scheduling algorithm for single-destination work-
loads and multiple-destination workloads. A single-
destination workload, here, refers to a workload where
each file has a single destination. A multi-destination
workload, on the other hand, is one in which each file
is transferred to multiple destination nodes. The multi-
destination workloads employed here are the same as the
ones which have been used for the results shown in Fig-
ures 2 and 3. The lower bounds have been computed by
employing peak values of bandwidth on the various net-
work links. The results show that theGDS scheduling
algorithm results in between 16-58% increase in execu-
tion time compared to the lower bound for the single-
destination workloads and between 54-117% increase
for the multiple-destination workloads. The difference
between the lower bound and theGDS is attributed
to the fact that observable network bandwidth over the
wide-area can show fluctuations over time. Also, be-
cause of the slow-start mechanism of TCP, some file
transfers cannot observe the achievable network band-
width. The difference between the lower bound and
GDS is higher in the multi-destination case as com-
pared to the single-destination case. The IP formulation
can yield solutions which employ multiple destinations
v1 , v2 , ...vk−1 of a file to send flow to another destina-
tion vk . However, the formulation does not capture if
the sourcesv1 , v2 , ...vk−1 have the required chunks of
files or not at a given instant. In the worst case, all the
sources might have the same chunks of file at a given

instant, which means that only a single source would be
used to transfer the chunk. The IP formulation is obliv-
ious to this since it is based on static flow concepts and
does not incorporate the notion of time. Therefore, it re-
sults in an overestimation of the achievable throughput
and a lower transfer time. Note that since the GridFTP
servers do not have the capability to route the incoming
data to a different GridFTP server, we do not allow this
in the IP formulation as well. Using a GridFTP server as
an intermediate node without storing the data on to the
disk is non-trivial and require changes/additions to the
GridFTP code and is a part of our future work.

5.5 Discussion

In this section, we provide insights into the scenar-
ios where in our proposed algorithm is expected to pro-
vide significant performance improvements as well as
those cases where it is expected to give little perfor-
mance benefits. In general, the algorithm is expected to
provide greater benefits with increasing degree of data
replication. With a very low degree of replication, the
proposed algorithm is restricted in its choice of multi-
ple replicas, thereby not giving significant performance
improvements. Moreover, the algorithm is expected to
perform well for multi-destination workloads. This is
because, the algorithm, can dynamically take into ac-
count the existence of new replicas as some of the files
are transferred to their respective destination nodes, and

11

employ those replicas for subsequent file transfers.

6 Conclusions

This paper proposes a dynamic scheduling algorithm
which schedules a set of data transfer requests made by a
batch of data-intensive tasks in a wide-area environment
like the Grid. It also proposes a network flow based in-
teger programming formulation of the scheduling prob-
lem, which is used to find a lower bound on the transfer
time under idealistic conditions of resource availability
and performance. The proposed dynamic scheduling al-
gorithm is adaptive in that it accounts for network band-
width fluctuations in the wide-area environment. The
algorithm incorporates simultaneous transfer of disjoint
chunks of the same file from different replica sources
to a destination node, thereby increasing the aggregate
bandwidth. Adaptive replica selection is used for trans-
ferring different chunks of the same file by taking dy-
namic network information into account. We employ
GridFTP for data transfers and utilize information from
past GridFTP transfers to perform predictive bandwidth
estimations. We have shown the effectiveness of our
scheme through experimental evaluations on a wide-area
testbed.

References

[1] The Large Haldron Collider (LHC) .
http://lhc.web.cern.ch/lhc/.

[2] Globus ftp client api.
http://www.globus.org/api/c/globusftp client/html/index.html,
2002.

[3] Globus metrics, version 1.4.
http://incubator.globus.org/metrics/reports/2007-02.pdf,
2007.

[4] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link.
The globus striped gridftp framework and server. In
SC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, Washington, DC, USA, 2005. IEEE
Computer Society.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: high-bandwidth
multicast in cooperative environments. InSOSP ’03:
Proceedings of the nineteenth ACM symposium on Op-
erating systems principles, pages 298–313, New York,
NY, USA, 2003. ACM.

[6] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks
sharing files from distributed repositories. InEuro-Par
2004: Parallel Processing: 10th International Euro-Par
Conference, volume 3149 of LNCS, pages 246–253, Sept.
2004.

[7] O. Ibarra and C. Kim. Heuristic algorithms for schedul-
ing independent tasks on nonindentical processors.Jour-
nal of the ACM, 24(2):280–289, Apr 1977.

[8] G. Khanna, U. Catalyurek, T. Kurc, P. Sadayappan, and
J. Saltz. Scheduling file transfers for data-intensive
jobs on heterogeneous clusters. In A.-M. Kermarrec,
L. Bougé, and T. Priol, editors,Euro-Par, volume 4641
of Lecture Notes in Computer Science, pages 214–223.
Springer, 2007.

[9] G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek,
P. Wyckoff, J. Saltz, and P. Sadayappan. A hypergraph
partitioning based approach for scheduling of tasks with
batch-shared i/o. InCCGRID ’05: Proceedings of the
Fifth IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGrid’05) - Volume 2, pages 792–
799, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[10] T. Kosar and M. Livny. Stork: Making data placement a
first class citizen in the grid. InICDCS ’04: Proc.of the
24th International Conference on Distributed Computing
Systems (ICDCS’04), pages 342–349, Washington, DC,
USA, 2004. IEEE Computer Society.

[11] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bul-
let: high bandwidth data dissemination using an overlay
mesh. InSOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 282–
297, New York, NY, USA, 2003. ACM.

[12] V. S. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy,
and A. E. Mohr. Chainsaw: Eliminating trees from over-
lay multicast. In M. Castro and R. van Renesse, editors,
IPTPS, volume 3640 ofLecture Notes in Computer Sci-
ence, pages 127–140. Springer, 2005.

[13] M. Piatek, T. Isdal, T. E. Anderson, A. Krishnamurthy,
and A. Venkataramani. Do incentives build robustness in
bittorrent? InNSDI. USENIX, 2007.

[14] M. Swany. Improving throughput for grid applica-
tions with network logistics. InSC ’04: Proceedings
of the 2004 ACM/IEEE conference on Supercomputing,
page 23, Washington, DC, USA, 2004. IEEE Computer
Society.

[15] TeraGrid. http://www.teragrid.org.
[16] L. Yang, J. M. Schopf, and I. Foster. Improving parallel

data transfer times using predicted variances in shared
networks. InCCGRID ’05: Proceedings of the Fifth
IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’05) - Volume 2, pages 734–742,
Washington, DC, USA, 2005. IEEE Computer Society.

12

